Iron-based Alloys Strengthened by Ternary Laves Phases.
Authors
Dunning JS
Source
MISSING :13 pages
Link
NIOSHTIC No.
10006823
Abstract
A primary goal of the federal Bureau of Mines is to minimize the requirements for scarce mineral commodities through conservation and substitution of more abundant elements, such as iron and molybdenum. One example of this is the research effort to devise substitute materials for specialty alloys, thereby conserving nickel and chromium in high-volume stainless steels. As a possible substitute for the solid solution strengthening of chromium and nickel, the precipitation hardening characteristics of a number of binary iron- based systems in which laves phase precipitates, such as fe2mo, are formed were investigated. Several hardening responses were observed, but none were ideal. The fe-ta binary system had the highest magnitude of hardening, even with low alloy additions, and the fe-mo system had unique stability at temperature. Accordingly, the fe-mo-ta system was selected for study to determine if a ternary laves phase could combine hardening with long-term stability at elevated temperature. Hardening and stability were reflected in excellent elevated temperature, tensile, and stress rupture strengths. Future research will study ternary systems based on more abundant resource materials, such as the fe-mo-ti system, together with additions, such as aluminum and minimal chromium, to provide oxidation resistance.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.