A computational fluid dynamics (CFD) study was conducted to model effects of coal properties on the potential for spontaneous heating in longwall gob (mined-out) areas. A two longwall panel district using a bleeder ventilation system was simulated. The permeability and porosity profiles for the longwall gob were generated from a geotechnical model and were used as inputs for the three-dimensional CFD modeling. The spontaneous heating is modeled as the low-temperature oxidation of coal in the gob using kinetic data obtained from previous laboratory-scale spontaneous combustion studies. Heat generated from coal oxidation is dissipated by convection and conduction, while oxygen and oxidation products are transported by convection and diffusion. Unsteady state simulations were conducted for three different US coals and simulation results were compared with some available test results. The effects of coal surface area and heat of reaction on the spontaneous heating process were also examined.
Liming Yuan, Pittsburgh Research Laboratory, National Institute for Occupational Safety and Health, P.O. Box 18070, Cochrans Mill Road, Pittsburgh, PA 15236, United States
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.