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a b s t r a c t  

Gob gas ventholes (GGVs) are an integral part of longwall coal mining operations, enhancing safety by 
controlling methane in underground workings. As in many disciplines in earth sciences, uncertainties due to 
the heterogeneity of geologic formations exist. These uncertainties, and the wide range of mining and 
venthole operation parameters, lead to performance variability in GGVs. Random variations in parameters 
affecting GGV performance and influencing parameters that cannot be quantified sufficiently due to lack of 
information limit deterministic GGV models and even introduce error in severe cases. Therefore, evaluation of 
GGV performance data and the uncertainty in input parameters is valuable for understanding the variability in 
GGV production and for designing them accordingly. 
This paper describes a practical approach for implementing stochastic determination of GGV production 
performances and for generalizing the prediction capability of deterministic models. Deterministic site-
specific models were derived by using the GGV module in the recently developed MCP (Methane Control and 
Prediction) software suite. These models were generated using multi-parameter regression techniques and 
were then improved by inclusion of extra input parameters that eliminated the site dependency and 
improved the predictions. Statistical distributions of input parameters in these models were quantified and 
tested with the Kolmogorov–Smirnov goodness-of-fit technique. Next, Monte Carlo simulations were 
performed using these distributions and generalized results for GGV performances were generated. The 
results of this work indicate that this approach is a promising method of representing the variability in GGV 
performances and to improve the limited and site-specific character of the deterministic models. 

1. Introduction 

Longwall gobs have high-permeability fractures that form open 
pathways for gas transport towards the mining environment, making 
them prime targets for gas control measures. Drilling vertical gob gas 
ventholes (GGVs), which begin to vent gas as the longwall face 
advances under their locations, is an effective technique for capturing 
methane emissions within the overlying fractured strata before they 
enter the work environment. The challenges involved in testing, 
characterizing, modeling, and evaluating the reservoir properties of 
the gob make it difficult to evaluate the performance and productivity 
of GGVs and to design GGVs for the maintenance of underground 
health and safety in the face of high methane emissions. 

Characterization of the fractured zone and determination of its 
reservoir properties are complicated. Because measured data are 

scarce and formation deformation during subsidence is complex, it is 
difficult to set up a numerical model of the gob for flow simulations. 
Previously, Lunarzewski (1998) used boundary element and sequen­
tial bed separation methods for floor and roof strata relaxation and 
immediate roof bending separation in addition to gas emission rate 
calculations. Ren and Edwards (2002) used a computational fluid 
dynamics (CFD) modeling approach to investigate gas capture from 
surface GGVs. That paper introduced the use of CFD approach to 
improve the design of surface gob wells for methane recovery while 
minimizing the leakage of air into the gob. Tomita et al. (2003) 
developed a three-dimensional (3-D) finite element model (FEM) to 
predict the volume of methane gas emitted from surrounding coal and 
rock layers based on stress distribution and permeability changes. 
Geomechanical modeling is used to simulate the complex permeabil­
ity, porosity, and elastic property changes that take place with the 
fracturing of overburden strata, formation and recompaction of gob, 
and desorption of methane from intact reservoirs. Esterhuizen and 
Karacan (2007) coupled geomechanical modeling with reservoir 
modeling, and Kelsey et al. (2003) coupled geomechanical modeling 
with CFD to model drainage through the strata around longwall gob. 
CFD is a robust method, but also computationally expensive, 
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especially for large scale, complex models, such as the longwall gob. 
However, it can be used to understand the mechanisms governing 
desorption and flow at micro- and macro-levels. Traditional reservoir 
simulation, which can be accomplished with several numerical 
methods, can also prove computationally expensive, and is primarily 
used to understand the influence of reservoir and well parameters, 
and forecast long term production. The two methods complement 
each other by allowing for characterization of the mechanisms that 
induce and influence flow, while also allowing for production 
optimization. 

In order to address some of the difficulties in modeling in a more 
practical way, Karacan (2009a) developed an artificial neural network 
(ANN)-based model using field data to predict GGV production rates 
and methane concentrations. The total gas productions and methane 
percentages of 10 ventholes located over 3 adjacent panels in the 
southwest Pennsylvania section of the Northern Appalachian basin 
were monitored at the wellhead using pressure, flow, temperature, 
and methane sensors. The monitoring took place for more than 
2 years, both during and after mining of these panels. The measure­
ments, along with various spatial parameters related to venthole 
location, borehole completion parameters, mining rate and panel 
completion data, and exhauster operation data, were combined to 
form an extensive database. The ANN model was successful in 
predicting methane percentage and production rate with a correlation 
coefficient, R, greater than 0.9. Sensitivity analyses about the mean of 
the input variables were conducted using the ANN model to identify 
which input variables had more influence on the performance of 
GGVs. 

Because methane production from a GGV can often be character­
ized as an event with multiple episodic phenomena controlled by 
numerous variables associated with uncertainty and randomness, 
deterministic methods of evaluation and their results may not always 
be satisfactory. Stochastic methods, such as Monte Carlo, can support 
deterministic methods. Monte Carlo (MC) methods produce an 
approximation by calculating results from a large number of random 
samples within the test domain. 

General Monte Carlo methods have been proven a useful tool for 
accurately estimating statistical uncertainties in standard errors and 
confidence intervals in non-linear regression problems (Alper and 
Gelb, 1990), and are applied frequently in studying particle physics 
and in nuclear engineering (Haghighat and Wagner, 2003) to obtain a 
probabilistic solution to a deterministic problem. MC methods are also 
used in porous media flow and transport problems for ground water 
contamination and remediation studies. Huang et al (2003) applied 
MC methods to study groundwater flow and solute transport in 
heterogeneous, dual-porosity media and compared the results with 
analytical models. Morin and Ficarazzo (2006) used stochastic 
techniques and MC simulations to predict fragmentation of rock 
during blasting. They have shown that the results produced by the 
simulator were comparable with the data obtained from a quarry, and 
that the use of MC extended the understanding of the factors affecting 
blast fragmentation. Sari (2009) demonstrated the use of MC 
simulations to evaluate the strength and deformability of rock masses 
by including the uncertainties of the intact rock strength and 
discontinuity parameters. He concluded that the MC method provided 
a viable means for assessing the variability of rock mass properties. Lu 
and Zhang (2003) demonstrated the development of an important 
sampling method to solve complicated problems with MC and applied 
it to fluid transport problems in aquifers. 

This paper describes a practical approach for implementing 
stochastic determination of GGV production performances and for 
generalizing the prediction capability of deterministic models. For this 
approach, deterministic models were derived by using the GGV 
module in the recently developed MCP (Methane Control and 
Prediction) software suite (Karacan, 2010) and generalized to remove 
site-specificity. Statistical distributions of input parameters in these 

models were quantified and tested for goodness of fit. Monte Carlo 
simulations were performed using these distributions and the 
generalized deterministic models to assess the variability of GGV 
production rates and methane percentages. While CFD and reservoir 
simulation, coupled with geomechanical modeling can realistically 
simulate the physics of single and multiphase flow they require 
considerable knowledge of the reservoir, and significant computa­
tional time and expense. The approach presented here provides a 
relatively fast estimation of performance for a single point in time and 
space. 

2. Approach to deterministic modeling of production rates and 
methane concentrations 

2.1. A brief introduction to Methane Control and Prediction (MCP) 
software suite 

The MCP software suite was developed to provide proxy solutions 
to some of the problems related to controlling and capturing methane 
from longwall mines. The software suite consists of dynamic link 
library (DLL) extensions to MS-Access™, written in C++ and using 
various mathematical approaches and artificial neural network (ANN) 
methods. 

The first version of MCP contains four main modules: 

- Coal measure rock mechanical properties prediction. Predicts 
dynamic elastic properties of coal-measure rocks for better roof 
support and methane control. 

- Mine ventilation emission prediction. Predicts ventilation air 
methane (VAM) emissions from longwall mines. 

- Degasification system selection. Recommends the best degasifica­
tion choice for a given mine design, operational conditions, and 
targeted VAM conditions. 

- Gob gas venthole production performance prediction. Predicts 
performance of GGVs in terms of total production rate and 
methane concentration. 

These models produce the desired predictions with known basic 
log, mining, longwall panel, productivity, and coal bed characteristics 
as input parameters. The application of these modules separately or in 
combination for methane capture- and control-related problems can 
improve the safety of coal mines. The theory and technical aspects of 
developments of these software modules are given in detail in 
Karacan (2008, 2009a,b,c), and the software suite is available for 
download from http://www.cdc.gov/niosh/mining/products/prod­
uct180.htm free of charge (Karacan, 2010). 

