Ferrous ion (Fe(2+)) is long thought to be the most likely active species, producing oxidants through interaction of Fe(2+) with oxygen (O(2)). Because current iron overload therapy uses only Fe(3+) chelators, such as desferrioxamine (DFO), we have tested a hypothesis that addition of a Fe(2+) chelator, 2,2'-dipyridyl (DP), may be more efficient and effective in preventing iron-induced oxidative damage in human liver HepG2 cells than DFO alone. Using ferrozine as an assay for iron measurement, levels of cellular iron in HepG2 cells treated with iron compounds correlated well with the extent of lipid peroxidation (r = 0.99 after log transformation). DP or DFO alone decreased levels of iron and lipid peroxidation in cells treated with iron. DFO + DP together had the most significant effect in preventing cells from lipid peroxidation but not as effective in decreasing overall iron levels in the cells. Using ESR spin trapping technique, we further tested factors that can affect oxidant-producing activity of Fe(2+) with dissolved O(2) in a cell-free system. Oxidant formation enhanced with increasing Fe(2+) concentrations and reached a maximum at 5 mM of Fe(2+). When the concentration of Fe(2+) was increased to 50 mM, the oxidant-producing activity of Fe(2+) sharply decreased to zero. The initial ratio of Fe(3+):Fe(2+) did not affect the oxidant producing activity of Fe(2+). However, an acidic pH (< 3.5) significantly slowed down the rate of the reaction. Our results suggest that reaction of Fe(2+) with O(2) is an important one for oxidant formation in biological system, and therefore, drugs capable of inhibiting redox activity of Fe(2+) should be considered in combination with a Fe(3+) chelator for iron overload chelation therapy.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.