Nephron number determines susceptibility to renal mass reduction-induced CKD in Lewis and Fisher 344 rats: implications for development of experimentally induced chronic allograft nephropathy.
Background. The Fisher 344 (F344) rat kidney transplanted to a Lewis rat recipient is a common model of chronic renal allograft nephropathy (CAN); however, CAN does not develop when the Lewis kidney is grafted into a F344 recipient. In this study we investigated whether a difference in nephron number/glomerular volume exists between the strains that could contribute to a greater susceptibility to development of kidney disease in the F344. Methods. Separate animals, male F344 and Lewis rats, were subjected to either sham surgery or right uni-nephrectomy and infarction of 2/3 of the left kidney, to produce a 5/6 ablation/infarction injury (5/6 A/I). Serial urinary protein excretions were measured, a terminal 24-h creatinine clearance was obtained and rats were killed 11 weeks after surgery and kidneys were harvested for pathology. Glomerular volumes were measured in the sham controls of each strain. Glomerular number was counted in separate, normal rats of each strain. Results. The normal F344 had similar to 30% fewer glomeruli than Lewis rats that were larger in volume. The sham F344 had similar creatinine clearance and glomerular structure to the Lewis shams, although BP and urine protein excretion were higher. After 5/6 A/I the F344 developed more severe proteinuria and structural kidney damage. When factored for kidney weight, the F344 rats exhibited a greater compensatory hyperfiltration in response to 5/6 A/I, compared to Lewis. Conclusions. The F344 strain is more vulnerable to development of progressive kidney damage due to 5/6 A/I, compared to the Lewis. This is likely due to the lower nephron number/greater glomerular volume of the F344 that may also account for the greater susceptibility to CAN exhibited by this strain.
Chris Baylis, Department of Physiology and Functional Genomics and Department of Medicine, 1600 SW Archer Road, Room M554, University of Florida, PO Box 100274, Gainesville, FL 36210
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.