Development of an Intelligent Proximity Detection System for Continuous Mining Machines

Christopher Jobes, PhD, PE
Mechanical Engineer

Jacob Carr, MS
Safety Engineer

Electrical & Mechanical Systems Safety

Proximity Warning Systems for Mining Equipment
Charleston, WV
September 15, 2010
Future Hardware Improvements

Human Interface (future work)

Machine Interface

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

Visual Attention Locations

Operator Motion Analysis

Escapability Simulations

Proximity System Selection

Magnetic Field Modeling

PAD Position Calculation

Striking and Pinning Hazards

Visual Attention Locations

Safety Logic and Shutdown Zones

Intelligent Proximity Detection System

PAD Position Calculation

Striking and Pinning Hazards

Office of Mine Safety and Health Research
Striking and Pinning Hazards

• Operator injuries involving continuous mining machines averaged 248 annually for the past 5 years

• Contributing Factor - Complex Work Environment
 o Radio remote control allows freedom of movement
 o Large moving equipment in confined environment
 o Dynamic work area
Striking and Pinning Hazards

Weight: >100,000 lb
Max Speed: ~85 fpm
Pivot Rate: ~19°/s

6 fps at corner of rear bumper
Future Hardware Improvements

Human Interface (future work)

Machine Interface

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

Striking and Pinning Hazards

Visual Attention Locations

Operator Motion Analysis

Escapability Simulations

Proximity System Selection

Magnetic Field Modeling

PAD Position Calculation

Future Hardware Improvements

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Operator Visual Attention Locations (VALs)

Objective - to analyze the effect of operator cues on work positions:

• Structured interviews
• Ranking to evaluate cue significance
• Computer simulation to evaluate operator view by position
• Assessment of operator view in multiple postures
Operator Visual Attention Locations (VALs)
Typical Positions During Complete Cutting Cycle

<table>
<thead>
<tr>
<th>Operator Position</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11%</td>
</tr>
<tr>
<td>2</td>
<td>13%</td>
</tr>
<tr>
<td>3</td>
<td>9%</td>
</tr>
<tr>
<td>4</td>
<td>16%</td>
</tr>
<tr>
<td>5</td>
<td>15%</td>
</tr>
<tr>
<td>6</td>
<td>17%</td>
</tr>
<tr>
<td>7</td>
<td>14%</td>
</tr>
<tr>
<td>8</td>
<td>2%</td>
</tr>
<tr>
<td>9</td>
<td>2%</td>
</tr>
<tr>
<td>10</td>
<td>1%</td>
</tr>
</tbody>
</table>
Operator Visual Attention Locations (VALs)
Visual Areas Defined as a Matrix of Points
Operator Visual Attention Locations (VALs)
Simulated Scanning to Determine Visibility

- Visibility - best positions are closer to the machine
- Safety - best positions are farther from mining equipment
Future Hardware Improvements

Human Interface (future work)

Machine Interface

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

Escapability Simulations

Visual Attention Locations

Striking and Pinning Hazards

Operator Motion Analysis

Proximity System Selection

Magnetic Field Modeling

PAD Position Calculation

Visual Attention Locations

Magnetic Field Modeling

PAD Position Calculation

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

Escapability Simulations

Visual Attention Locations

Striking and Pinning Hazards

Operator Motion Analysis

Proximity System Selection

Magnetic Field Modeling

PAD Position Calculation
Operator Motion Analysis Research

All Position Related Injuries 2004 - 2008

Position Related Accidents by Zone

<table>
<thead>
<tr>
<th>Position</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Tail Left</td>
<td>3%</td>
</tr>
<tr>
<td>B) Tail Right</td>
<td>11%</td>
</tr>
<tr>
<td>C) Center Right</td>
<td>6%</td>
</tr>
<tr>
<td>D) Center Left</td>
<td>2%</td>
</tr>
<tr>
<td>E) Drum Left</td>
<td>1%</td>
</tr>
<tr>
<td>F) Drum Right</td>
<td>2%</td>
</tr>
<tr>
<td>G) Rib Right</td>
<td>12%</td>
</tr>
<tr>
<td>H) Rib Left</td>
<td>2%</td>
</tr>
<tr>
<td>I) Unknown (Supported Roof)</td>
<td>45%</td>
</tr>
<tr>
<td>J) Unknown (Unsupported Roof)</td>
<td>1%</td>
</tr>
<tr>
<td>K) Front</td>
<td>1%</td>
</tr>
<tr>
<td>L) Rear</td>
<td>14%</td>
</tr>
</tbody>
</table>

