Protein kinase B (PKB)/Akt and its upstream signal transducer, phosphatidylinosito-3 kinase (PI3K) play an essential role in control of transcription and translation, which impact cell growth, survival, and metabolism. Transcription factor E2F is a component of the downstream proliferative machinery regulated by Akt. Hyperphosphorylation of retinoblastoma protein (pRb), a pocket protein, leads to release of E2F1, resulting in transition from G1 to S phase. The present study shows that in normal C141 cells, vanadate treatment increased the percentage of cells at S phase and elevated cyclin E and cyclin A expression. Vanadate treatment triggered phosphorylation of pRb and release of E2F1. Furthermore, vanadate increased Akt kinase activity and caused its phosphorylation at Ser473 and Thr308. Inhibition of Akt by either inhibitors or transfected cells with dominant negative kinase mutant or dominant negative phosphorylation mutant decreased the percentage of the cells at the S phase induced by vanadate, and reduced both cyclin E and E2F1 expression and phosphorylation of pRb. The present study indicates that Akt plays an essential role in vanadate-induced increase in cell number at S phase and transition from G1 to S phase through E2F-pRb pathway.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.