Details of MCP and its possible applications are given in Dougherty 
and Karacan (in press). This current paper deals with the determin­
istic and stochastic approaches to the prediction of GGV performance. 
Readers are referred to Karacan (2009a) for the details of develop­
ment of the GGV module and for a detailed discussion of input 
parameters and their influences on production performances. 

Fig. 1 shows two screen captures from the input parameter screen 
of the GGV module in the MCP software suite. This screen requires 
information on the status of the longwall panel, either active or 
completed (Fig. 1-A), and on the status of longwall face, as advancing 
or idle (Fig. 1-B). Other inputs include those related to borehole 
drilling, completion, mine layout, mine operation and operation of an 
exhauster at the surface. The module will generate prediction for two 
panel and face situations: an advancing panel and active face (A-A) or a 
completed panel and idle face (C-I). The A-A and C-I abbrevations will 
be used throughout the rest of this paper to designate the two 
circumstances that are common to the operation of gob gas ventholes: 
when the mine is active (A-A), and after the panel is completed and/or 
abandoned (C-I). 

http://www.cdc.gov/niosh/mining/products/prod
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Fig. 1. GGV module input screens that show common input parameters and the selections for panel status (A) and longwall face status (B). 

2.2. The use and application of the GGV production performance 
prediction model for deterministic modeling 

The GGV production performance prediction module in the current 
version of the MCP calculates GGV total gas production rates and the 
methane concentrations in the produced gas stream. The various input 
parameters are complex, and since the original ANN model was 
developed using the field data obtained from the Northern Appalachian 
basin (Karacan, 2009a), in some cases the parameters are site-specific. 

ANNs are adaptable deterministic systems that deliver one output 
for a given set of inputs. They can determine relationships between 
different sets of data to solve problems where conventional 
deterministic models are inefficient or insufficiently accurate. Such 
problems are usually complex and difficult to describe mathemati­
cally. Although the key advantages of neural networks are their 
abilities to recognize patterns between input and output space and to 
generalize solutions, the inherent disadvantage is that ANNs usually 
do not offer a deterministic mathematical model that shows the 
relations between inputs and outputs explicitly. In that respect, they 
can be considered as “black-box” models (Maier and Dandy, 2000). 

In this study, MCP's GGV performance prediction model was used 
to develop proxy deterministic models for predicting methane 
concentration and production rates. The proxy models quantify the 
sensitivity of the production rate and methane concentration for 
different mining and GGV parameters, and describe the performance 
of GGVs with the range of input parameters that were used to develop 
the original ANN model. Using these proxy models as the basis for 
developing a stochastic approach allows for the statistical uncertainty 
that is associated with each input parameter, for the addition of input 
parameters, and for generalization of the site-specific nature
associated with some of the input parameters to an extended range 
of situations. This approach eventually broadens the applicability of 
the stochastic models to more general situations compared to the 
deterministic models. 

In order to obtain proxy deterministic models, the GGV perfor­
mance prediction model was used to generate flow rate and methane 
concentration output for A-A and C-I situations. Random number 
generation between minimum and maximum limits of each input 
parameter provided the values for the input parameters. These limits 
were based on measured well data. For each of the A-A and C-I cases, 
approximately 150 input–output patterns were generated. In this 

 

study, one of the original input parameters in the A-A case, “% of panel 
completed,” was replaced with a new parameter called “face past the 
borehole location” (Table 1). This new parameter gives a true measure 
of how far the face advanced compared to the borehole location and 
also ensures that the GGV is operational at that face location. This 
parameter is calculated as the difference of distance of the borehole 
from panel start minus the product of the percent panel completed 
and the panel length. 

The input–output patterns were analyzed with multiple linear 
regression in order to create a reasonably accurate and easy to manipulate 
deterministic model for use in the stochastic approach. Since the input 
values were known within a reasonable range, no elimination procedures 
were necessary on the generated data. All of the inputs and their 
contributions to the variance in the models were maintained. 

Fig. 2-A and B gives the results for methane percentages obtained 
from the MCP software plotted against those predicted by the proxy 
models for A-A and C-I cases, respectively. As seen from these plots, 
the data scatter around the coefficient of determination line, R2=1,  
within one standard deviation (shown by the gray lines). Fig. 2-C and 
D shows that standardized residuals obtained by comparing MCP 
results with the predictions of methane percentages in A-A and C-I 
cases are mostly within +/− 2, which indicate that there is no 
significant non-linearity in both cases (Devore and Peck, 2001). 

Eqs. (1) and (2) represent the MCP calculations for production rate 
and methane concentration in the production stream respectively. 
Coefficients of determination (R2) range from 0.69 to 0.88 and include 
all the input parameters of the GGV module in MCP software, as 
shown in Table 1. The variables “face past borehole location” and 
“linear advance rate” are not included as input parameters in the C-I 
case since panel and face are not active in this case. 

GGV Production Rate ðscfmÞ = P1 × x1 + P2 × x2 + ::::: + Pn × xn ð1Þ

Methane ð%Þ = R1 × y1 + R2 × y2 + ::::: + Rn × yn ð2Þ 

2.3. Improvement of deterministic GGV performance prediction models 
(Table 1; Eqs. (1) and (2)) 

The model given in Karacan (2009a) and the equations that are 
discussed in the previous section include most of the major 



parameters that might influence GGV production rate and methane 
concentration percentage. These parameters were discussed in 
Karacan (2009a) in detail and will not be repeated here. It is 
reasonable to assume that since the measured data used to develop 
the prediction model came specifically from the Northern Appala­
chian basin, some parameters that affect other basins may not be 
accounted for. Although most input parameters can be considered 
common to other basins, there are a few that better reflect the 
Northern Appalachian basin conditions. Furthermore, a few para­
meters were intentionally not included in the models, either because 
they did not vary or because they were not measured. It is possible 
that the intentionally and unintentionally excluded parameters could 
have influenced the observed production rates and methane con­
centrations. These parameters were: 

•	 Slotted casing length. The monitored GGVs were drilled and 
completed with 200 ft of slotted casing. Therefore, this “variable” 
was constant and was not included as an input parameter in the 
models. 

•	 Distance to the top of slotted casing. This information can be obtained 
knowing the overburden depth, distance from bottom of slotted casing 
to top of mined coal bed, and the slotted casing length. Since the casing 
length was not a variable in the models, the distance to the top of 
the slotted casing was not included either. 

•	 Strata displacements and subsidence. The general stratigraphy in the 
Northern Appalachian basin is almost uniform and has characteristic 
formations that are present, although possibly with varying 
thicknesses. The effect of varying strata and their properties are 
potentially important for subsidence, or strata displacements. In the 
absence of direct measurements, subsidence information could not 
be included in the models as an input parameter. 

•	 Gas content of the overlying formations. The coal beds above the 
Pittsburgh seam, believed to be the source of methane produced 
from the monitored GGVs in the Northern Appalachian basin, are 

usually ranked as high volatile bituminous. These coal beds have 
approximately the same amount of total gas content within the 
areal scale of the monitored mining field. Since there were no gas 
content measurements from the overlying strata for the studied 
GGVs, this potential variable was not included in the original 
models. 

Table 1 
Parameters and coefficients of multiple linear regression equations that calculate production rates and methane concentrations from GGVs for A-A and C-I cases. 

Production rate (scfm) — Case: A-A Methane concentration (%) — Case: A-A 

Parameter Coefficient Parameter Coefficient 

Intercept 0.000E + 00 Intercept 0.000E + 00 
Face past BH Face past BH 
Location (ft) P1 −2.015E−02 x1 Location (ft R1 3.514E−04 y1 

Linear adv. rate (ft/day) P2 7.644E−01 x2 Linear adv. Rate (ft/day) R2 1.261E−01 y2 

Surface elevation (ft) P3 −3.062E−01 x3 Surface elevation (ft) R3 −1.505E−02 y3 

Average OB depth (ft) P4 8.949E−01 x4 Average OB depth (ft) R4 6.039E−02 y4 

Casing diameter (″) P5 1.666E + 02 x5 Casing diameter (″) R5 −9.419E + 00 y5 

Slotted casing height from top of coal (ft) P6 −4.631E + 00 x6 Slotted casing height from top of coal (ft) R6 2.122E−02 y6 

Distance to TG (ft) P7 −1.091E + 00 x7 Distance to TG (ft) R7 −2.025E−01 y7 

Distance from start (ft) P8 1.837E−02 x8 Distance from start (ft) R8 −1.241E−03 y8 

