Recent communications have argued that often it may not be appropriate to analyse cross-sectional studies of prevalent outcomes with logistic regression models. The purpose of this communication is to compare three methods that have been proposed for application to cross sectional studies: (1) a multiplicative generalized linear model, which we will call the log-binomial model, (2) a method based on logistic regression and robust estimation of standard errors, which we will call the GEE-logistic model, and (3) a Cox regression model. Five sets of simulations representing fourteen separate simulation conditions were used to test the performance of the methods. All three models produced point estimates close to the true parameter, i.e. the estimators of the parameter associated with exposure had negligible bias. The Cox regression produced standard errors that were too large, especially when the prevalence of the disease was high, whereas the log-binomial model and the GEE-logistic model had the correct type I error probabilities. It was shown by example that the GEE-logistic model could produce prevalences greater than one, whereas it was proven that this could not happen with the log-binomial model. The log-binomial model should be preferred.
Keywords
Models; Group-dynamics; Musculoskeletal-system-disorders; Simulation-methods; Exposure-assessment; Statistical-analysis;
Author Keywords: Generalized linear model; Cox regression; cross sectional study; log-binomial model; GEE-logistic model
Contact
National Institute for Occupational Safety and Health, Division of Surveillance, Hazard Evaluations and Field Studies, 4676 Columbia Parkway, Cincinnati, Ohio 45226-1988, USA
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.