NIOSHTIC-2 Publications Search

A novel in-vitro technique for studying percutaneous permeation with a membrane-coated fiber and gas chromatography/mass spectrometry: part I. Performances of the technique and determination of the permeation rates and partition coefficients of chemical mixtures.

Xia X-R; Baynes RE; Monteiro-Riviere NA; Leidy RB; Shea D; Riviere JE
Pharm Res 2003 Feb; 20(2):275-282
Purpose. To develop a novel in-vitro technique for rapid assessment of percutaneous absorption of chemical mixtures. Methods. A silastic membrane was coated on to a fiber to be used as a permeation membrane. The membrane-coated fiber was immersed in the donor phase to partition the compounds into the membrane. At a given partition time, the membrane-coated fiber was transferred into a GC injector to evaporate the partitioned compounds for quantitative and qualitative analyses. Results. This technique was developed and demonstrated to study the percutaneous permeation of a complex mixture consisting of 30 compounds. Each compound permeated into the membrane was identified and quantified with GC/MS. The standard deviation was less than 10% in 12 repeated permeation experiments. The partition coefficients and permeation rates in static and stirred donor solution were obtained for each compound. The partition coefficients measured by this technique were well correlated (R2 = 0.93) with the reported octanol/water partition coefficients. Conclusions. This technique can be used to study the percutaneous permeation of chemical mixtures. No expensive radiolabeled chemicals are required. Each compound permeated into the membrane can be identified and quantified. The initial permeation rate and equilibrium time can be obtained for each compound, which could serve as characteristic parameters regarding the skin permeability of the compound.
Skin absorption; Diffusion analysis; Fiber deposition; Gas chromatography; Mass spectrometry; Analytical chemistry; Analytical processes; Author Keywords: in-vitro; percutaneous absorption; membrane-coated fiber; chemical mixtures; partition coefficient
Jim E. Riviere, Center for Chemical Toxicology Research and Pharmacokinetics (CCTRP), College of Veterinary Medicine, North Carolina State University, Campus Box 8401, 4700 Hillsborough Street, Raleigh, North Carolina, 27606
Publication Date
Document Type
Journal Article
Email Address
Funding Amount
Funding Type
Fiscal Year
Identifying No.
Grant-Number-R01-OH-003669; Grant-Number-R01-OH-007555
Issue of Publication
Priority Area
Disease and Injury: Allergic and Irritant Dermatitis; Work Environment and Workforce: Mixed Exposures
Source Name
Pharmaceutical Research
Performing Organization
North Carolina State University, Raleigh, North Carolina
Page last reviewed: September 30, 2022
Content source: National Institute for Occupational Safety and Health Education and Information Division