A performance evaluation of two overhead power line proximity warning devices.
Authors
Homce GT; Cawley JC; Yenchek MR
Source
Pittsburgh, PA: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2009-110 (IC 9510), 2008 Nov; :1-37
Accidental contact of overhead electrical power lines by mobile equipment is a leading cause of occupational fatalities in the United States, accounting for 20% of on-the-job electrocutions. Overhead electrical power line proximity warning devices (PWDs) are intended to warn personnel if mobile equipment moves within some preselected minimum distance of an energized overhead electrical power line. Two commercially available PWDs were tested at the National Institute for Occupational Safety and Health's (NIOSH) Pittsburgh Research Laboratory (PRL). The objective of the tests was to document performance capabilities and limitations for these PWDs by identifying factors that can influence their operation. The two PWDs evaluated in this research are the SIGALARM Model 210 marketed by Allied Safety Systems, LLC, and the ASE Model 2100 from Allied Safety Engineering. Both of these devices operate by measuring the electric field present around energized power lines. The PWDs were installed on a government-owned 22-st (20-mt) rough terrain crane. A purpose-built test site used for this research at PRL allowed operation of the crane near a variety of power line configurations operating at up to 25 kV. Most of the tests involved positioning the crane adjacent to one or more overhead power lines, adjusting sensitivities of the PWDs to alarm when the crane boom was approximately 20 ft (6.1 m) from the power lines, swinging the crane boom toward the lines under a wide variety of test conditions, and finally, for each unique set of test conditions, documenting the deviation from 20 ft (6.1 m) for actual alarm activation. Test results show that several factors can adversely affect PWD performance. PWD alarm accuracy generally deteriorated when operating with a boom position significantly different than that used for the device's last sensitivity adjustment. Another factor that can affect PWD performance is configuration of the overhead power line(s) involved. Accuracy of alarm activation distances was best for simple single-circuit installations, but degraded for multiple circuits on the same poles. This degradation was slightly greater for installations with different voltage levels and/or a combination of vertical and horizontal conductor arrangements. Performance also degraded for crane operation between two intersecting power line installations, especially for intersecting lines at different voltages. An additional aspect of power line configuration shown to influence PWD accuracy was phase sequence on the power line circuit(s). Specific phase conductor arrangements and combinations, particularly in multiple circuit installations, resulted in either improved or degraded accuracy. Tests were also conducted to evaluate the PWDs as "early warning devices" for situations such as moving a mobile crane into an unfamiliar work area. Results showed that the SIGALARM Model 210 could detect energized 13-kV power lines at a distance of 75-88 ft (22.9-26.8 m). This alarm distance would allow an operator to take preventive measures before the crane is in a position from which it could contact nearby power lines.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.