Microarray technology has advanced toward analysis of toxic occupational exposures in biological systems. Microarray analysis is an ideal way to search for biomarkers of exposure, even if no specific gene or pathway has been identified. Analysis may now be performed on thousands of genes simultaneously, as opposed to small numbers of genes as in the past. This ability has been put to use to analyze gene expression profiles of a variety of occupational toxins in animal models to classify toxins into specific categories based on response. Analysis of normal human cell strains allows an extension of this analysis to investigate the role of interindividual variation in response to various toxins. This methodology was used to analyze four occupationally related toxins in our lab: oxythioquinox (OTQ), a quinoxaline pesticide; malathion, an organophosphate pesticide; di-n-butyl phthalate (DBP), a chemical commonly found in personal care and cosmetic items; and benzo[a]pyrene (BaP), an environmental and occupational carcinogen. The results for each exposure highlighted signaling pathways involved in response to these occupational exposures. Both pesticides showed increase in metabolic enzymes, while DBP showed alterations in genes related to fertility. BaP exposure showed alterations in two cytochrome P450s related to carcinogenicity. When used with occupational exposure information, these data may be used to augment risk assessment to make the workplace safer for a greater proportion of the workforce, including individuals susceptible to disease related to exposures.
Ainsley Weston, PhD, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health/CDC, H2900, 1095 Willowdale Road, Morgantown, WV 26505
CODEN
JTEHD6
Publication Date
20080101
Document Type
Journal Article
Email Address
agw8@cdc.gov
Fiscal Year
2008
Issue of Publication
5
ISSN
1528-7394
NIOSH Division
HELD
Source Name
Journal of Toxicology and Environmental Health, Part A: Current Issues
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.