Through-the Earth Mine Communication Systems

Michael R. Yenchek
Sr. Electrical Engineer
Pittsburgh Research Laboratory

The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy. Mention of company names or products does not imply endorsement by NIOSH.
Through-the-Earth Communications
Through-the-Earth Communications

- Frequencies less than 10,000 Hz
- Long wavelengths in the thousands of feet
- Transmission Path
 - Through overburden
 - Through coal pillars
Transmission Mode

- Real-time voice
- Voice message
- Text message
- Beacon
Transmission Rates

• 2.5 kbps – Real-time digitized voice
• 500 bps – Voice mail with data & text
• 100 bps – Digital data & text
• 10 bps – Text @ 1 keystroke per second
Through-the-Earth Transmission is affected by:

- Frequency
- Transmitter power
- Nature of overburden
 - Earth conductivity
 - Depth of cover
 - Strata anomalies
- Electrical Noise
- Antenna
TTE Transmission: Frequency

- Lower frequencies transmit easily through solid material
- At low frequencies there is a trade-off with transmission rate and range
TTE Transmission: Transmitter Power

- Limited by safety considerations
- Permissibility
TTE Transmission: Nature of Overburden

<table>
<thead>
<tr>
<th>Material</th>
<th>Conductivity, S/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Limestone</td>
<td>0.001</td>
</tr>
<tr>
<td>Sandstone</td>
<td>0.01</td>
</tr>
<tr>
<td>Salt</td>
<td>0.15</td>
</tr>
<tr>
<td>Coal</td>
<td>0.25</td>
</tr>
<tr>
<td>Salt water</td>
<td>5</td>
</tr>
</tbody>
</table>

Higher Conductivity = Less Range

Signal Range
TTE Transmission: Nature of Overburden

- Typical overburdends range from 300 ft. to 2000 ft.

- Strata Anomalies
 - Aquifers
 - Mined-out seams
TTE Transmission: Electrical Noise

- **Underground**
 - 60 Hz and harmonics (motors, transformers, etc.)
 - Decreases during emergency

- **Surface**
 - Lightning
 - High-voltage power lines
 - Generators

Signal level must exceed noise level
Surface Noise Reduction

- Conventional Analog Filtering: 20 dB reduction
- Advanced Digital Filtering: 40 dB reduction

Performance goal of 40 to 50 dB for the deepest mines (2000 ft/...
Depth vs. Rock Type and Data Rates

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>Real-Time Voice</th>
<th>Voicemail</th>
<th>Data and Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry-Limestone</td>
<td>2000 feet</td>
<td>2000 feet</td>
<td>2000 feet at 2.5 kbps</td>
</tr>
<tr>
<td>Sandstone</td>
<td>1200 feet</td>
<td>1500 feet</td>
<td>2000 feet at 100 bps</td>
</tr>
</tbody>
</table>
TTE Transmission: Antenna

- Large loop of wire (air core)
 - Encompasses large surface area
 - Around coal block

- Multiple winding ferrite core
 - Compact
 - Portable
Antenna Orientation

Good Coupling
- Surface Receiver
- Loop of wire
- Loop of wire
- Underground Transmitter

Poor Coupling
- Surface Receiver
- Loop of wire
- Underground Transmitter
Underground Transceiver

- Through-the-earth and through-the-mine
- Low power to ensure permissibility
- Portable or fixed location
- Voice, text, or beacon
Surface Transceiver

- **Can have larger antenna**
 - Could encompass most of mine
 - Limited by terrain
 - Located above stationary transceivers underground

- **Can have greater power**
 - Higher frequencies
 - Higher data rates
Surface Transmission Through-the-Earth

Diagram showing surface transmission through the earth with loop antennas and radio signals.
Transmission Through-the-Mine

- trapped miner
- emergency TTE communicator
- roof fall
- Rescue TTE communicator
Deployment during Escape

- Communicate with underground and surface
- Multiple units available
- Loop around coal pillar
- Beacon mode

(This information will be depicted in a drawing)
Deployment in Rescue Chamber

- Communicate with surface and/or rescue teams
- Conserve battery life
Maintenance
Routine Periodic Function Tests

- Verify Through-the-Earth and Through-the-Mine communications periodically

- Confirm communication with surface each time chamber is moved
A Magnetic Communication System for Use in Mine Environments

- Competitive BAA award
- Lockheed Martin Corporation, Syracuse, NY
Objective:
To develop and demonstrate a two-way through-the-earth communication system for mines

- Laboratory prototypes
- Field demonstrations