A Strategy for Deployment of Diesel Particulate Filters (DPFs)

An Overview of the NIOSH-MSHA DPF Selection Guide

George H. Schnakenberg, Jr.
NIOSH-Pittsburgh

Situation I

- Area/personal sampling resulted in TC levels in neighborhood of 500 µg/m³
- Vehicle deployment, and ventilation analysis has targeted a vehicle
- Use new engine, de-rate engine, increase ventilation, biodiesel fuel (affects all vehicles), may be all that is needed for now
Situation II

- Area/personal sampling resulted in TC levels in neighborhood of >800 µg/m³
- Vehicle deployment, and ventilation analysis has targeted a vehicle for substantial emissions reduction by diesel particulate filter (DPF)
- You were picked to handle this...What do you do now?

You’re it! What now?

- Attending this workshop is a good start
- Use the new NIOSH-MSHA filter selection guide available now on the web ...
- Let’s consider the DPF system:
 - Device installed on engine-vehicle
 - May affect vehicle operation and schedule
 - Vehicle operator will have responsibilities
 - Will require routine maintenance – engine & DPF
 - May require increased technical skills
 - May require changes to ventilation (unlikely)
Coordination Required

- DPF Selection: based upon exhaust temp, vehicle deployment & schedule, available systems – MUST BE A FIT between DPF and equipment
- Installation: location, mounting, vibration isolation, insulation (in some cases), isolated from combustibles, not block engine maintenance, etc.

Coordination Required

- Maintenance: New procedures and tasks both to engine and to the DPF. Additional pressure monitoring systems, electric regeneration systems will require service. – additional daily or PM tasks
- Equipment operator: DPF may need daily attention; back pressure monitoring and actions to be taken when it alarms...
Coordination Required

- Site alterations for regeneration—electrical, space, ventilation
- Training: Maintenance & engine mechanics (could be a contractor), vehicle operator.
- Follow-up environmental measurements: Ventilation, DPM, gas measurements if affected by DPF (NO₂ for example)

Multidisciplinary task requiring coordination of several mine departments or persons who must work as a team.

DPF “Champion” is needed

- DPF deployment is not the “norm.”
- Requires additional knowledge
- Demands teamwork and cooperation of many mine people and functions
- Mine management must provide the authority and responsibility
- Must be part of the job, not incidental, not treated superficially, at least initially
DPF Requirements -- Engine

DPFs collect soot → the more the engine produces the more must be trapped and must be gotten rid of.

Ensure Lowest Engine PM Emissions

- If 2-stroke engine, consider replacing it
- Check oil consumption & fix if above normal
- Check CO emissions from bare engine (w/o DOC) and reduce to “normal” for that engine model; use emissions based maintenance
- Continually track & correct above items if using DPFs (best that it be done for all diesel equipment) – institute emission-based maintenance
...Low Engine PM Emissions

- De-rate the engine, if possible.
 - Lower PM emissions – less soot to deal with
 - Smaller DPF possible
 - Less fuel consumption
 - Less wear & tear on the tires, etc.
 - Consequence: may have to change torque converter and/or gearing, and
 - May not need DPF!

Exhaust Temperature Profiling

- Why profile?
- Who should do it?
- How to do it yourself
Why profile?

- DPF selection
 Whether a DPF can self-regenerate or must be manually regenerated depends entirely on the exhaust temperatures over the shift
- Provide details of engine loading over the shift; engine idle vs. work times, etc. – duty cycle profile

Who should do it - alternatives

- Yourself or your staff
- Hire a contractor
- Use a DPF supplier

Weigh the pros and cons of each, but whatever your choice, make certain that you own the data.
How to do temp profiling yourself, -1

Mention of any company name or product does not constitute endorsement by the National Institute for Occupational Safety and Health.

- Purchase the following:
 - Type K, stainless jacketed thermocouple (TC)
 - Miniature battery-powered data logger
 - OMEGA OM-SL L620
 - HOBO H12-002 + BC3_7-ON
 - 10’ TC extension with Plug and Jack connectors
 - Pipe to compression fitting to hold TC
Temp Profiling, How to, – 2

- Locate TC in exhaust system where inlet to DPF would be
- Locate a place on the circumference where there is clear access for TC
- Perforate exhaust pipe with ½” hole and weld ½” pipe coupling to surface over the hole
- Install TC in fitting and adjust so tip is in the center of the exhaust pipe

Temp Profiling, How to – 3

- Mount the data logger in a protected location away from heat
- Route extension between logger and TC in exhaust keeping clear of moving parts
- Use tie wraps or bailing wire to secure logger and extension wire
Temp Profiling, How to – 4

- Start logger at start of shift; stop logger at end of shift; identify vehicle and shift in a record book
- At end of each shift, download data according to logger instructions; reset logger
- Repeat so that the full variety of shifts for this equipment is represented several times
- Use logger software to save temperature data in degrees C as a *.txt file compatible with Excel® or other spreadsheet software.

