Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Ornithine decarboxylase activity in tissues from rats exposed to 60 hz magnetic fields, including harmonic and transient field characteristics.

McDonald-L; Loberg-L; McCormick-D; Gauger-J; Savage-R; Zhu-H; Lotz-W; Mandeville-R; Owen-R; Cress-L; Desta-A
Toxicol Mech Methods 2003 Jan; 13:31-38
Ornithine decarboxylase (ODC) activity is used widely as a biomarker for tumor promotion in animal model systems. Several previous studies have reported increases in ODC activity in tissues of rats exposed to 60 Hz magnetic fields. The goals of this study were to confirm these findings and to determine whether ODC activity is increased in tissues of animals exposed to magnetic fields containing complex metrics. Three experiments were conducted in male F344 rats. Each study included a sham control group and a group exposed to pure continuous 60 Hz fields (0.2 mT). Additional groups included animals exposed to randomly time-varying 60 Hz fields (range of 0.02 to 0.2 mT); intermittent 60 Hz fields (2 mT) with on-off cycles ranging from 5 s to 5 min; pure continuous 180 Hz fields (2 mT); 60 Hz fields with a superimposed 3rd harmonic (total field strength, 2 mT); 60 Hz fields with superimposed third, fifth, and seventh harmonics (total field strength, 2 mT); 60 Hz fields (2 mT) with superimposed transients; and randomly time-varying 60 Hz fields (range of 0.02 to 0.2 mT) with superimposed transients. After 4 weeks of exposure (18.5 h/day), eight animals per group were euthanized within 1 h of magnetic field deactivation. Homogenates of liver, kidneys, spleen, and brain were prepared from each animal, quick-frozen, and shipped for analysis by four independent laboratories. No consistent pattern of differences in the ODC activity among experimental groups was found either within a laboratory or among laboratories. The results do not support the hypothesis that exposure to extremely low frequency magnetic fields stimulates ODC activity.
Tumors; Animal-studies; Magnetic-fields; Exposure-levels; Exposure-methods; Exposure-limits; In-vivo-studies; Laboratory-animals; Magnetic-fields; Electromagnetic-fields
Russell E. Savage, Jr., DART, NIOSH, MS C-27, 4676 Columbia Parkway, Cincinnati, OH 45226-1998, USA
Publication Date
Document Type
Journal Article
Email Address
Fiscal Year
NTIS Accession No.
NTIS Price
NIOSH Division
Source Name
Toxicology Mechanisms and Methods