STAT3 is a transcription factor that is activated by the JAK family of kinases or by the growth associated MAP kinase (MAPK). As recent studies have shown that Stat3 regulates gliogenesis in the central nervous system (CNS) and astrogliosis is a unifying effect of diverse injuries to the CNS, we are interested in elucidating the temporal relationship among alterations in Stat3, MAPK and gliosis following neurotoxic insult. At various timepoints following l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP, 12.5 mg/kg, s.c.) treatment, female C57BL/6J mice were sacrificed by focused microwave irradiation to preserve steady-state phosphorylation. Target (striatum) and nontarget (hippocampus) tissue homogenates were assayed for levels of glial fibrillary acidic protein (GFAP) and dopamine (DA), as well as alterations in Stat3 and MAPK protein phosphorylation. A 2-fold increase in striatal GFAP was measured in MPTP-treated mice, 48 hours after dosing. Striatal DA depletion occurred within hours following treatment. Alterations in activated Stat3 and MAPK, as detected by phospho-state specific antibodies, were observed as early as one hour following neurotoxic insult and persisted for weeks. The most dramatic increase in the phosphorylated form of Stat3 and MAPK (500% and 100%, respectively) was measured prior to GFAP upregulation (12 hr post-MPTP). As MPTP-induced neurotoxicity requires uptake of MPP+ into DA terminals via the dopamine transporter (OAT), OAT inhibition should block phosphorylation events linked to dopamine terminal damage. Pretreatment with the DAT inhibitor nomifensine (25 mg/kg, s.c.) completely blocked the MPTP-induced increases in GFAP and phospho-Stat3, without altering these levels in saline-treated mice. These data suggest that the activation of Stat3 and MAPK are early events in toxicant-induced glial activation. These kinase/substrate pathways may serve as potential targets for modulation of degenerative and regenerative responses to neural damage.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.