Panel length (ft) P9 −4.366E−02 x9 Panel length (ft) R9 3.491E−02 y9 

Panel width (ft) P10 −5.221E−01 x10 Panel width (ft) R10 −1.262E−01 y10 

Atm. press (in Hg) P11 1.268E + 01 x11 Atm. press (in Hg) R11 −2.319E + 00 y11 

Ext vacuum (in water) P12 −5.938E−01 x12 Ext vacuum (in water) R12 −3.292E−02 y12 

R2 = 0.81 R2 = 0.88 

Production rate (scfm) — Case: C-I Methane concentration (%) — Case: C-I 

Parameter Coefficient Parameter Coefficient 

Intercept 0.000E + 00 Intercept 0.000E + 00 
Surface elevation (ft) P1 1.256E−02 x1 Surface − levation (ft) R1 9.736E−03 y1 

Average OB depth (ft) P2 1.560E−01 x2 Average OB depth (ft) R2 −8.627E−03 y2 

Casing diameter (″) P3 4.689E + 01 x3 Casing diameter (″) R3 1.192E−01 y3 

Slotted casing height from top of coal (ft) P4 3.515E + 00 x4 Slotted casing height from top of coal (ft) R4 −1.239E + 00 y4 

Distance to TG (ft) P5 −2.052E-01 x5 Distance to TG (ft) R5 −4.956E−02 y5 

Distance from start (ft) P6 −2.051E-04 x6 Distance from start (ft) R6 9.779E−04 y6 

Panel length (ft) P7 −9.452E−03 x7 Panel length (ft) R7 7.016E−03 y7 

Panel width (ft) P8 −3.681E−01 x8 Panel width (ft) R8 −2.214E−02 y8 

Atm. press (in Hg) P9 1.827E + 00 x9 Atm. press (in Hg) R9 2.504E + 00 y9 

Ext vacuum (in water) P10 −3.384E + 00 x10 Ext vacuum (in water) R10 −1.058E−01 y10 

R2 = 0.69 R2 = 0.74 

Because of the missing parameters and the uncertainty carried by 
the included parameters, the developed models are also subject to 
uncertainty. This makes a stochastic approach an attractive improve­
ment method. 

At this juncture, we proceed with the postulation that production 
rates and methane concentrations observed from the GGVs are the 
results of combinations of parameters, some of which could be 
included in the models as inputs and others that could not. Therefore, 
the missing inputs are embedded in the coefficients of the existing 
ones in Eqs. (1) and (2) (Table 1). If the missing variables can be 
included in the models as linear combinations of parameters, the 
modified equation can be fitted to the MCP predictions of production 
rate and methane concentration again, as in the previous section, to 
redetermine the coefficients to all variables in the modified equation. 

The following sections describe the potential effects of slotted 
casing length (or distance to the top of slotted casing), strata 
displacement (subsidence), and gas content data on rate and methane 
concentration data, and how these were integrated into the 
deterministic equations (Eqs. (1) and (2)). Other input parameters 
will not be discussed here, but interested readers are referred to 
Karacan (2009a). 

2.3.1. Slotted casing length/distance to top of slotted casing and 
flow fraction 

In gob gas ventholes, the slotted casing is the production interval 
along which all gas is expected to flow into the borehole. Thus, vertical 
variation of gas-bearing strata associated with the various lengths of 



slotted casing is expected to have a major effect on the methane 
production. The inclusion of coal beds, gas-bearing sandstones, and 
shales in the overlying strata, in the horizon of the slotted casing interval 
may make a significant difference in the amount of gas production. 
Therefore, the optimum length of slotted casing depends upon the 
geological layers in the overlying strata and their gas emission potentials. 

Although slotted casing length can significantly affect gas 
production there are not sufficient field data to evaluate the effects 
of various lengths of slotted casing. A numerical simulation-based 
study investigated the changes in production performances of gob gas 
ventholes when the slotted casing lengths were changed to 100 ft and 
to 250 ft from their initial design length of 200 ft, while keeping other 
completion parameters constant (Karacan et al., 2007). The modeling 
results predicted that the cumulative methane production would 
increase to 459.4 MMscf with a 250-ft casing compared to 
391.8 MMscf with a 200-ft casing. This represented a 9.5% increase 
in methane capture from the ventholes in the simulated area. When 
the slotted casing length was shortened to 100 ft, the predicted 
methane production decreased to 314.7 MMscf, an approximately 
25% reduction from the 200-ft slotted casing case. 

In the present study, gas flow entry locations in GGVs and the 
fractions of the total flow as a function of depth were used to evaluate 
the effect of casing length on GGV flow performance. A combined flow 
profile was constructed by digitizing the data from measurements of 
all ventholes given in Mazza and Mlinar (1977). The study was 
conducted in the Appalachian Basin using a data logger and a gas gun 
to release pulses of Kr-85 tagged nitrogen. The test system recorded 
the transit time of a pulse of radioactive gas along a known interval, 
while carried in the stream of produced gas. The velocities were then 
determined with the known time and distance, from which flow rates 
and flow percentages coming from each flow entry point in the 
borehole could be calculated. 
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Fig. 2. Regression plots of methane concentration expected from the GGVs for A-A (A) and C-I (B) cases, and the standardized residuals (C and D) from these predictions, respectively. 

Fig. 3 shows the results of the combined flow profile. Only a minor 
percentage of flow enters the ventholes within 50 ft of the mined coal 
bed. A significant increase in the flow entry occurs at approximately 
175–200 ft above the mined coal seam. Between 50 and 70% of the 
total flow originates in this interval. As shown in Fig. 4 and discussed 
in the next section, this interval corresponds to the location of major 
displacements or strata separations in the overburden. It should be 
noted that this interval may not necessarily correspond to the source 
of the gas, but rather to the location of the major flow pathways. 
Almost 100% of total flow enters the GGVs by about 300–350 ft from 
the top of the mined coal bed. 

The parameter “distance to the top of casing” can be used to 
include the flow entry profile in modified deterministic equations 
(Eqs. (1) and (2)). A new mathematical term “distance to the top of 
slotted casing (D)” was defined. Distance to top of slotted casing (D) is 
the average overburden depth (OB) minus the sum of slotted casing 
length (SL) and the distance from the bottom of the slotted casing to 
the top of the coal seam. This factor that modifies flow rates obtained 
with 200-ft slotted casing for other casing lengths. An exponential 
equation, y = 41.991e2.0071×, was fitted to the data, as shown in Fig. 3. 

Flow percents (FP) that can be obtained with casing lengths other 
than 200 ft and the ones with 200 ft (for the same overburden and 
distance of the casing bottom to top of coal bed) can be defined and 
the flow-rate-change factor (FRF) can be calculated as: 

  

 = 

0
lnFRF  

(
OB−D−SL

)1,
41:991 FP j200−ft ð3Þ 
2:0071 

@ A

This equation gives a flow rate scaling factor relative to 200-ft 
casing length. The proposed approximation is applicable only if this 



factor can be calculated for given values of SL, D, and OB, including 
their uncertainities. 

y = 41.991e2.0071x 

R2 = 0.8043 
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Fig. 3. Combined flow profiles obtained from GGVs drilled over various longwall mining 
operations and the exponential equation fitted to this data. 
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Fig. 4. Combined strata separations obtained from GGVs drilled over various longwall 
mining operations in the Northern Appalachian basin and the exponential equation 
fitted to this data. 

2.3.2. Strata displacements and subsidence 
During longwall mining, vertical and horizontal fractures occur 

during the movement of the overburden. Horizontal fractures in the 
formation mostly occur along strong–weak rock layer interfaces and 
influence the hydraulic conductivity of the overburden strata, which 
creates methane emission pathways and determines methane 
emissions into the mine (Karacan and Goodman, 2009). The ability 
to estimate the locations and magnitudes of the fractures and their 
hydraulic flow properties is important for placement of boreholes and, 
consequently, for controlling methane more effectively. 

Palchik (2003) has shown that the extent of the fractured zone 
induced by mining in the Donetsk coal basin can be determined based 
on the change in natural methane emissions from this zone. After 
modifying the test system, he was able to locate the individual 
fractures at bedding-plane separations and to determine their 
apertures (Palchik, 2005, 2010). Further, the presence and absence 
of estimated horizontal fractures was correlated with uniaxial 
compressive strength and thickness of rock layers, distances from 
the extracted coal seam to the rock layer interfaces, and the 
thicknesses of extracted coal seams. 

In addition, observations on the presence and absence of 
horizontal fractures at different rock layer interfaces of the overbur­
den showed that the probability of separation increased with 
increasing compressive strength difference of neighboring rock layers, 
and with decreasing distance of the layer from the mined coal bed 
(Palchik, 2005; Karacan and Goodman, 2009). Therefore, bedding-
plane separations and resultant strata displacements are functions of 

both distance from the coal seam and the type of the overlying 
formations. The data suggest that subsidence observed at the surface 
can be considered as a lumped parameter that results from the 
interactions of these factors. In the absence of specific data regarding 
the type and strength of overlying formations and their respective 
depths, the average value of strata displacements or average 
subsidence can be used as a lumped parameter with inherent 
uncertainty. 

