Overview of Diesel Emissions Control Technologies Available to Underground Mining Industry

Aleksandar Bugarski
NIOSH Pittsburgh Research Laboratory

Diesel Emissions and Occupational Health Standards

- Gaseous emissions
 - Carbon Dioxide (CO₂), ACGIH TLV-TWA is 5000 ppm
 - Carbon Monoxide (CO), ACGIH TLV-TWA is 50 ppm
 - Nitric Oxide (NO), ACGIH TLV-TWA is 25 ppm
 - Nitrogen dioxide (NO₂), ACGIH TLV-TWA is 3 ppm, ACGIH TLV-STEL is 5 ppm
 - NOTE: MSHA adopted 1973 ACGIH standards
- Particulate emissions
 - Total Carbon (TC) = Elemental Carbon (EC) + Organic Carbon (OC), MSHA 160 µg/m³ (interim standard is 400 µg/m³)
 - Current levels - up to 1500 µg/m³
Controlling Emissions at the Source

- Low emitting engines
- Alternative fuel formulations and fuel additives
- Aftertreatment technologies
 - Curtailment of gaseous emissions
 - Curtailment of particulate emissions
 - Combination of technologies

Engines

- All diesel engines introduced in U.S. metal and nonmetal mines must be approved by MSHA or EPA [30 CFR Part 57, 2001]
 - List of MSHA approved engines - (www.msha.gov/TECHSUPP/ACC/lists/07npdeng.pdf)
 - Suppliers should be able to provide you with emissions data for certified models.
- Replace old technology with new technology
Engine

- **Engine-out emissions control strategies**
 - Charge air cooling
 - Fuel injection pressure, patterns and multiple injection
 - Injection timing
 - Exhaust gas recirculation
 - Control of air-to-fuel ratio

Engine Deration

- High altitude
- Ventilation requirements
- Example
 - engine rated at 325 hp
 - engine rated at 285 hp
Engines

- System approach
 - Engine is integral part of the system:
 - vehicle/engine/aftertreatment
 - ventilation
 - duty cycle
 - economics…

Fuel

- Fuel effects on DPM emissions
 - sulfur content:
 - Sulfates, SO_2 to SO_3 + H_2O to H_2SO_4,
 - < 500 ppm (avg. 350 ppm) sulfur,
 - < 15 ppm by 2007 (EPA),
 - affects performance of catalyst based technologies,
 - competing with NO for the O_2.
 - cetane number;
 - aromatic content.
Alternative Fuels

- **Biodiesel**
 - oxygenated fuel
 - virtually no sulfur
 - NO$_2$ issue
 - DEEP study (www.deep.org)
 - Blend with 58% of biodiesel, diesel oxidation catalyst
 - 43% increase in NO$_2$
 - 29% reduction in elemental carbon emissions
 - relatively expensive
 - used primarily blended with regular diesel (B20, B50, ...)

- **Synthetic diesel**
 - virtually no sulfur
 - low on aromatics
 - significant reductions in regulated emissions
 - Schaberg et al. [1997]
 - HC (49%), CO (33%), NOx (27%), PM (21%)
 - expensive and not readily available
Fuel Additives

- **Fuel additives**
 - Combustion enhancers
 - DPF regeneration aid

- Fuel additives used in U.S. underground mines should be approved by EPA.

- **Secondary emissions**
 - Fuel with additives for stimulating filter regeneration should not be used in the engines that are not equipped with DPFs.

Aftertreatment Technologies

- **Gaseous Emissions**
 - Diesel Oxidation Catalytic Converters (DOC)
 - Control of Nitric Oxide (NOx) Emissions

- **Particulate Emissions**
 - Diesel Particulate Filter (DPF) Systems;
 - Disposable Diesel Particulate Filter Systems.
Diesel Oxidation Catalytic Converters (DOC)

- CO to CO$_2$
 - 70-90% reductions in CO
- Hydrocarbons to CO$_2$
 - 70% reduction in HC
- Reduce organic portion or soluble organic fraction (SOF) of DPM
 - 20-30% reductions in total DPM

