Chlorpyrifos (CPF) and diazinon (DZN) are major organophosphorus pesticides that are structurally and mechanistically similar, but have very different rates of metabolism. Their toxicity is mediated via CYP450 metabolism to oxons. Detoxification of the oxons is mediated by CYP450 and A-esterases, resulting in the formation of trichloropyridinol from CPF and 2-isopropyl-4-methyl-6-hydrox-ypyrimidine (IMHP) from DZN. Since exposures often involve more than one pesticide, this study was conducted to assess the effect of co-incubation with both CPF and DZN on the metabolism of DZN. Substrate concentrations of DZN ranging from 20 to 575 uM were incubated with 0, 100, 300, or 750 uM CPF for 15 min and bioactivation to DZN-oxon and deactivation to IMHP quantified. Data was analyzed using Lineweaver-Burke (1/v; 1/s) plots, by fitting the Michaelis-Menten equation to the data with non-linear regression using SlideWrite Plus, and by fitting the data to a mathematical model written in Simusolv, which employed Michaelis-Menten equations including inhibition constants to describe metabolism. The 1/v; 1/s plots were used to estimate the types of inhibition. Metabolism to IMHP appeared to be competitively inhibited whereas metabolism to the oxon was uncompetitive (or suicide). Fitting the data with non-linear regression, apparent Km concentrations vary for the production of IMHP, but not the apparent Vmax; whereas, the apparent Vmax rates change for the production of oxon, confirming the types of inhibition. Inhibitory rate constants (Ki) for oxon and IMHP metabolism were approximately 250 uM and approximately 50 uM, respectively. Using the different methods to predict Vmax and Km, apparent Vmax and Km with inhibition, and Ki resulted in similar estimations. The mathematical model has the advantage of providing a methodology by which all parameters are considered at once. The relatively high Ki values indicate the importance of metabolic interactions on kinetics of in vivo co-exposures to DZN and CPF may be limited to high acute dose exposures.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.