In this study, combined displacement profiles were constructed, 
and the magnitudes of strata separations in the profiles were used to 
generate a function for the likelihoods of strata separations and 
depths. The profiles were constructed from measurements of all 
ventholes reported in Mazza and Mlinar (1977). The data were 
measured using Cobalt-60 tagged shaped charges as formation 
markers and gamma-ray logging. This system was used in the 
ventholes to implant radioactive markers into the formations to 
measure the subsidence and the strata separation during mining, and 
the data are displayed in Fig. 4. 

Fig. 4 shows that vertical displacements due to strata separations 
can occur as much as 300–350 ft above the mined coal seam (in this 
case, the Pittsburgh coal seam). The magnitudes of strata separations 
at this distance to almost 200–250 ft above of the Pittsburgh seam are 
generally less than 1 ft, and mostly around 0.5 ft. The displacement 
trend in this interval is almost linear and not a function of depth. At 
about 200 ft above the Pittsburgh coal bed, the separations start to 
depart from low displacement values, and major strata separations on 
the order of 2 ft can be measured. These high separations are mostly 
100 ft above the coal seam, where the Sewickley sandstone occurs. 
This observation and the displacement measurements are in line with 



the flow entry measurements discussed in the previous section. The 
displacement trend at and below 200 ft is nearly linear with an 
approximate 45-degree relationship with depth. 

In order to establish a correlation between strata displacement 
(SD) and depth, an exponential function was fitted to field measure­
ments (Fig. 4). This function was later used as a surrogate to 
approximate surface subsidence, in accordance with treating average 
subsidence as a lumped parameter. Representative average strata 
displacement, used as a surrogate for subsidence, was calculated as 
the sum of the displacements at depth intervals where the bottom and 
top of the slotted casing were located with respect to the top of coal 
bed. This relation is given as: 
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where D1 is the distance from bottom of slotted casing to top of coal 
bed, D2 distance from surface to the top of slotted casing, and OB is the 
overburden depth. Vertical and horizontal anisotropies are not 
considered independently, but are simply part of the lumped 
parameter. 

2.3.3. Gas content of overlying formations (coal beds) 
Determining the source of longwall methane and of the gas 

produced from gob gas ventholes is important since the gas source 
may dictate the amount and composition of the gas. Diamond et al. 
(1992) conducted a series of field tests in the Lower Kittanning coal 
bed. Boreholes were drilled before and after mining a panel, in order 
to obtain coal and rock samples from overlying strata, and to 
determine their gas contents. The modified direct method (MDM) 
was employed to determine the gas contents of recovered coal and 
rock samples (Diamond and Schatzel, 1998). The results indicated 
that approximately 90% of the gas removed from the overlying strata 
came from coal beds. Material balance calculations were made to 
compare the volume of gas produced from GGVs drilled over the panel 
and gas removed by the mine's ventilation system with the volume of 
gas removed from strata directly overlying the panel to a height of 
275 ft. 

Since most longwall gas comes from overlying coal beds, the gas 
contents of the coals in the Pennsylvania (PA) section of the Northern 
Appalachian basin were compiled from Diamond et al. (1986) and 
plotted versus depth as shown in Fig. 5. 

Total Gas Content (scf/ton)
 
Pennsylvania Coals
 

0 200 400 

D
ep

th
 (f

t) 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

y = 4.9631x 

R2 = 0.568 

Fig. 5. Total gas contents of high volatile bituminous (HV) coal beds of Pennsylvania and 
their variations with overburden depth. 

This plot established a relation 
between gas content and depth, and was incorporated into the 
deterministic equations as an input parameter affecting gas rate and 
methane concentration from the GGVs. Here, the relation was 
represented with a linear trend of gas content increase with 
increasing depth. 

Almost all the coals that are reported in Diamond et al. (1986) for 
PA are high volatile bitumious A, with lesser amounts of B and C, but 
this is not true in all coal basins. In order to include the gas contents of 
coals of all ranks into the predictive equations, all HV (A, B and C), 
medium- and low-rank coals, and sub-bituminous (A, B and C) coals 
from all basins that are reported in Diamond et al. (1986) were 
compiled and grouped into 3 main classes of rank and gas content 
(HV, MV–LV, and sub-bituminous), as distributions. This compilation 
is found in Section 3, Table 4. 

2.3.4. Modified deterministic equations for gas production rate and 
methane concentration prediction from gob gas ventholes 

In order to modify the original deterministic equations and their 
parameter coefficients, the parameters discussed in the previous 
sections were added to original equations as linear combinations. 
Since distance to the top of the slotted casing and casing length are 
related and create multi-colinearity, only distance to the top of the 

slotted casing was included in the new equations. Casing length can 
easily be calculated with knowledge of overburden depth, distance to 
top of slotted casing, and the distance from bottom of slotted casing to 
top of coal bed. 

The modified equations, shown as Eqs. (5) and (6), representing 
well production rates and methane concentration, respectively, were 
fitted to the same production flow rate and methane concentration 
data obtained earlier from the MCP software, for both A-A and C-I 
cases. 

GGV Production Rate ðscfmÞ = P1 × x1 + P2 × x2 + ::::: + Pn × xn ð5Þ 

Methane ð%Þ = R1 × y1 + R2 × y2 + ::::: + Rn × yn ð6Þ

These equations, when fitted to the gas production rate and 
methane concentration data, resulted in regression coefficients (R2) of  
0.83 and 0.69 for prediction of production rate from A-A and C-I cases, 
respectively. For prediction of methane concentrations, the regression 
coefficients were 0.89 and 0.74 for A-A and C-I cases, respectively. 
These values are very close to the ones obtained by using Eqs. (1) and 
(2), shown in Table 1. 

Table 2 gives the new coefficients of input parameters for Eqs. (5) 
and (6), with the extra parameters from the modified equations in 
bold. Analysis of parameter coefficients shows neither distance to top 
of slotted casing (and thus slotted casing length) nor subsidence 
produce statistically significant effects on methane concentration in 
either A-A or C-I cases. Gas content of the coal bed had no statistically 
significant effects on production flow rate of GGVs. 



The results obtained using the original deterministic equations 
(Table 1) and the modified equations (Table 2) were also compared 
using values of descriptive statistics obtained from the predictions of 
production rate and methane concentration. These data are given in 
Table 3. Almost all descriptive values are very similar for predictions 
of rates and methane percentages. In both A-A and C-I cases, absolute 
value of the skewness decreased, indicating a more normal distribu­
tion of results with the modified models. 

Table 2 
Parameters and coefficients of the modified multilinear regression equations that were developed for calculating production rates and methane concentrations from GGVs for A-A 
and C-I cases. 

Production rate (scfm) — Case: A-A Methane concentration (%) — Case: A-A 

Parameter Coefficient Parameter Coefficient 

Intercept 0.000E + 00 Intercept 0.000E + 00 
Distance to top of slotted casing (ft) P1 1.277E + 00 x1 Distance to top of slotted casing (ft) R1 0.000E + 00 y1 

Face past BH Face past BH 
Location (ft) P2 −2.051E−02 x2 Location (ft R2 3.334E−04 y2 

Linear adv. rate (ft/day) P3 4.926E−01 x3 Linear adv. rate (ft/day) R3 1.254E−01 y3 

Surface elevation (ft) P4 −2.301E−01 x4 Surface elevation (ft) R4 −1.468E−02 y4 

Average OB depth (ft) P5 −1.084E + 00 x5 Average OB depth (ft) R5 5.416E−02 y5 

Casing diameter (″) P6 1.549E + 02 x6 Casing diameter (″) R6 −9.379E + 00 y6 

Slotted Casing height from top of coal (ft) P7 −1.112E + 01 x7 Slotted Casing height from top of coal (ft) R7 4.509E−02 y7 

Distance to TG (ft) P8 −9.449E−01 x8 Distance to TG (ft) R8 −2.068E−01 y8 

Distance from start (ft) P9 5.538E−03 x9 Distance from start (ft) R9 −1.226E−03 y9 

Panel length (ft) P10 2.567E−02 x10 Panel Length (ft) R10 3.484E−02 y10 

Panel width (ft) P11 3.579E−01 x11 Panel width (ft) R11 −1.276E−01 y11 

Atm. press (in Hg) P12 1.574E + 01 x12 Atm. press (in Hg) R12 −2.307E + 00 y12 

Ext vacuum (in water) P13 −1.611E + 00 x13 Ext vacuum (in water) R13 −3.847E−02 y13 