Control of Nitric Oxide (NO$_x$) Emissions

- Selective catalyst reduction (SCR)
 - Up to 80% reduction
 - Relatively complex system
 - Urea injection
 - Commercially available for stationary systems
- Lean NO$_x$ traps (LNT)
 - 30-50% reduction
 - Relatively complex system
 - Fuel injection
 - Not commercially available
Diesel Particulate Filters (DPFs)

- Diesel Particulate Filters Systems (DPFs)
- Disposable Diesel Particulate Filter Systems

Diesel Particulate Filters (DPFs) Media

- wall flow monoliths
- deep bed filters

- silicon carbide
- cordierite
- fiber wound or knitted
Diesel Particulate Filters (DPFs)

Catalyst

- Non-Catalyzed DPF
 - no regeneration aid;
- Catalyzed DPF
 - wash coat catalyst:
 - platinum, palladium, rhodium, vanadium, magnesium, strontium …
 - fuel borne catalyst:
 - platinum, cerium, iron, strontium, …

Efficiency of DPF Systems

- DPM = Elemental Carbon + Organic Carbon + Sulfates + Water + Ash
 - Composition is function of engine design, engine operating conditions, aftertreatment…

- DPFs are primarily designed for curtailment of DPM emissions. The effects on gaseous emissions depend on a catalyst formulation.
Efficiency of DPF Systems

- **Mass**
 - Cordierite 85% (www.msha.gov)
 - Silicon carbide 87% (www.msha.gov)
 - VERT 90% (new), 85% (after 2000 hours)

- **Carbon**
 - Occupational standards based on total (U.S.) or elemental carbon (Germany, U.S. in future)
 - Over 95% on EC.

Efficiency of DPF Systems

- **Number**
 - Potential for forming a large number of ultrafine and nanosize particles from semi-volatile hydrocarbons, sulfates, and ash
 - Potential for forming large number of transition metals particles when fuel additive are used
 - VERT 95% (new), 90% (after 2000 hours)

- **Surface area**
 - Ultrafine particles (<100 nm) have a very larger surface area per unit mass, bioavailability
 - Currently there is no standards

- **Chemical composition**
 - Transition metals
 - PAH
Size Distribution of DPM in the Tailpipe of Engine Retrofitted With SiC DPF

Legend:
- HI - rated speed no load
- TCS FL - torque converter stall
- TCS FL HYD - torque converter stall and hydraulics engaged
- UP - upstream
- DN - downstream

Filter Efficiency - Visual Inspection
Secondary Emissions

- Filter effects on NO₂ emissions:
 - The filters washcoated with platinum based catalysts have tendency to increase NO₂ emissions. Function of:
 - catalyst formulation
 - exhaust temperatures
 - NOₓ to PM ratio
 - fuel sulfur content…
 - Washcoated base metal catalysts do not have tendency to increase NO₂ emissions.
 - The systems using fuel borne catalysts, even those that are based on platinum, were not found to increase NO₂ emissions.

- nanoparticles:
 - Evident when fuels with higher sulfur content are used in the catalyzed systems.
 - when fuel borne catalysts are used to stimulate DPF regeneration…

- sulfates:
 - Remedy is ultra low sulfur fuel

- transitional metals:
 - The major source are fuel borne catalysts, engine wear, and lubricating oil. Avoid using fuel borne catalyst with engines that are not equipped with DPF system.

- dioxins, nitro-PAHs…
DPF Systems
Regeneration

DPF Regeneration – burning off carbon collected in a filter media

- Approximate minimum exhaust temperatures required to initiate regeneration process:
 - Non-catalyzed DPF – over 550 °C
 - Base metal catalyst – over 390 °C
 - Nobel metal catalyst – over 325 °C

- 25-30% or more of a duty cycle an vehicle/engine should be operated at loads generating exhaust temperatures exceeding aforementioned regeneration temperatures.

DPF Systems
Regeneration

- Regeneration temperatures are function of:
 - Catalyst loading
 - Contact between catalyst and carbon
 - NOx/PM ratio in the exhaust...

