NIOSHTIC-2 Publications Search

Flash Reaction of Sulfide Mineral Particles in a Turbulent Gas Jet.

Seo KW
Ph d Thesis Univ Utah, 1990 :128 pages
A mathematical model that combines turbulent transport phenomena of particle-laden gas jets, chemical reactions, and thermal radiation has been developed to describe the various aspects of chalcopyrite concentrate combustion, which includes minor element behavior inside an axisymmetric reaction shaft of the flash furnace. This model has elucidated the relative importance of elimination of the four most undesirable minor elements--as, sb, bi, and pb--to the gas phase. Using a laboratory flash furnace, gas temperature, sulfur content in the particles, so2 concentration in the gas phase, particle dispersion, and average elimination of minor elements to the gas phase during flash smelting at various locations were measured for target matte grades. Numerical computations have been performed to predict the various aspects of rate processes occurring in a commercial-scale flash-smelting furnace for different feeding modes. Overall performance is greatly affected by the inlet geometry, the gas-phase turbulent field is significantly affected by the presence of particles, and the reaction of sulfide particles is almost completed in the upper zone of the furnace within about 1 m from the burner. The axial wall feeding mode of the secondary jet shows better performance than any other feeding modes considered in this study. From the computational results, the behavior of each minor element was predicted for various target matte grades.
Publication Date
Document Type
IH; Final Contract Report;
Fiscal Year
Identifying No.
MIR 46-90
NIOSH Division
Source Name
Ph.d. Thesis, Univ. Utah, 1990, 128 PP.
Performing Organization
University of Utah
Page last reviewed: December 3, 2021
Content source: National Institute for Occupational Safety and Health Education and Information Division