NIOSHTIC-2 Publications Search

Sustained effect of inhaled diesel exhaust particles on T-lymphocyte-mediated immune responses against Listeria monocytogenes.

Yin XJ; Dong CC; Ma JYC; Antonini JM; Roberts JR; Barger MW; Ma JKH
Toxicol Sci 2005 Nov; 88(1):73-81
Studies have shown that exposure to diesel exhaust particles (DEP) suppresses pulmonary host defense against bacterial infection. The present study was carried out to characterize whether DEP exposure exerts a sustained effect in which inhaled DEP increase the susceptibility of the lung to bacterial infection occurring at a later time. Brown Norway rats were exposed to filtered air or DEP by inhalation at a dose of 21.2 +/- 2.3 mg/m(3), 4 h/day for 5 days, and intratracheally instilled with saline or 100,000 Listeria monocytogenes (Listeria) 7 days after the final DEP exposure. Bacterial growth and cellular responses to DEP and Listeria exposures were examined at 3 and 7 days post-infection. The results showed that inhaled DEP prolonged the growth of bacteria, administered 7 days post DEP exposure, in the lung as compared to the air-exposed controls. Pulmonary responses to Listeria infection were characterized by increased production of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, IL-12, and IL-10 by alveolar macrophages (AM) and increased presence of T lymphocytes and their CD4(+) and CD8(+) subsets in lung draining lymph nodes that secreted elevated levels of IL-2, IL-6, IL-10, and interferon (IFN)-gamma. Diesel exhaust particles were found to inhibit Listeria-induced production of IL-1beta and TNF-alpha, which are responsible for the innate immunity, and IL-12, which initiates the development of T helper (Th)1 responses, but enhance Listeria-induced AM production of IL-10, which prolongs Listeria survival in these phagocytes. The dual action of DEP on AM production of IL-12 and IL-10 correlated with an inhibition of the development of bacteria-specific T lymphocytes by DEP. Cytokine production by lymphocytes from DEP- and Listeria-exposed rats showed a marked decrease in the production of IL-2, IL-10, and IFN-gamma compared to Listeria infection alone, suggesting either that DEP inhibit the production of cytokines by lymphocytes or that these lymphocytes contained T-cell subsets that are different from those of Listeria infection alone and less effective in mediating Th1 immune responses. This study demonstrates that inhaled DEP, after a 7-day resting period, increase the susceptibility of the lung to bacterial infection occurring at a later time by inhibiting macrophage immune function and suppressing the development of T-cell-mediated immune responses. The results support the epidemiological observations that exposure to DEP may be responsible for the pulmonary health effects on humans.
Diesel-exhausts; Immune-reaction; Bacteria; Bacterial-infections; Laboratory-animals; Animals; Animal-studies; Exposure-levels; Exposure-assessment; Cellular-reactions; Lung-irritants; Pulmonary-system-disorders; Respiratory-system-disorders
Publication Date
Document Type
Journal Article
Fiscal Year
Issue of Publication
NIOSH Division
Source Name
Toxicological Sciences
Page last reviewed: August 5, 2022
Content source: National Institute for Occupational Safety and Health Education and Information Division