This study investigated the filtration performance of NIOSH-approved N95 and P100 filtering facepiece respirators (FFR) against six different monodisperse silver aerosol particles in the range of 4-30 nm diameter. A particle test system was developed and standardized for measuring the penetration of monodisperse silver particles. For respirator testing, five models of N95 and two models of P100 filtering facepiece respirators were challenged with monodisperse silver aerosol particles of 4, 8, 12, 16, 20, and 30 nm at 85 L/min flow rate and percentage penetrations were measured. Consistent with single-fiber filtration theory, N95 and P100 respirators challenged with silver monodisperse particles showed a decrease in percentage penetration with a decrease in particle diameter down to 4 nm. Penetrations less than 1 particle/30 min for 4-8 nm particles for one P100 respirator model, and 4-12 nm particles for the other P100 model, were observed. Experiments were also carried out with larger than 20 nm monodisperse NaCl particles using a TSI 3160 Fractional Efficiency Tester. NaCl aerosol penetration levels of 20 nm and 30 nm (overlapping sizes) particles were compared with silver aerosols of the same sizes by a three-way ANOVA analysis. A significant (p < 0.001) difference between NaCl and silver aerosol penetration levels was obtained after adjusting for particle sizes and manufacturers. A significant (p = 0.001) interaction with manufacturers indicated the difference in NaCl, and silver aerosol penetrations were not the same across manufacturers. The two aerosols had the same effect across 20 nm and 30 nm sizes as shown by the absence of any significant (p = 0.163) interaction with particle sizes. In the case of P100 FFRs, a significant (p < 0.001) difference between NaCl and silver aerosol (20 nm and 30 nm) penetrations was observed for both respirator models tested. The filtration data for 4-30 nm monodisperse particles supports previous studies that indicate NIOSH-approved air-purifying respirators provide expected levels of filtration protection against nanoparticles.
Samy Rengasamy, National Institute for Occupational Safety and Health, Technology Research Branch, National Personal Protective Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 18070, Pittsburgh, PA 15236
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.