Coal gas content (scf/ton) P14 0.000E + 00 x14 Coal gas content (scf/ton) R14 3.526E−02 y14 

Subsidence (ft) P15 −2.493E + 02 x15 Subsidence (ft) R15 0.000E + 00 y15 

R2 = 0.83 R2 = 0.89 

Production rate (scfm) — Case: C-I Methane concentration (%) — Case: C-I 

Parameter Coefficient Parameter Coefficient 

Intercept 0.000E + 00 Intercept 0.000E + 00 
Distance to top of slotted casing (ft) P1 6.463E + 00 x1 Distance to top of slotted casing (ft) R1 0.000E + 00 y1 

Surface elevation (ft) P2 2.734E−02 x2 Surface elevation (ft) R2 9.734E−03 y2 

Average OB depth (ft) P3 −6.222E + 00 x3 Average OB depth (ft) R3 −1.194E−02 y3 

Casing diameter (″) P4 5.477E + 01 x4 Casing diameter (″) R4 1.642E−01 y4 

Slotted casing height from top of Coal (ft) P5 1.594E + 01 x5 Slotted casing height from top of Coal (ft) R5 −1.242E + 00 y5 

Distance to TG (ft) P6 −2.245E−01 x6 Distance to TG (ft) R6 −4.917E−02 y6 

Distance from start (ft) P7 −3.187E−03 x7 Distance from start (ft) R7 9.722E−04 y7 

Panel length (ft) P8 4.136E−03 x8 Panel length (ft) R8 6.985E−03 y8 

Panel width (ft) P9 −2.769E−01 x9 Panel width (ft) R9 −2.234E−02 y9 

Atm. press (in Hg) P10 7.302E + 00 x10 Atm. press (in Hg) R10 2.513E + 00 y10 

Ext vacuum (in water) P11 −3.670E + 00 x11 Ext vacuum (in water) R11 −1.066E−01 y11 

Coal gas content (scf/ton) P12 0.000E + 00 x12 Coal gas content (scf/ton) R12 1.430E−02 y12 

Subsidence (ft) P13 1.380E + 02 x13 Subsidence (ft) R13 0.000E + 00 y13 

R2 = 0.69 R2 = 0.74 

Table 3 
Descriptive statistics for the rate and methane concentration outputs obtained by two 
sets of equations. 

A-A case (active panel; Original multilinear eq. Modified multilinear eq. 
advancing face) (Eqs. (1) and (2)) (Eqs. (5) and (6)) 

Rate (mean) 224.91 210.94 
Rate (std. dev.) 189.98 157.42 
Rate (median) 224.72 209.87 
Rate (variance) 36094.22 24783.70 
Rate (skewness) 0.140 -0.010 
Methane % (mean) 57.04 56.18 
Methane % (std. dev.) 27.29 27.29 
Methane % (median) 57.29 56.52 
Methane % (variance) 745.25 744.96 
Methane % (skewness) -0.021 -0.021 

C-I case (completed panel; Original multilinear eq. Modified multilinear eq. 
idle face) (Eqs. (1) and (2)) (Eqs. (5) and (6)) 

Rate (mean) 183.19 187.61 
Rate (std. dev.) 78.24 81.81 
Rate (median) 186.02 189.38 
Rate (variance) 6122.67 6694.48 
Rate (skewness) -0.039 0.00007 
Methane % (mean) 57.25 56.91 
Methane % (std. dev.) 11.92 11.94 
Methane % (median) 57.08 56.73 
Methane % (variance) 142.23 142.66 
Methane % (skewness) 0.017 0.016 

3. Stochastic method for evaluating production rates and methane 
concentrations using distributions of input parameters 

3.1. Generating probability density functions (PDF) for distribution of 
input values 

To move from a deterministic model to a stochastic model, 
probability distributions over the range of values for each parameter 
must be determined. Monte Carlo simulation generates random values 
for input parameters in a model whose parameters cannot be defined by 
exact functions, but by probability density functions (PDFs). Describing 
the population of any variable using probability density functions is 
helpful when direct integration of the function of that variable in a model 
is not practical or when the exact behavior of that variable is not known. 
The PDFs that best describe these populations can then be used to 
generate random values for each variable to be used in deterministic 
models. Once the likely probability density function has been deter­
mined, a random number is fed into the inverse equation to determine 
the value to be generated for the distribution of any input parameter. The 
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random number is generated from a uniform distribution between 0 and 
1, so that it falls in an unbiased percentile range. The inversion is 
employed in the sampling method stage (Ripley, 1987; Vose, 2000). 

The output of a deterministic model that is solved this way is 
reasonably accurate only if the number of simulations is very large. 
The advantage of this method is that the complete probability 
distribution of the model output can be obtained (Sari, 2009). 

In this section, the distributions of input data used in the MCP 
software for production rate and methane concentration for A-A and 

C-I cases are used to make generalizations about the populations of 
each of the input parameters. These generalizations are then used in 
Monte Carlo simulations of the modified deterministic equations 
(Eqs. (5) and (6)) for estimating and generalizing production rate and 
methane percentages in A-A and C-I cases. 
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Fig. 6. Example PDFs for the values used in running MCP for rate and methane percentage estimations from GGVs in A-A (A, C, and E) and C-I (B, D, and F) cases. 

Fig. 6A–F shows example input variables “GGV distance from panel 
start”, “casing diameter”, and “extraction vacuum” and their distribu­
tions for the A-A and C-I cases, used in generating rate and methane 
percentage outputs from MCP. As mentioned in Section 2.3.3, gas 



contents of coals of HV (high volatile), MV (medium volatile) and LV 
(low volatile), and sub-bitiminous ranks were included in the 
predictive equations of the A-A and C-I cases as 3 main classes 
(Table 4). 

Table 4 
Generalized distributions, and their means and standard deviations, obtained for each of the input variables and the results of K–S statistics for hypothesis testing for goodness-of-fit. 

A-A case: (active panel; advancing face) 

Parameter Distribution (μ, σ) Kolmogorov–Smirnov test (D; p) 

Distance to SC top (ft) 
Face past BH location (ft) 
Linear adv. rate (ft/day) 
Surface elevation (ft) 
Average OB depth (ft) 
Casing diameter (″) 
Slotted casing height from top of coal (ft) 
Distance to TG (ft) 
Distance from start (ft) 
Panel length (ft) 
Panel width (ft) 
Atm. press (in Hg) 
Ext vacuum (in water) 
Subsidence (ft) 

N (502.982; 85.069) 
N (3182.644; 1783.761) 
N (30.123; 14.250) 
N (1252.033; 111.941) 
N (749.435; 67.908) 
N (7.416; 0.705) 
N (43.395; 6.34) 
N (277.419; 27.191) 
LN (7.415; 0.806) 
N (10702.566; 548.847) 
N (1282.733; 62.508) 
N (26.071; 2.922) 
N (−49.975; 19.735) 
N (3.585; 0.395) 

(0.018; 0.905) 
(0.039; 0.103) 
(0.022; 0.724) 
(0.025; 0.596) 
(0.019; 0.884) 
(0.026; 0.531) 
(0.013; 0.996) 
(0.017; 0.942) 
(0.032; 0.283) 
(0.018; 0.921) 
(0.024; 0.629) 
(0.025; 0.610) 
(0.024; 0.634) 
(0.047; 0.331) 

C-I case: (completed panel; idle face) 

Parameter Distribution (μ, σ) Kolmogorov–Smirnov test (D; p) 

Distance to SC top (ft) 
Surface elevation (ft) 
Average OB depth (ft) 
Casing diameter (″) 
Slotted casing height from top of coal (ft) 
Distance to TG (ft) 
Distance from start (ft) 
Panel length (ft) 
Panel width (ft) 
Atm. press (in Hg) 
Ext vacuum (in water) 
Subsidence (ft) 

N (522.514; 68.786) 
N (1176.299; 99.239) 
N (741.300; 59.929) 
N (7.178; 0.567) 
N (44.522; 7.242) 
N (266.941; 41.001) 
LN (7.061; 0.714) 
N (10350.710; 692.338) 
N (1249.957; 103.286) 
N (27.376; 1.776) 
N (−38.519; 15.747) 
N (3.715; 0.392) 

(0.023; 0.690) 
(0.026; 0.486) 
(0.022; 0.706) 
(0.020; 0.831) 
(0.015; 0.979) 
(0.024; 0.605) 
(0.023; 0.687) 
(0.023; 0.660) 
(0.028; 0.423) 
(0.023; 0.681) 
(0.017; 0.944) 
(0.037; 0.127) 

Coal rank–gas content (scf/ton) Distribution (μ, σ) Kolmogorov–Smirnov test (D; p) 

High vol. bit. (A, B, and C) coals 
Low–medium volatile coals 
Sub-bit. (A, B, and C) coals 
High vol. bit. (A, B, and C) coals 
Low–medium volatile coals 
Sub-bit. (A, B, and C) coals 

A-A 

C-I 

LN (4.270; 1.078) 
N (356.957; 136.895) 
LN (1.906; 0.918) 
LN (4.270; 1.083) 
N (364.496; 134.395) 
LN (1.794; 0.853) 

(0.043; 0.630) 
(0.041; 0.660) 
(0.038; 0.703) 
(0.053; 0.314) 
(0.024; 0.989) 
(0.026; 0.975) 

In order to generalize the populations of input values, they were 
compared against different distribution functions, as shown in Fig. 6 
for the example inputs, and as given in Table 7 for all input variables of 
the modified equations. Densities of the values for each of the inputs 
were statistically compared to the hypothetical distributions to 
ensure that the “assumption” of a selected distribution would 
represent the data distribution. This statistical procedure is called 
the goodness-of-fit test. 