- Regarding the regeneration concept DPF systems can classified as
 - Passive
 - Active
DPF Systems - Passive Regeneration

- The exhaust gas temperatures are favorable and a DPF is regenerated during a duty cycle.
- The regeneration is enhanced by catalyzing filter media.
- Establishing exhaust temperature profile crucial for success of selection process.
- Engine idling should be minimized.

DPF Systems - Active Regeneration

- Accumulated DPM is removed using external source of energy (electrical heaters)
- ON-BOARD: A heating element is on-board of a vehicle and regenerations station with power and compressed air supply is off-board of a vehicle:
 - no need to remove filter
 - suitable for most engines and applications
 - downtime associated with regeneration
 - regeneration station requirements
 - space, power, compressed air
 - higher maintenance requirements mostly associated with electrical heaters.
 - regeneration intervals can be extended with use of catalyst in the system...
DPF Systems
Active Regeneration

- OFF-BOARD: heating element is integral part of off-board regenerations station.
 - require removal of the filter from the system
 - suitable for smaller units
 - risk associated with handling the units
 - costs associated with replacement of the gaskets
 - downtime for swapping filter elements

- problem of maintaining integrity of the system
- regeneration station requirements

Filter should be sized to accumulate DPM between two active regenerations.
- Engine PM emissions over selected test cycles are available from engine certification process!!!

- Media has to be compatible with selected regeneration scheme
 - Silicon carbide for express regeneration
 - Cordierite for slow regeneration
DPF Systems
Electrical On-board Regeneration

Passive vs. Active Regeneration

- Passive DPFs
 - low operational requirements
 - low maintenance requirements
 - relatively inexpensive, depending on catalyst formulation
 - regeneration depend on exhaust heat!!!
 - potential for increase in NO₂, sulfates emissions
DPF Systems
Passive vs. Active Regeneration

Active DPFs
- regeneration does not depend on exhaust heat
- no effects on secondary emissions
- require changes in way vehicles are operated
- higher maintenance requirements
- require change in operator's attitude
- relatively expensive

DPF Systems Operational Issues
Ash Accumulation

- Ash originates from fuel, lubricating oil, engine wear
 or fuel additives.
 - up to 1% of DPM

- Ash can not be regenerated as carbon. Accumulation
 of the ash in the filter results in continuous increase
 in base backpressure.

- Periodic cleaning of the filter is required, usually
 every 1000-2000 hours.
DPF Systems
Backpressure Monitoring

- Sizing of the system is critical
 - Engine backpressure – engine limitations
 - Caterpillar 3306 PCNA - 34 in H₂O
 - DDEC Series 60 – 42 in H₂O

- Reliable backpressure monitoring and logging capabilities are essential for performance of the filtration system.

- Pressure gage and alarm should be included in the filtration system.

Selection of DPF Strategy

- **Ultimate goal is to reduce exposure of the miners to harmful gases and particulate matter**
 - Production vehicles (heavy-duty)
 - Support vehicles (light-duty)

- **DPF is integral part of the vehicle/engine/filter system**
 - Right size of the engine for the application
 - Exhaust temperature
 - DPF concept
 - Maintenance
 - Significant lube oil consumption jeopardizes filter performance and life. Filter can not substitute maintenance.
Selection of DPF Strategy

- Underground mining applications require additional considerations:
 - confined space;
 - no sunlight;
 - occupational exposure limits;
 - application specific duty cycles;
 - different set of the mind.

- Uniqueness vs. “one size fits all”

DPF systems Considerations

- Integrity of a filtration system from an engine to the end of a tailpipe is crucial for reducing concentrations of DPM in mine air.

- Filter crankcase breather emissions
 - Closed crankcase filtration system

- The exhaust pipe insulation should reduce heat loss and increase possibility for passive regeneration. Insulation should to be removable so integrity of a system can be periodically inspected.
Combination of technologies

- DOC + DPF + SCR
- DOC + DPF + LNT

Questions

Aleksandar Bugarski
NIOSH PRL
phone: 412.386.5912
e-mail: zjl1@cdc.gov