Pneumatic active suspension design for heavy vehicle seats and operator ride comfort.
Authors
Valero B; Amirouche F; Mayton A
Source
Proceedings of the first American conference on human vibration, June 5-7, 2006, Morgantown, West Virginia. Dong R, Krajnak K, Wirth O, Wu J, eds. Morgantown: WV: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2006-140, 2006 Jun; :38-39
Handling of heavy vehicles such as tractors, trucks and buses require a large roll stiffness which causes large high accelerations at the seat level during impacts. To provide comfort and minimize the energy transfer from the chassis and the seat a pneumatic active seat suspension is proposed. An active seat suspension design and control algorithm under development at the University of Illinois at Chicago, UIC, is being developed and tested. Preliminary results are presented in this paper. The design of a passive suspension typically consists of optimizing the value of two parameters: the stiffness and the damping of the suspension. The general dynamic performance of the suspension is limited to the conditions under which these parameters were obtained. A change in the input conditions might lead to poor suspension and an amplification of the vibration transmitted to the body. The focus of this paper is a robust, semi-active suspension system with a variable controlled damping and using the body response an index measure to minimize the acceleration at the interface of the seat and operator. A summary of existing suspensions, such as MR and ER fluids, and spring loaded and dual valve shock absorbent will be discussed to highlight the need of a semi-active pneumatic suspension system design.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.