For the goodness-of-fit test described above, the Kolmogorov– 
Smirnov (K–S) test (Chakravarti et al., 1967) was used. The K–S test is 
based on: 

i−1 i
D = max F Y i − ; −F Y i  7

1≤ i ≤N 

(
ð Þ

N N
ð Þ

)
ð Þ

In this equation, Yi are the data pairs ordered from smallest to 
largest value (Y1, Y2… YN). N is the number of ordered data pairs. F is 
the theoretical cumulative distribution of the sample distribution 
being tested and it must be fully specified with mean and standard 
deviation. The test starts with a hypothesis that the data follow a 
specified distribution (H fi0) and a signi cance level (α). The hypothesis 
regarding the proposed distribution is rejected if the test statistic, D, is 
greater than the critical value, p, obtained for the corresponding 
significance level, and if the critical value p is less than the significance 

level. In that case, the use of an alternative distribution is suggested 
(Ha). If a hypothesis is accepted, the value of p is the risk of rejecting 
that hypothesis although it is true. 

In this work, 0.01 was used as significance level in all the tests and 
for all variables, from which the K–S statistics and critical values given 
in Table 4 were obtained. Table 4 shows that distributions of most 
values can be represented either by normal (N) or log-normal (LN) 
distributions with specified means (μ) and standard deviations (σ). 
The density functions for normal and log-normal distributions are 
given in Eqs. (8) and (9), respectively. 
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3.2. Monte Carlo (MC) simulations 

RiskAMP™ (Structured Data, 2008) was used as the Monte Carlo 
simulator in this work. This program provides utilization of Monte 
Carlo functions and random distributions as MS-Excel™ add-in 
features and creates spreadsheet models that employ Monte Carlo 
simulations. 

In this study, 5000 simulations for each of the coal ranks (HV, MV– 
LV and sub-bituminous) in each of the longwall cases (A-A and C-I) in 
Table 4 were run using the Latin Hypercube sampling technique. Latin 



Hypercube sampling is a sampling method usually utilized for close 
representation of the parameter probability distributions and was first 
described by McKay et al (1979) as an appropriate method for 
selecting values of input parameters. These cases were run using the 
generalized distributions given for each input in Table 4 in modified 
linear regression equations, Eqs. (5) and (6), as predictors for the GGV 
performance parameters. 

It should be noted that Monte Carlo simulation cannot easily 
include the covariance between input variables, resulting in short­
comings as far as joint uncertainty of input variables is concerned. This 
problem is usually solved with Bayesian Markov Chain Monte Carlo 
methods (Ades and Lu, 2003). However, this discussion is beyond the 
scope of this paper. 

3.2.1. Conditional arguments to MC simulations for refinement of 
parameter ranges 

Problems with unrealistic input values or unacceptable calculated 
outputs can arise in random simulations. This usually occurs when 
sampling values from either side of the distributions, and is due to the 
departure of representative distribution functions from the actual 
data. In order to correct this problem, a set of conditional arguments 
can be defined. 

Five thousand MC simulations were executed for each of the three 
coal ranks, and each of the two longwall cases to produce 30,000 
(6×5000) different possible combinations of production rate and 
methane percentage outputs, each of which corresponded to a certain 
combination of random inputs. Conditional arguments were used to 
correct for unrealistic inputs and outputs. 

The generated input data was run through a series of IF THEN 
routines to control the validity of the input values. Input values that 
violated the conditions would result in the entire row of inputs being 
assigned null values. For example, any distance, depth, or gas content 
value must be positive. So, if the value generated for the “distance to 
the top of slotted casing” was negative, then those sets of inputs were 
assigned null values. Similarly, the routines checked for impossible 
combinations of values. For example, if the sum of the values 
generated for “face past borehole location” and “distance of borehole 
from panel start” was greater than the value generated for “panel 
length,” then those inputs were assigned null values. 

Another set of IF THEN statements was implemented for the 
generated output values. Production rates and methane percentages 
cannot be negative, and methane percentage cannot be lower than 
10% (as an operational constraint) and cannot exceed 100%. Any 
combinations of input values that gave outputs that violated these 
conditions were also assigned null values and eventually removed 
from input–output data. 

Imposing conditions on inputs and outputs during MC simulations 
results in defining the ranges of input values that gave reasonable 
outputs. Once the populations and ranges of these input values were 
defined, minimum, mean and maximum values for the ranges could 
be determined. These values are given in Table 5. 

4. Results: production rate and methane 
concentration distributions 

Conditional arguments imposed during MC simulations resulted in 
ranges of input values that could be applicable to modeling GGV 
productions (Table 5) and methane concentrations. Probability 
density functions of rate and methane concentration distributions 
computed using MC simulations within the range of values given in 
Table 5 are given in Figs. 7 and 8 for A-A and C-I cases, respectively. 
Figs. 7 and 8 also show that rate and methane concentration outputs 
can be represented with normal distributions with varying mean and 
standard deviation values depending on the rank of coals in overlying 
formations. 

Table 5 
Value ranges that are generated as a result of conditional MC to use in modified 
equations. 

A-A case: (active panel; advancing face) 

Parameter Min; mean; max 

Distance to SC top (ft) 
Face past BH location (ft) 
Linear adv. rate (ft/day) 
Surface elevation (ft) 
Average OB depth (ft) 
Casing diameter (″) 
Slotted casing height from top of coal (ft) 
Distance to TG (ft) 
Distance from start (ft) 
Panel length (ft) 
Panel width (ft) 
Atm. press (in Hg) 
Ext vacuum (in water) 
Overlying coal gas content HV bit. 
(scf/ton) LV–MV bit. 

Sub-bit. 
Subsidence (ft) 

(201.9; 502.9; 790.1) 
(9.4; 3182.6; 9128.3) 
(0.1; 30.1; 107.4) 
(918.3; 1232.0; 1573.8) 
510.1; 743.4; 988.2) 
(5.3; 7.4; 9.7) 
(24.0; 43.4; 64.1) 
(204.3; 277.4; 379.2) 
(144.9; 2230.6; 10138.5) 
(9010.6; 10702.6; 12215.5) 
(1099.2; 1282.7; 1448.5) 
(16.6; 26.1; 34.7) 
(−110.5; −47.9; 17.8) 
(1.8; 118.5; 699.6) 
(29.4; 356.9; 715.7) 
(0.7; 10.4; 135.9) 
(2.6; 3.6; 5.1) 

C-I case: (completed panel; idle face) 

Parameter Min; mean; max 

Distance to SC top (ft) 
Surface elevation (ft) 
Average OB depth (ft) 
Casing diameter (″) 
Slotted casing height from top of coal (ft) 
Distance to TG (ft) 
Distance from start (ft) 
Panel length (ft) 
Panel width (ft) 
Atm. press (in Hg) 
Ext vacuum (in Water) 
Overlying coal gas content HV bit. 
(scf/ton) LV–MV bit. 

Sub-bit. 
Subsidence (ft) 

(254.7; 522.5; 739.4) 
(884.5; 1176.3; 1527.9) 
(515.4; 741.3; 937.6) 
(5.4; 7.2; 8.9) 
(20.1; 44.5; 65.8) 
(123.4; 266.9; 399.4) 
(153.6; 1503.7; 9526.7) 
(8301.3; 10350.7; 12830.5) 
(926.5; 1249.9; 1599.6) 
(21.1; 27.4; 33.5) 
(-99.1; -38.5; 22.2) 
(2.2; 115.2; 676.4) 
(13.5; 364.5; 707.7) 
(0.8; 8.7; 69.7) 
(2.7; 3.7; 5.3) 

Fig. 7 shows that, for a GGV operating in an A-A situation with the 
overlying formation containing HV coals, the most probable GGV 
production rate is 200–250 scfm (Fig. 7-A), although the rate can be as 
high as 650 scfm. With different combinations of input values, the 
most likely methane concentration is 55–60%. Concentrations can be 
as high as 100% in the produced gas (Fig. 7-D). 

