This study is directed towards developing a better understanding of the erosion mechanisms involved in the use of high-pressure water jets for cutting in rock materials. Theories to explain the cutting action of high-pressure water jets have been proposed by Crow (Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 10, 567-584, 1973 and 12, 203-212, 1975) and Rehbinder [3] (Rock Mech. 12, 247-257, 1980). These theories predict the depth of kerf cut by the jet in terms of the rock and fluid properties and the water jet system parameters. While both theories produce reasonable results for certain cases, neither is completely satisfying. For pedagogical purposes this paper is organized in sections. Following the Introduction, a review is given of published empirical findings from studies of rock erosion using high-pressure water jets. Then the theories of Crow and Rehbinder are compared with published experimental results to determine how well these two models predict the kerf depth in rock cut by a water jet. Next, results are given of new water jet rock kerfing experiments conducted using a factorial approach in the experimental design. Empirical models fitted to these results identify the relative importance of both the rock properties and the water jet parameters in the erosion process. There follows a description of a new laboratory technique employed to examine micro-structural rock damage caused by the water jet in eroding the rock. The objective of all of this work is to gain new insight into the mechanisms of rock erosion. The concluding section then outlines a proposed new physical model for rock erosion by a high-pressure water jet.
Keywords
Mining-industry; Cutting-tools
CODEN
IRMGBG
Publication Date
19900401
Document Type
OP; Journal Article
Fiscal Year
1990
Identifying No.
OP 97-90
Issue of Publication
2
ISSN
0148-9062
NIOSH Division
PRC
Source Name
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.