The respiratory epithelium modulates the reactivity of the underlying smooth muscle to bronchoconstrictors via the release of epithelium-derived relaxing factor (EpDRF). The osmolarity of airway surface liquid increases during exercise, leading to bronchoconstriction in a subpopulation of asthmatics (exercise-induced asthma). To understand the consequences of elevated osmolarity in the airways we examined the effects of hyperosmolar solutions on the epithelium and its modulatory relationship with the smooth muscle using the guinea-pig isolated, perfused trachea preparation. This_ preparation allows mechanical responses of the smooth muscle and bioelectric responses of the epithelium to be measured in response to agents applied to the mucosal (apical) or serosal (basolateral) surface of the airway. Elevation of mucosal or serosal osmolarity with NaCl, KCI, D-mannitol, urea, N-methyl-D-glucamine chloride or Na gluconate induced an osmolar concentration- and epithelium-dependent relaxation of methacholine-contracted tracheas. These responses were not mediated by nitric oxide or prostanoids. Relaxation responses, whether initiated via mucosal or serosal application, were preceded by transepithelial depolarization. Elevation of mucosal osmolarity decreased reactivity to mucosally- and serosally-applied methacholine, and inhibited contractile responses of the smooth muscle in response to transmural stimulation of parasympathetic, cholinergic neurons. The relaxation was inhibited by arniloride and DIDS, but not by bumetanide or ouabain. To determine whether the role of EpDRF is altered in pulmonary disease, mechanical and bioelectric responses to hypertonicity were examined in animals 18 hr after treatment with lipopolysaccharide (4 mg/kg; i.p.). After this treatment relaxation responses to hyperosmolar NaCl were potentiated, the transepithelial potential difference was hyperpolarized, and depolarization responses to hyperosmolar NaCl solution were potentiated. These observations demonstrate that the airway epithelium is an osmotic sensor which transduces alterations in mucosal osmolarity into changes in smooth muscle tone, and this property may be altered in lung disease.
Keywords
Bronchial asthma; Respiratory system disorders; Pulmonary system disorders; Muscles; Laboratory animals; Animals; Animal studies; Bioelectric effects; Lung disease
CODEN
CBPAB5
Publication Date
20000724
Document Type
Abstract
Fiscal Year
2000
ISSN
1095-6433
NIOSH Division
HELD
Source Name
Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.