![Diagram of cabinet positions]

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Operator Motion Analysis Research

Motion Data Capture

- 3 postures
- 3 facing directions
- 8 escape directions
Future Hardware Improvements

Human Interface (future work)

Machine Interface

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

Visual Attention Locations

Striking and Pinning Hazards

Escapability Simulations

Future Hardware Improvements

PAD Position Calculation

Magnetic Field Modeling

Proximity System Selection

Operator Motion Analysis
Operator Escapability Computer Simulations
Simulation of Machine Movement with Motion Data
Operator Escapability Computer Simulations
Simulation Results

- Initial assumption - CM speed would be the most significant factor in struck-by accidents
- Finding - Statistical analysis indicated location was the most important factor
- Data showed that a position farther than 3 ft from a moving machine part could significantly reduce the likelihood of an operator being struck by the CM
Future Hardware Improvements

Human Interface (future work)

Machine Interface

Intelligent Proximity Detection System

PAD Position Calculation

Magnetic Field Modeling

Proximity System Selection

Operator Motion Analysis

Escapability Simulations

Visual Attention Locations

Striking and Pinning Hazards

Safety Logic and Shutdown Zones

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Future Hardware Improvements

Human Interface (future work)

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

Visual Attention Locations

Striking and Pinning Hazards

Operator Motion Analysis

Escapability Simulations

Magnetic Field Modeling

PAD Position Calculation

Proximity System Selection
Proximity Detection Method Selection

- Systems relying on GPS or vision were either not possible or practical
- NIOSH has previously developed an active proximity warning system called HASARD (Hazardous Area Signaling and Ranging Device) for warning workers as they approach known dangerous areas around heavy mining equipment and other dangerous work zones
- Commercially available proximity detection hardware based on this research was selected in conjunction with a modified controller to yield the information needed for the Intelligent Proximity Detection System
Current Proximity Detection Technology

Ferrite-Cored Magnetic Field Generator

Increasing Magnetic Flux Density

Personal Alarm Device (PAD)
Current Proximity Detection Technology

- Field shaping can be difficult
- Complex generator arrangements are required to provide desired coverage
- System only knows what zone the operator is in, not the operators position
Future Hardware Improvements

Human Interface (future work)

Machine Interface

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

Visual Attention Locations

Striking and Pinning Hazards

Operator Motion Analysis

Escapability Simulations

Proximity System Selection

Magnetic Field Modeling

PAD Position Calculation
Magnetic Field Modeling

\[\rho = a \cdot \cos(2 \cdot \theta) + b \]
Magnetic Field Modeling
Future Hardware Improvements

Human Interface (future work)

Machine Interface

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

Visual Attention Locations

Striking and Pinning Hazards

Operator Motion Analysis

Escapability Simulations

Proximity System Selection

Magnetic Field Modeling

PAD Position Calculation

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Determining the exact location of the PAD isn’t easy due to the magnetic field shapes.

Two novel triangulation techniques were developed to deal with the irregularities in the field shapes.
Triangulation Techniques
Three Generators Yielding 2D Position
Triangulation Techniques
Four Generators with Vertical Displacement
Yielding 3D information
Triangulation Techniques
Extrapolation of 3D Technique to Posture Identification
Future Hardware Improvements

Human Interface (future work)

Machine Interface

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

PAD Position Calculation

Magnetic Field Modeling

Escapability Simulations

Visual Attention Locations

Striking and Pinning Hazards

Operator Motion Analysis

Proximity System Selection

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Intelligent Proximity Detection

- Installed and tested on a Joy 14CM
- The intelligent proximity detection system determines triangulated position of miners near the machine
Intelligent Proximity Detection

- Situation-specific alarms are issued
- Specific machine functions are blocked
- The warning and shutdown zones are dynamic and programmable
Future Hardware Improvements

Human Interface (future work)

Future Hardware Improvements

Machine Interface

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

Striking and Pinning Hazards

Visual Attention Locations

Operator Motion Analysis

Escapability Simulations

Proximity System Selection

Magnetic Field Modeling

PAD Position Calculation

Visual Attention Locations

Magnetic Field Modeling

PAD Position Calculation

Intelligent Proximity Detection System

Human Interface (future work)

Future Hardware Improvements

Machine Interface

Intelligent Proximity Detection System

Safety Logic and Shutdown Zones

Striking and Pinning Hazards

Visual Attention Locations

Operator Motion Analysis

Escapability Simulations

Proximity System Selection
Machine Control Interface:
Normal Operation

Demux

Remote Control
Operator input

Actuator Controls
- Left track forward
- Right track reverse
- Conveyor left
- Conveyor right
- 17 functions in total
Machine Control Interface:
Intelligent Proximity Detection

