In many occupational settings (e.g. agriculture and construction) workers are asked to maintain static flexed postures of the low back for extended periods of time. Recent research indicates that the resulting strain in the viscoelastic, ligamentous tissues may have a deleterious effect on the stability of the spine and the normal reflex response of spinal tissues. The purpose of this study was to evaluate the previously described flexion-relaxation response in terms of the interactive effect of trunk flexion angle (30 degrees, 50 degrees, 70 degrees, 90 degrees ), knee flexion angle (0 degrees (straight knees), 20 degrees, 40 degrees ) and individual flexibiliteky (low, medium, and high). These conditions were tested under two levels of loading: no load (just supporting the weight of the torso) and trunk extension moment equal to 50% of the subject's posture-specific maximum voluntary trunk extension capacity. Surface electromyographic (EMG) data were collected from the multifidus, the longissimus, the iliocostalis, the vastus medialis, the rectus femoris, the vastus lateralis, the biceps femoris, and the gastrocnemius-soleus group from a sample of eight male participants as they performed isometric weight holding tasks in the postures defined by the combinations of trunk angle and knee angle. The results of this study showed that knee angle did have a significant effect on the lumbar extensor muscle activity but only consistently at the 90 degrees trunk angle. Participant flexibility showed a consistent trend of decreasing lumbar extensor muscle activity with decreased flexibility across all trunk angle values. Most interesting was the interactive response of flexibility and knee angle, wherein the flexibility of the participant influenced the trunk angles at which the knee flexion angle affected the flexion-relaxation response. Highly flexible subjects showed an effect of knee angle on the flexion-relaxation response only at the 90 degrees trunk angle; subjects in the medium flexibility category showed a similar response in both the 70 degrees and 90 degrees trunk angles; subject in the low flexibility group showed no knee angle effect on the flexion-relaxation response. Overall the results confirm previous results with regard to the contribution of the passive tissues to the overall trunk extension moment but also show that the tension in the bi-articular biceps femoris, which was influenced by knee flexion angle and flexibility, affects the ratio of active extensor moment contributions of the lumbar extensor musculature to passive extensor moment contributions from the muscular and ligamentous tissues. The results of this study provide empirical data describing this complicated, interactive response.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.