Fig. 7-B, E, C and F shows the resultant distributions of rate and 
methane concentration with medium–low volatile coals and sub-
bituminous coals in the overburden, respectively. These distributions 
show that medium-low volatile coals in the overburden most likely 
produce 240 scfm (B) at a concentration of 40–80% (E). Sub-
bituminous coals in the overburden, on the other hand, can result in 
a most probable rate of 230 scfm (C) and a most probable methane 
concentration around 50% (F). 

Fig. 8 shows the possible values of production rate and methane 
percentage that might be expected from a GGV operating in a completed 
longwall panel. The figure shows that higher rates, in general, can be 
achieved with different combinations of input values compared to the 
A-A shown in Fig. 7. Since methane concentrations generally tend 
towards lower values and the maximum methane concentrations are at 
most 90%, this data may suggest that higher rates are due to drawing 
more air, instead of methane, into the GGV for a given combination of 
location, drilling, and operation parameters. 

Table 6 shows the descriptive statistical values calculated using the 
distributions of rates and methane concentrations obtained from MC 
simulations. The values for the A-A case show that mean production 
rates and methane concentrations are slightly higher in the case of 
medium-low volatile coals present in overlying gas formations. 
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Fig. 7. PDFs of rate (A, B, and C) and methane percentage (D, E, and F) outputs obtained from conditional MC simulations for A-A case, for HV coals (A and D), MV–LV coals (B and E), 
and sub-bituminous coals (C and F), and the normal distributions fitted to those. 

Predicted maximum rates are around 640 scfm with methane 
concentrations as high as 100% in all cases. The C-I values show that 
rates in that case have mean values of 330–340 scfm, with extreme 
values of 750–800 sfcm. Maximum methane concentrations for the 
C-I case do not exceed 90%. 

A more efficient way of interpreting the results of an MC 
simulation is to analyze the calculated percentiles. Fig. 9 shows the 
percentiles corresponding to the different production rate (A) and 
methane percentage outputs (B) from conditional MC simulations. 
These results show that it is more probable for a GGV to produce at 



higher rates in a C-I situation than in an A-A situation. However, the 
probability of producing higher methane concentrations is greater in 
an A-A situation. Further, in the C-I case, a large range of GGV 
production percentiles (20th–70th) is windowed in a narrow 
methane concentration (50–60%) range, indicating a relatively high 

probability of producing gas within this methane percentage range. 
This suggests that changes in input parameter values have a relatively 
small effect on methane concentration for C-I cases. 
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Fig. 8. PDFs of rate (A, B, and C) and methane percentage (D, E, and F) outputs obtained from conditional MC simulations for C-I case, for HV coals (A and D), MV–LV coals (B and E), 
and sub-bituminous coals (C and F). Also shown are the fitted normal distributions. 

The results shown in Fig. 9 are presented in Table 7 in tabulated 
form. In this table, the rates and methane concentrations 



corresponding to 20th, 50th and 80th percentiles are shown in red to 
highlight values which exhibit low-, mean- and high-possibilities for 
the total number of iterations. For the A-A case, 80% of total iterations 
resulted in production rates of 350 scfm or lower and methane 
concentrations of 73% or lower when there were HV coals in the 
fractured overburden. The numbers for the same percentile for the C-I 
case and HV coals in the overlying strata as the main methane source 

are 504 scfm or less and 68% or less. Similarly, analyses can be 
conducted for other coal ranks and at different percentiles. 

Table 6 
Summary of descriptive statistics performed on the MC results. 

A-A case: (active panel; advancing face) 

HV coals MV-LV coals Sub-bit. coals 

Parameter Rate Methane 
(scfm) (%) 

Rate 
(scfm) 

Methane 
(%) 

Rate 
(scfm) 

Methane 
(%) 

Mean 
Standard deviation 
Skewness 
Minimum 
Maximum 

235.95 55.11 
131.97 20.95 

0.57 0.07 
12.33 10.33 

638.92 99.69 

239.00 
129.85 

0.27 
10.28 

632.01 

59.24 
21.93 
-0.18 
10.68 

100.00 

231.08 
123.96 

0.59 
10.34 

644.47 

53.24 
20.52 
0.09 

11.51 
99.51 

C-I case: (completed panel; idle face) 

HV coals MV–LV coals Sub-bit. coals 

Parameter Rate Methane 
(scfm) (%) 

Rate 
(scfm) 

Methane 
(%) 

Rate 
(scfm) 

Methane 
(%) 

Mean 
Standard deviation 
Skewness 
Minimum 
Maximum 

327.00 
182.42 

0.25 
10.79 

752.27 

56.79 
12.39 
-0.11 
15.84 
85.59 

337.76 
189.05 

0.20 
10.29 

799.73 

58.40 
11.54 
0.01 

21.63 
90.27 

339.11 
187.62 

0.27 
11.26 

753.13 

54.15 
12.23 
-0.09 
18.88 
90.18 

Table 7 
Tabulated percentiles of the data presented in Fig. 9. 

A-A case: (active panel; advancing face) 

Coal rank HV bit. coals MV–LV coals Sub-bit. coals 

Percentile Prod. rate Methane 
(scfm) (%) 

Prod. rate Methane 
(scfm) (%) 

Prod. rate Methane 
(scfm) (%) 

100% 638.93 99.7 632.02 100.0 
90% 412.83 83.0 423.64 89.2 
80% 349.24 72.8 356.71 80.7 
70% 304.92 67.4 306.35 73.6 
60% 258.08 61.5 264.17 66.5 
50% 222.12 54.5 230.37 59.5 
40% 187.89 48.9 200.85 53.3 
30% 146.89 43.8 163.69 46.2 
20% 112.62 36.2 118.27 39.3 
10% 84.61 27.9 63.77 27.7 
0% 12.33 10.3 10.29 10.7 

C-I case: (completed panel; idle Face) 

644.47 99.5 
396.45 80.6 
337.02 70.5 
287.97 64.4 
247.27 60.2 
220.25 53.7 
194.37 47.0 
159.21 40.8 
115.13 35.5 
76.10 24.9 
10.35 11.5 

Coal rank HV bit. coals MV–LV coals Sub-bit. coals 

Percentile Prod. rate Methane Prod. rate Methane 
(scfm) (%) (scfm) (%) 

Prod. rate Methane 
(scfm) (%) 

100% 
90% 
80% 
70% 
60% 
50% 
40% 
30% 
20% 
10% 
0% 

752.27 
588.18 
504.49 
419.28 
368.88 
313.42 
261.46 
219.31 
149.38 
94.22 
10.79 

85.6 
72.7 
67.9 
62.9 
60.2 
57.4 
54.3 
50.0 
46.3 
41.3 
15.8 

799.73 
603.49 
526.59 
456.71 
385.81 
328.16 
264.30 
215.96 
155.91 
85.18 
10.30 

90.3 
72.7 
67.7 
64.1 
61.5 
58.5 
55.7 
52.1 
48.7 
44.2 
21.6 

753.13 
617.09 
521.88 
437.03 
387.35 
327.82 
259.03 
214.21 
165.39 
97.34 
11.26 

90.2 
68.7 
65.7 
60.5 
57.2
54.1
51.5 
48.1 
43.9 
38.0 
18.9 

The numbers in bold correspond to 20%, 50% and 80% percentiles, which were selected 
as the low, mean and high values within the range. 

Table 8 
Parameters and their value ranges that are changed to evaluate responses of production 
rate and methane concentration from a GGV in active and completed panels. 

A-A case: (active panel; advancing face) 

Parameter 

Distance to SC top (ft) 

Min; mean; max 

(878.5; 1155.4; 1419.2) 
Surface elevation (ft) 
Average OB depth (ft) 

(2095.0; 2502.7; 2855.4) 
(1296.0; 1499.7; 1743.9) 

C-I case: (completed panel; idle face) 

Parameter Min; mean; max 

Distance to SC top (ft) (966.3; 1190.5; 1423.5) 
Surface elevation (ft) 
Average OB depth (ft) 

(2197.3; 2499.9; 2803.2) 
(1338.6; 1503.7; 1700.7) 
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Fig. 9. Percentiles corresponding to different production rate (A) and methane 
percentage outputs (B) from conditional MC simulations. 

