Nuclear factor kappaB (NF-kappaB) is considered to be an important target for therapeutic intervention because of its role in the regulation of proinflammatory and profibrotic mediators. The present study examined the role of hydroxyl (OH) radical and the effect of tetrandrine, an alkaloid extracted from the Chinese medicinal herb Stephania tetrandra, on NF-kappaB activation by a tumor promoter, phorbol 12-myristate 13-acetate (PMA) in human lymphoid T cells (ie, Jurkat cells). Exogenous superoxide dismutase (SOD) enhanced the NF-kappaB activation by PMA, while catalase blocked it. Formate, a scavenger of OH radical, also was inhibitory, as was deferoxamine, a metal chelator. These data suggest an important role of OH radical in PMA-induced NF-kappaB activation. Incubation of the cells with tetrandrine prior to the stimulation of the cells was found to inhibit PMA-induced NF-kappaB activation. Tetrandrine activity was so potent that 50 microM of tetrandrine was sufficient to inhibit activation of NF-kappaB completely. Electron spin resonance (ESR) spin trapping was used to investigate the antioxidant action of tetrandrine using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap. Tetrandrine is an antioxidant for both OH and superoxide (O2-)radicals. The reaction rate constant of tetrandrine with OH is 1.4 x 10(10) M(-1)sec(-1), which is comparable with several well established antioxidants, such as ascorbate, glutathione, and cysteine. The Fenton reaction (Fe(II) + H2O2-->Fe(III) + OH + OH-) and xanthine/xanthine oxidase were used as sources of OH and O2- radicals. The free radical scavenging activity of tetrandrine is responsible for its inhibition of PMA-induced NF-kappaB activation.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.