Ventilation '85, Proceedings of the 1st International Symposium on Ventilation for Contaminant Control, Toronto, Canada, October 1-3, 1985 1986:735-741
Link
NIOSHTIC No.
00228768
Abstract
The aerodynamic characteristics of exhaust hoods were discussed. The general assumptions used in designing industrial ventilation systems were considered. These typically involve balancing the ability of the system to control contaminant concentrations against the costs of achieving this control. During this process, the performance of the exhaust hoods may be neglected. Hoods are usually chosen on the basis of reading a handbook or guide and the required flow rates are calculated on the basis of centerline velocities. This approach was considered to be unsatisfactory because the selected hood is usually overdesigned with respect to its ability to control air contaminants and more costly to operate than necessary. This situation can be avoided by simulating the flow field in front of an exhaust opening (hood) for any flow rate as an arrangement of three dimensional velocity contours and varying the design of the hood face until the minimum face velocity that generates the required velocity at all points on that surface has been found. This design will be the most efficient, both technically and economically. This also means that several hood opening configurations can be compared until the one that provides optimal operational and economic efficiency is determined. This approach was illustrated by applying it to a hood design problem in which a control velocity of 150 feet (ft) per minute over a 1 by 2ft plane located 1ft in front of a plane flanged hood was desired. The optimum design was found to be one in which the hood face consisted of 18 small square orifices (openings) arranged in a three by six array. This required an air flow rate of 1,081 cubic feet/minute (cfm), which was around 20% lower than the 1,350cfm required by a conventional hood with a single large opening. The authors conclude that approaching hood design problems by computing three dimensional velocity fields and considering multiple openings can produce a design that is both operationally and economically efficient.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.