The ranges of GGV and mine operation parameters given in Table 5 
are suitable to cover most longwall operations. The parameters most 
likely to fall outside these ranges may be highly location-dependent 
parameters such as the depths and surface elevations, and thus the 
length of the slotted casing. In order to evaluate the effects on predicted 
GGV production rates and methane concentrations in situations where 
distance to slotted casing top, surface elevation, and overburden depths 
are larger than given in Table 5, the allowable ranges of these 
parameters were raised, following normal distributions. This gave the 
minimum, mean and maximum values tabulated in Table 8 for A-A and 
C-I conditions. Changing only these parameters, while keeping the 
others constant, increases the length of the slotted casing. 

MC simulations were performed with the data given in Table 8 for
A-A and C-I cases, keeping the values of the other parameters as in 
Table 5. Simulation results are shown as percentiles in Fig. 10-A and B 



for production rates and methane concentrations, respectively. The 
simulation percentile, production rate, and methane concentration 
data are given in Table 9. 

Table 9 
Tabulated percentiles of the data presented in Fig. 10. 

A-A case: (active panel; advancing face) 

Coal rank	 HV bit. coals MV–LV coals Sub-bit. coals 

Percentile	 Prod. rate Methane 
(scfm) (%) 

Prod. rate Methane 
(scfm) (%) 

Prod. rate Methane 
(scfm) (%) 

100% 1137.38 99.7 986.19 100.0 
90% 728.18 87.7 703.87 89.2 
80% 629.79 81.0 626.74 83.5 
70% 572.05 73.7 576.87 77.1 
60% 525.25 68.1 533.82 72.6 
50% 481.46 61.7 483.81 66.7 
40% 445.42 56.3 446.70 60.9 
30% 396.43 48.5 410.91 55.0 
20% 343.01 41.0 346.38 48.0 
10% 260.08 30.1 265.40 37.7 
0% 13.90 10.7 46.45 10.7 

C-I case: (completed panel; idle face) 

1051.50 99.2 
744.68 84.9 
654.30 75.6 
589.47 68.8 
542.33 63.8 
491.89 58.0 
450.15 51.4 
402.14 45.0 
346.72 37.7 
250.50 29.0 
21.66 10.9 

Coal rank HV bit. coals MV–LV coals Sub-bit. coals 

Percentile Prod. rate Methane Prod. rate Methane 
(scfm) (%) (scfm) (%) 

Prod. rate Methane 
(scfm) (%) 

100% 
90% 
80% 
70% 
60% 
50% 
40% 
30% 
20% 
10% 
0% 

817.73 
451.11 
399.32 
342.22 
269.67 
213.56 
173.12 
139.68 
96.79 
44.46 
0.11 

93.9 
73.6 
69.6 
65.8 
62.3 
58.3 
55.2 
52.3 
49.0 
42.2 
28.0 

672.94 
436.42 
371.87 
309.27 
254.34 
213.33 
167.12 
121.84 
83.09 
41.00 
1.46 

97.4 
79.4 
73.1 
69.4 
65.4 
62.2 
59.4 
56.4 
52.7 
48.0 
30.7 

718.53 
488.99 
403.91 
326.96 
279.85 
230.81 
177.39 
140.95 
89.37 
48.97 
0.21 

85.7 
71.7 
67.3 
63.5 
60.1 
57.8 
55.0 
52.3 
47.9 
43.1 
27.9 

The numbers in bold correspond to 20%, 50% and 80% percentiles, which were selected 
as the low, mean and high values within the range. 

Production rates (Fig. 10-A) showed a drastic 
increase, especially for the A-A case, with the increased values of 
distance to slotted casing, surface elevation, and average overburden 
compared to Fig. 9-A. 
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Fig. 10. Percentiles corresponding to different production rates (A) and methane 
percentage outputs (B) from conditional MC simulations using increased depths 
(Table 8) and the other parameters in Table 5. 

Comparing the percentile values in Table 9 to 
those in Table 7 shows that the rates were almost doubled. By 
contrast, Fig. 10-B shows only slight increases in methane concentra­
tions for both A-A and C-I cases compared to the results with the 
lower range (Fig. 9-B). 

5. Summary and conclusions 

GGVs are integral to the safety of many underground longwall coal 
mines, but their performances are difficult to forecast and, as a result, 
it is a challenge to optimize their designs. The complex interactions 
between GGV operating parameters, mining operating parameters 
and a host of dynamic geologic conditions result in GGV performance 
data that are difficult to understand and model, making stochastic 
models a good choice for representing the data. 

In this work, a set of deterministic models was derived using the 
previously developed Methane Control and Prediction (MCP) soft­
ware suite. The input parameters were assessed and adjusted so that 
the models could be generalized to sites other than the northern 
Appalachian basin, where the field data were collected. Methane 
concentrations and production rates were generated using MCP with 
random input values from a realistic range. Multilinear regressions 
were performed on the data. Reasonable coefficients of determination 
(R2), from 0.69 to 0.88, were obtained. Next, it was determined that 

slotted casing length, strata displacement, and gas content of the 
overlying strata were important parameters for generalizing the 
models away from site-specific data. Subsidence is difficult to 
generalize across many sites, but it is a parameter that can 
significantly influence gas production by increasing conductivity to 
other gas bearing seams. Under this more generalized model, strata 
displacement was considered instead, allowing for these mechanisms 
to be taken into account. Strata displacement was only considered 
over the length of the slotted casing, which is crucial because the 
slotted casing promotes collection of gas from these fractured strata. 
Their inclusion in the deterministic models resulted in coefficients of 
determination ranging from 0.69 to 0.89. Comparison of statistical 
data between the two deterministic models indicated good agree­
ment, except for skewness in production rates. In both A-A and C-I 
cases, absolute value of the skewness decreased, representing a more 
normal distribution with the modified models. 

Probability distributions for the input data were created for use in 
Monte Carlo simulations of the modified deterministic models 
presented above. The Kolmogorov–Smirnov (K–S) goodness-of-fit 
test determined that the distributions could be represented with 
normal and log-normal distributions. 5000 simulations for each of the 
coal ranks (HV, MV–LV and sub-bituminous) in each of the longwall 
cases (A-A and C-I) were run for a total of 30,000 simulations. 
Conditional arguments were then applied to the resulting data in order 
to check that input parameters and outputs were valid. Simulations 
with invalid parameters or outputs were removed from the dataset. 

Analysis of the output from the Monte Carlo simulations indicated 
that overall production rates were generally higher for GGVs over 
completed, inactive (C-I) longwall panels, but that methane concentra­
tions were likely to be slightly lower in the produced gas stream for C-I 
panels than for advancing, active (A-A) panels. Further, the results 
indicated that in the 20th to 70th percentile range for the C-I case, 



methane concentration ranged from 50 to 60%, a relatively small 
variation. This indicates that changes in well operating parameters are 
not as important during the completed and idle phase of GGV production. 

This research quantifies the likelihood of operating a GGV within a 
given range of production rates and methane concentrations, using a 
stochastic modeling method. This allows operators to quickly 
determine if GGVs are operating within normal ranges and to explore 
why they may operate outside of these ranges. These data can also be 
used for preliminary design of GGVs. The advantage of this method is 
that input parameters that cannot be accounted for in deterministic 
modeling are incorporated into the stochastic model, so that a more 
comprehensive model is generated. The detailed discussion of 
development of the stochastic model allows for the procedure to be 
transferred to specific sites or basins. 

This work indicates that the stochastic approach is a promising 
method to represent the randomness in GGV performances and to 
improve the limited and site-specific character of deterministic 
models. Future work may include analyzing data from other basins 
to prove that this stochastic method can be generalized to other sites. 
The initial deterministic model may be improved to generate a more 
comprehensive data distribution for Monte Carlo simulation. The 
stochastic model presented here for forecasting GGV performance can 
be used both in design of longwall GGVs and in optimizing operating 
parameters of existing GGVs to more efficiently extract methane from 
working areas of underground mines. 

List of symbols 
Pi Production parameters (listed in Table 1) 
xi Production parameter coefficients (listed in Table 1) 
Ri Coefficients of determination (listed in Table 1) 
yi Methane concentration parameters (listed in Table 1) 
FRF Flow rate change factors 
FP Flow percent 
OB Overburden depth 
D Distance to the top of the slotted casing 
SL Slotted casing length 
SD Strata displacement 
μ Mean for normal and log-normal distributions 
σ Standard deviation for normal and log-normal distributions 

Conversion Table (English to SI units) 
1 ft =0.3048 m 
1 MMscf = 28316 m3 

1 scfm=0.0004719 m3/s 
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