NIOSHTIC-2 Publications Search

Computational protein chemistry of p53 and p53 peptides.

Authors
Brandt-Rauf-PW; Rosal-RV; Fine-RL; Pincus-MR
Source
Front Biosci 2004 Sep; 9:2778-2787
NIOSHTIC No.
20029008
Abstract
Computational protein chemistry has potential to contribute to the development of new therapeutic approaches in medicine in several different ways, including indirectly by increasing understanding of the disease-associated changes in protein structure that are mechanistically important, which can have diagnostic implications, as well as directly in designing peptides to counteract the patho-physiologic effects of these changes. Studies of the role of the tumor suppressor protein p53 in the carcinogenic process provide examples of both types of contribution. Computational studies of the effects of mutations in p53 on its structure have provided insights into cancer mechanisms and have served to elucidate potential new diagnostic approaches based on the identification of changes in p53 structure. Computational studies of p53 peptides have contributed to identifying and optimizing the structural characteristics that contribute to their activity in selectively killing cancer cells.
Keywords
Risk-analysis; Epidemiology; Mathematical-models; Exposure-limits; Cancer-rates; Mutagens; Mutagenesis; Computer-models; Medical-research; Medical-sciences
Contact
Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
Publication Date
20040901
Document Type
Journal Article
Email Address
pwb1@columbia.edu
Funding Amount
163500
Funding Type
Grant
Fiscal Year
2004
Identifying No.
Grant-Number-R01-OH-004192; Grant-Number-R01-OH-007590
ISSN
1093-9946
Priority Area
Work Environment and Workforce: Special Populations
Source Name
Frontiers in Bioscience
State
NY
Performing Organization
Department of Environmental Health Sciences, The Mailman School of Public Health, Columbia University, New York, New York
Page last reviewed: March 11, 2019
Content source: National Institute for Occupational Safety and Health Education and Information Division