An in vivo rabbit model of repetitive joint flexion and loading was used to characterize the morphological effects of cyclical loading on articular cartilage. The forepaw digits of eight anesthetized New Zealand White adult female rabbits were repetitively flexed at 1 Hz with a mean peak digit load of 0.42 N for 2 h per day for 60 cumulative hours. Metacarpophalangeal joints were collected from loaded and contra-lateral control limbs, fixed, decalcified, embedded, and thin-sectioned. Serial sections were stained for histology or for immunohistochemistry. Morphometric data including the mean thicknesses of the uncalcified cartilage and of the calcified cartilage were collected from digital photomicrographs of safranin O-stained sections. The number of cells stained with anti-osteopontin antibody was counted. We observed a decrease in uncalcified cartilage mean thickness with no significant change in calcified cartilage thickness. We also observed a significant increase in the number of cells positive for osteopontin (OPN) in the uncalcified cartilage. These changes occurred without overt cartilage surface degeneration. Cyclical loading leads to changes at the tissue and cellular levels in articular cartilage. These changes are suggestive of tidemark advancement and may indicate a reactivation of cartilage mineralization steps analogous to endochondral ossification. This novel in vivo rabbit model of repetitive flexion and loading can be used to investigate the effects of cyclical loading on articular joints.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.