Laboratory and field evaluation of a new personal sampling system for assessing the protection provided by the N95 filtering facepiece respirators against particles.
Authors
Lee SA; Grinshpun SA; Adhikari A; Li WX; McKay R; Maynard A; Reponen T
We have recently developed a new personal sampling system for the real-time measurement of the protection provided by respirators against airborne dust and micro-organisms. The objective of this study was to evaluate the performance characteristics of the new sampling system in both laboratory and field conditions. The measurements were conducted using the N95 filtering facepiece respirators and the newly developed personal sampling system put on a manikin (laboratory study) or donned by a human subject (laboratory and field studies). Two inhalation flow rates (0 and 40 l min(-1)) in conjunction with the sampling flow rate (10 l min(-1)) were tested in the manikin-based experiments to investigate the effects of the leak location (nose, cheek and chin) and the depth of the sampling probe (0, 5, 10 and 15 mm) within the respirator. The effect of human activity on the protection factor was evaluated using a variety of head movements and breathing patterns when a human subject wore the respirator in a room-size laboratory test chamber. The field study was conducted during corn harvesting with a respirator worn by a human subject on a combine. There was no significant difference in the protection factors for different leak locations, or for sampling probe depths, when the inhalation rate was 0 l min(-1). For the inhalation rate of 40 l min(-1), the protection factors for nose leaks were higher than those for chin and cheek leaks. Furthermore, the protection factor was the lowest and showed the least variation when the sampling probe depth was equal to 0 mm (imbedded on the respirator surface). Human subject testing showed that the grimace maneuver decreased the protection factor and changed the original respirator fit. The protection factor during breath holding was lower than that found during inhalation and exhalation. Field results showed greater variation than laboratory results. The newly designed personal sampling system efficiently detected the changes in protection factors in real time. The sampling flow was least affected by the inhalation flow when the sampling probe was imbedded on the respirator surface. Leak location, breathing patterns and exercises did affect the measurement of the protection factors obtained using an N95 filtering facepiece respirator. This can be attributed to the differences in the in-mask airflow dynamics contributed by the leak, filter material, sampling probe and inhalation. In future studies, it would be beneficial if the laboratory data could be integrated with the field database.
Keywords
Laboratory-testing; Sampling; Sampling-methods; Respirators; Respiratory-protective-equipment; Airborne-dusts; Airborne-particles; Microorganisms; Personal-protective-equipment; Inhalation-studies; Leak-prevention; Leak-detectors; Breathing;
Author Keywords: breathing pattern; depth of the sampling probe; fit testing; leak location; leak size; protection factor; respirator;
Author Keywords: breathing pattern; depth of the sampling probe; fit testing; leak location; leak size; protection factor; respirator
Contact
Tiina Reponen, Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH 45267-0056, USA
CODEN
AOHYA3
Publication Date
20050401
Document Type
Journal Article
Email Address
reponeta@ucmail.uc.edu
Funding Amount
607000
Funding Type
Grant
Fiscal Year
2005
Identifying No.
Grant-Number-R01-OH-004085
Issue of Publication
3
ISSN
0003-4878
NIOSH Division
DART
Priority Area
Research Tools and Approaches: Control Technology and Personal Protective Equipment
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.