NIOSHTIC-2 Publications Search

Reflected Light Microscopy of Pyrometallurgical Products from a Simulated Commercial Flash Smelter.

Hagni RD; Vierrether CB; Sohn HY
Paper in Process Mineralogy VI Metall Soc 1987 :329-345
Polished sections of pyrometallurgical intermediate products from a simulated commercial flash furnace were examined by reflected light microscopy, scanning electron microscopy-energy dispersive spectrometry and electron backscatter analysis, and microprobe analysis for phase and textural relationships. The smelter feed is a copper concentrate from a porphyry copper deposit. The concentrate consists primarily of chalcopyrite, bornite, and pyrite with smaller amounts of covellite, chalcocite, molybdenite, magnetite, galena, and sphalerite. The flash furnace reactions for pyrite and chalcopyrite can be observed by reflected light microscopy. Reacted angular particles of pyrite exhibit successive rims of fibrous pyrrhotite and hematite or magnetite. Reacted angular chalcopyrite particles show successive rims of bornite, digenite, and chalcocite. Spherical particles formed by the complete melting of former pyrite particles consists of variable amounts of granular pyrrhotite with magnetite rims and minor hematite. Spherical particles formed by the complete melting of former chalcopyrite particles exhibit exsolution intergrowths with varying proportions of intermediate solid solution, bornite, digenite, and chalcocite and have rims of hematite, magnetite, and copper-iron spinel. Sphalerite and molybdenite do not show evident mineralogical reactions.
Publication Date
Document Type
IH; Final Contract Report;
Fiscal Year
Identifying No.
MIR 39-90
NIOSH Division
Source Name
Paper in Process Mineralogy VII; Metall. Soc., 1987, PP. 329-345
Performing Organization
University of Utah
Page last reviewed: December 3, 2021
Content source: National Institute for Occupational Safety and Health Education and Information Division