Cold increases cutaneous vasoconstriction by unmasking the contractile activity of alpha(2C)-adrenoceptors (alpha(2C)-ARs) in vascular smooth muscle cells (VSMCs), which is mediated by the cold-induced mobilization of alpha(2C)-ARs from the transGolgi to the cell surface. The expression of alpha(2C)-ARs in human cutaneous VSMCs is under dual regulation by cyclic AMP: gene transcription is inhibited by cyclic AMP acting through protein kinase A but is increased by cyclic AMP acting through the exchange protein directly activated by cyclic AMP (EPAC) and the GTP-binding protein Rap1. Experiments were performed to further characterize the Rap1 signaling pathway. Forskolin (10 muM), the selective EPAC activator, 8-pCPT-2'-O-Me-cyclic AMP (CMC; 100 microM), or a constitutively active mutant of Rap1 (Rap1CA) increased the activity of c-Jun NH(2)-terminal kinase (JNK) in human cutaneous VSMCs. This was associated with the increased phosphorylation of c-Jun and activation of an activator protein (AP)-1 reporter construct, which were inhibited by the JNK inhibitor SP600125 (3 microM). Rap1CA increased the activity of an alpha(2C)-AR promoter-reporter construct, which was inhibited by SP600125 (3 microM) or by the mutation of an AP-1 binding site in the alpha(2C)-AR promoter. Furthermore, forskolin (10 microM) or CMC (100 microM) increased the expression of the alpha(2C)-AR protein, and these effects were inhibited by SP600125 (3 microM). Therefore, cyclic AMP increases the expression of alpha(2C)-ARs in cutaneous VSMCs by activating a novel Rap1 signaling pathway, mediated by the activation of JNK, AP-1, and the subsequent transcriptional activation of the alpha(2C)-AR gene. By increasing the expression of cold-responsive alpha(2C)-ARs, this pathway may contribute to enhanced cold-induced vasoconstriction in the cutaneous circulation, including Raynaud's phenomenon.
N. A. Flavahan, Dept. of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Ross Research Bldg., R 370/372, 720 Rutland Ave., Baltimore, MD 21205
Publication Date
20080701
Document Type
Journal Article
Email Address
nflavah1@jhmi.edu
Funding Type
Grant
Fiscal Year
2008
Identifying No.
Grant-Number-R01-OH-008531
Issue of Publication
1
ISSN
0363-6135
Source Name
American Journal of Physiology - Heart and Circulatory Physiology
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.