Temperature data analysis

- Load/import data into a blank spreadsheet
- Open the NIOSH analysis spreadsheet
- Copy data
- Look at results:
 - What is the temperature where 30% of the data points are higher?
 - Look at many of the shift logs and note the lowest “30%” temperature, $T_{30\%}$ of the bunch.
- Select a DPF system

Caveat: The above is an unsophisticated analysis; DPF suppliers may use a more comprehensive analysis.
Exhaust temperature implications

- $T_{30\%} > 325^\circ C$ – a self-regenerating “passive” DPF is possible
- $T_{30\%} < 325^\circ C$ – a manually regenerated “active” DPF is required

Passive (self-regenerating) DPFs

- $T_{30\%} > 550-600^\circ C$, uncatalyzed “bare” trap
- $T_{30\%} > 380-420^\circ C$, base-metal catalyzed trap
- $T_{30\%} > 3x^\circ C$, “5g” Pt-catalyzed trap
- $T_{30\%} > 330^\circ C$, lightly Pt-catalyzed trap + fuel borne catalyst (new information)
- $T_{30\%} > 325^\circ C$, “50g” Pt-catalyzed trap

The above temperatures are approximate; only the DPF supplier can properly make the recommendation.

~~UPDATED INFORMATION~~
Self-regenerating (Passive) DPFs

<table>
<thead>
<tr>
<th>$T_{30%}$</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>>550-600°C</td>
<td>Uncatalyzed “bare” DPF</td>
</tr>
<tr>
<td>>380-420°C</td>
<td>Base-metal catalyzed DPF</td>
</tr>
<tr>
<td>>3xx°C</td>
<td>“5g” Pt-catalyzed DPF</td>
</tr>
<tr>
<td>>340 °C</td>
<td>Lightly Pt-catalyzed DPF + fuel borne catalyst</td>
</tr>
<tr>
<td>>325°C</td>
<td>“50g” Pt-catalyzed DPF</td>
</tr>
</tbody>
</table>

The above temperatures are approximate; only the DPF supplier can recommend the proper DPF system.

Passive DPF Considerations

- Consistent work cycle required; exhaust temperatures must always be high enough several times during shift to ensure proper soot removal
- Consequence of insufficient regeneration is the increase in exhaust backpressure
 - Increases forces on DPF (164 lbs @ 12” dia, 42 in WG)
 - May invalidate engine warranty

MUST INSTALL BACK PRESSURE MONITOR and ALARM

- PT-catalysts (50g loading)
 - Observed increase in NO$_2$ emissions depending on Pt loading
 - SAMPLE WORKPLACE FOR NO$_2$ AFTER INSTALLING A Pt-Catalyzed DPF
Passive DPF Installation Considerations

- Minimize the exhaust run between engine and DPF
- Ensure upstream pipe connections do not leak
- Insulate exhaust pipe between engine and DPF
- Insulate DPF
- Reminder: Install Back Pressure Monitor & Alarm with logging
- Continue: Temperature logging

Post DPF Installation Tasks

- At engine PM, make Bacharach smoke number measurement downstream of DPF – keep records
- Examine back pressure logs or interview operator about normalcy of BP readings or alarms
- Periodically (~1000 hrs) rid the DPF of ash build up (DPF Cleaning) in method approved by manufacturer
Bacharach True Spot Smoke Test

Manually Regenerated (Active) DPFs
- Can be used at *any* exhaust temperature
- *Must* be used if exhaust temperature profile indicates that the temperature is under 325 to 350 °C for more than 70% of the time (equivalent to saying only 30% of the temp data lies over 325-350°C).
Manually (Actively) Regenerated DPFs

<table>
<thead>
<tr>
<th>Regeneration Location</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-board</td>
<td>DPF Exchange</td>
</tr>
<tr>
<td>On-board</td>
<td>On-board controllers</td>
</tr>
<tr>
<td></td>
<td>Off-board controllers</td>
</tr>
</tbody>
</table>

Off-board Regen Considerations
~DPF Exchange~

- DPF size – keep small enough for one person to handle easily; use multiple DPFs for large engines
- Locate DPF on equipment for easy access
- Gas-tight flange, quick disconnect
- Develop DPF exchange logistics
 - When (between shifts)
 - Who
 - Where
 - DPF transport
- Regeneration station location
Off-Board Regen – Vehicle

Off-board regen station
On-board regeneration with
On-board regeneration controller

- DPF can be located anywhere on vehicle
- Keep combustibles clear of DPF
- Need 1 – 2 hr of equipment off-duty time daily or between shifts
- Requires only a connection to electrical power for regeneration → flexible regen locations
- Moderate ventilation required during regen
- On-board controller subjected to vehicle shock and vibration → must be robust

On-board regeneration
Off-board regeneration controller

- DPF can be located anywhere on vehicle
- Keep combustibles clear of DPF
- Need 1 – 2 hr of equipment off-duty time daily or between shifts
- Requires air, sensor, power connections to a regeneration control station
- Vehicle must be parked at a control station for that system model → restricts end-of-shift parking locations
- Moderate ventilation required during regen
Post DPF Installation Tasks
Manually regenerated DPFs

- At engine PM, make Bacharach smoke number measurement downstream of DPF – keep records
- Interview operator about normalcy of BP readings or alarms; do not operate vehicle for extended periods with high back pressures
- Stress to operator the need to exchange or regenerate DPF at the prescribed intervals
- Periodically (~1000 hrs) rid the DPF of ash build up (DPF Cleaning) in method approved by manufacturer

Filter Selection Guide

- Demo – go there
Resources

- Diesel-underground-L listserv
 JOIN diesels-underground-L your name
 Listserv@listserv.cdc.gov
- DPF Selection Guide – hot exhaust filters
 - MSHA web site
 - NIOSH, mining toolbox
- www.dieselnet.com
- NIOSH IC9462