Differences in acoustic trauma associated with impulsive and Gaussian noise exposure were studied in chinchillas. Chinchillas rendered monaural and instrumented with bipolar electrodes implanted in the inferior colliculus were exposed continuously for 5 days to 90 decibel (dB) sound pressure level (SPL) Gaussian noise, nonGaussian noise of moderate kurtosis, or pure impact noise. The frequencies of the three noise exposures ranged from 0.125 to 10.0 kilohertz (kHz). The peak intensity of the nonGaussian and impact noise was 114 and 117dB SPL, respectively, and the impulses were presented at the rate of four impacts per 820 milliseconds. Hearing thresholds were determined over the range 0.5 to 8KHz by measuring auditory evoked potentials at various times up to 30 days after the last exposure. Permanent threshold shifts (PTSs) were determined from the data. Thirty to 40 days after exposure ended the animals were killed and the cochleas were removed and examined by optical microscopy. Losses of sensory cells were determined. PTSs produced by the three types of noise exposure were similar for frequencies up to 2kHz. At higher frequencies, the PTSs diverged. The Gaussian noise produced the smallest PTSs and the pure impact noise the largest. The pattern of inner hair cell loss in the cochlea was similar for the three noise conditions except at 4.0kHz where the extent of loss in animals exposed to pure impact noise was significantly larger than the losses caused by the Gaussian and nonGaussian noise. The three noise types produced a similar pattern of outer hair cell loss except at 0.25kHz where the extent of loss induced by the pure impact noise was significantly greater than the losses produced by the other two noise types. The authors conclude that pure impact noise produces significantly larger PTSs than Gaussian noise at high test frequencies. The audiometric data do not agree with the magnitude and distribution of sensory cell loss, the most pronounced losses induced by pure impact noise occurring at very low frequencies.
Links with this icon indicate that you are leaving the CDC website.
The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
You will be subject to the destination website's privacy policy when you follow the link.
CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
For more information on CDC's web notification policies, see Website Disclaimers.
CDC.gov Privacy Settings
We take your privacy seriously. You can review and change the way we collect information below.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies used to make website functionality more relevant to you. These cookies perform functions like remembering presentation options or choices and, in some cases, delivery of web content that based on self-identified area of interests.
Cookies used to track the effectiveness of CDC public health campaigns through clickthrough data.
Cookies used to enable you to share pages and content that you find interesting on CDC.gov through third party social networking and other websites. These cookies may also be used for advertising purposes by these third parties.
Thank you for taking the time to confirm your preferences. If you need to go back and make any changes, you can always do so by going to our Privacy Policy page.