A critical question in fiber research is the relative contribution of chemical properties vs physical dimensions to the potential pathogencity of an inhaled fibrous particle. To address this question, it is essential to obtain fiber samples of discrete lengths for investigation. Recently our laboratory has developed a method, which utilized a dielectrophoretic classifier, to separate fiber fractions of narrowly defined lengths. The objective of the current study was to analyze the effects of fiber length on the ability of macrophages to phagocytize these fibers and to determine the potency of fibers of various lengths to activate nuclear transcription and cytokine production and to elicit cytotoxicity. Glass fibers(JM-100) were separated into five discrete size fractions(lengths of 3, 4, 7, 17, and 33 micrometers). Fibers less or equal to 7 micrometers long were phagocytized by macrophages in vitro, while fibers greater or equal to 17 micrometers in length were too long to be completely engulfed, resulting in frustrated phagocytosis. There was a clear distinction in the bioactivity and cytotoxicity of fibers too long to be completely engulfed compared to short fibers. Glass fiber fractions having 17 micrometer or 33 micrometer lengths exhibited similar cytotoxicity on macrophages in vitro, measured as lactate dehydrogenase release of inhibition of zymosan-stimulated chemiluminescence. However, these long fibers had a toxic potency nearly two orders of magnitude greater than fiber fractions of 3, 4, and 7 micrometer lengths. Bioactivity was measured as the ability of glass fiber fractions to activate the DNA binding of the transcription factor, nuclear factor kappa B(NFkappaB), to activate the gene promoter for tumor necrosis factor alpha(TNFalpha), and to increase the TNF alpha production by macrophages in vitro. Long fibers (17 micrometers) were significantly more potent bioactivators than short fibers (7 micrometers). This bioactivation was inhibited by N-acetyl-L-cysteine, an antioxidant, indicating that the generation of oxidants contributed to this induction. These results suggest that length plays an important role in the potential pathogenicity of fibrous particles with effects being magnified when fibers are too long to be phagocytized completely.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.