- Remote Control
- Operator input

Demux

Relays

Actuator Controls
- Left track forward
- Right track reverse
- Conveyor left
- Conveyor right
- 17 functions in total

Relay Controls

Onboard Controller
Machine Control Interface: Prototype Hardware as Installed

- Onboard controller runs intelligent proximity software
- Proximity relays block machine functions
- Visual warning system relays will control LED warning lights
- Wireless link communicates data to a Host PC
Machine Control Interface: Hardware as Installed

- The Host PC is used for programming and viewing data in real-time
- ALL system calculations are performed by the onboard controller
Machine Control Interface:

Software

- Algorithms tested first in simulation then installed on the Joy 14CM
- Real-time display allows for on-the-fly testing and modification
Testing System as Installed on Joy 14CM

- Data collected with PAD on a 1-meter grid around the CM
- Various PAD heights
- Various machine poses
Testing System as Installed on Joy 14CM

- Triangulation requires signal from at least 2 generators
- Generators are concentrated near the tail, resulting in good accuracy in that area
Testing System as Installed on Joy 14CM

Proximity system should perform properly regardless of:

- **Pad elevation**
 - Low (16”)
 - Mid (44”)
 - High (48”)

- **Conveyor elevation**
 - Down
 - Up

- **Conveyor swing**
 - Left
 - Center
 - Right
Testing System as Installed on Joy 14CM

Proximity system should perform properly regardless of:

• Cutter head position
 – Down
 – Up

• Trailing cable
 – On floor
 – Draped over tail

• Hydraulic pump / conveyor / cutter motors
 – On
 – Off
Testing System as Installed on Joy 14CM

Proximity system should perform properly regardless of:

- Presence of other metallic objects
 - Shuttle cars
 - Mine infrastructure
- Interference from RF signals
 - Communication
Testing System as Installed on Joy 14CM

- Real-time position tracking
- Dynamic safety zones
Testing System as Installed on Joy 14CM

- Forward tram is allowed
- Reverse tram is not allowed within 3 feet
Testing System as Installed on Joy 14CM

- Tail swing left is allowed
- Tail swing right is not allowed within 3 feet
Testing System as Installed on Joy 14CM

- Pivot right is allowed
- Pivot left is not allowed within 3 feet
Future Hardware Improvements

Human Interface (future work)

Machine Interface

Safety Logic and Shutdown Zones

Intelligent Proximity Detection System

PAD Position Calculation

Magnetic Field Modeling

Operator Motion Analysis

Escapability Simulations

Proximity System Selection

Striking and Pinning Hazards

Visual Attention Locations

Visual Attention Locations

Safety Logic and Shutdown Zones

Intelligent Proximity Detection System

Future Hardware Improvements

Office of Mine Safety and Health Research
Human Interface: Alarm System

• Several methods of providing alarms (audible and visual) to the operator will be tested
 – NIOSH-developed LED Visual Warning System

• The alarms need to clearly convey meaning to the operator – for example:
 – Person detected near left rib
 – Reverse tram disabled
Current Four-Generator System
Future Work:
Expansion of System to Six Generators
Future Work:
Further Laboratory Evaluation

- Future tests will include:
 - Triangulation accuracy
 - System reliability
 - Simulated mining tasks

- We are exploring partnerships to introduce this improvement to proximity detection technology to the mines
Summary

- Background work
 - Visual attention locations (VAL)
 - Operator motion analysis
 - Escapability simulations
 - Magnetic field modeling
 - Triangulation techniques
Summary

- Intelligent proximity detection system
 - Real-time tracking (2D or 3D position) of multiple people
 - Programmable, dynamic warning and shutdown zones
Thank you for your attention
Disclaimer: The findings and conclusions in this presentation are those of the authors and do not necessarily represent the views of NIOSH. Mention of company names or products does not constitute endorsement by the Centers for Disease Control and Prevention.
Presented by: Christopher Jobes, PhD, PE
Jacob Carr, MS

Contact info: Christopher.Jobes@cdc.hhs.gov
(412) 386-4894
Jacob.Carr@cdc.hhs.gov
(412) 386-6877

The Office of Mine Safety and Health Research is a division of the National Institute for Occupational Safety and Health (NIOSH) www.cdc.gov/niosh/mining

NIOSH is a division of the Centers for Disease Control and Prevention within the Department of Health and Human Services www.hhs.gov