Underground Coal Mine Lighting Handbook

(In Two Parts) 1. Background

Compiled by W. H. Lewis
Underground Coal Mine Lighting Handbook

(In Two Parts) 1. Background

Compiled by W. H. Lewis
Main entry under title:
Underground coal mine lighting handbook.

Information circular (United States Department of the Interior, Bureau of Mines; 9073)

Bibliography
Supt. of Docs. no.: I 28.27.

1. Mine lighting. 2. Coal mines and mining.

TN309.U47 1986 622.47 85-26942
Abstract

Chapter 1.—Coal mine lighting

Introduction

Chapter 2.—Light physics

1. Radiant energy (electromagnetic) spectrum
2. Brightness sensitivity of the eye as a function of light wavelength
3. Classification of reflectors
4. Curved reflectors used to control light distribution
5. Use of surface patterns to control light distribution
6. Effect of interreflection on net light transmission for enclosed light fixtures
7. Effect of changing transmission mediums on direction of light travel
8. Use of curved lens to control light distribution
9. Illumination the cosine law
10. Relationship among reflectance, illumination, and luminance
11. Determining angle of incidence when applying the cosine law
12. Basis of the cosine law
13. Solid angle forms
14. Determining angles for important purposes
15. Basis of the inverse square law
16. Candlepower curve for a typical incandescent fixture
17. Light measurement to establish candlepower curve for a mining vehicle headlight
18. Candlepower curve for a mining vehicle headlight
19. Geometry for performing illumination calculations

Chapter 3.—Light and vision relationships

1. Studies
2. Physics
3. Perception
4. Physical behavior
5. Absorption
6. Reflection
7. Transmission
8. Quantifying light energy
9. Illumination and the cosine law
10. Inverse square law
11. Candlepower curves and their uses
12. Average luminance and candlepower curves
13. Perfectly diffuse reflectors and emitters
14. Relationship among reflectance, illumination, and luminance
15. Limits of agreement between luminance and perceived brightness

Chapter 4.—Disability and discomfort glare

1. Receiver-decoder system operation
2. Other light control functions
3. Pupil size
4. Parts of the receiver-decoder system
5. Light focusing and accommodation
6. Parts of the light control system
7. Other light control functions
8. Receiver-decoder system operation
9. Photoreceptor function
10. Light levels needed to stimulate photoreceptor

ILLUSTRATIONS

1. radiant energy (electromagnetic) spectrum
2. brightness sensitivity of the eye as a function of light wavelength
3. Classification of reflectors
4. curved reflectors used to control light distribution
5. use of surface patterns to control light distribution
6. Effect of interreflection on net light transmission for enclosed light fixtures
7. Effect of changing transmission mediums on direction of light travel
8. Use of curved lens to control light distribution
9. illumination the cosine law
10. Relationship among reflectance, illumination, and luminance
11. Determining angle of incidence when applying the cosine law
12. Basis of the cosine law
13. solid angle forms
14. Determining angles for important purposes
15. Basis of the inverse square law
16. candlepower curve for a typical incandescent fixture
17. Light measurement to establish candlepower curve for a mining vehicle headlight
18. Candlepower curve for a mining vehicle headlight
19. Geometry for performing illumination calculations
UNDERGROUND COAL MINE LIGHTING HANDBOOK
(In Two Parts)

1. Background

Compiled by W.H. Lewis

ABSTRACT

This Bureau of Mines report and its companion report (Information Circular 9074) have been prepared as a complete reference on underground coal mine lighting. This report discusses the fundamentals of light and its interrelationship with the visual process. The purpose of the report is to insure an understanding of the numerous complex and interrelated factors that must be considered to design and implement a mine lighting system that will satisfy human needs for good vision and comfort. Topics include history, objectives, and technical considerations of coal mine lighting; light physics; light and vision relationships; and disability and discomfort glare.

Electrical engineer, Pittsburgh Research Center, Bureau of Mines, Pittsburgh, PA.
This Bureau of Mines report and its companion report, Information Circular 9074, have been prepared as a complete reference on underground coal mine lighting. The reports are intended to assist those persons who design, install, and/or maintain mine lighting systems in making appropriate decisions. The reports include system design criteria and procedures, data and specifications to aid in selection of suitable mine lighting hardware, and guidelines for system installation and maintenance.

This report discusses the fundamentals of light and its interrelationship with the visual process; necessary background information for anyone involved with mine lighting. The report provides information to insure an understanding of the numerous, complex, and interrelated factors that must be considered to design and implement a mine lighting system that will satisfy human needs for good vision and comfort.

The design of good lighting systems for underground coal mines is no easy task because of the unique environment. After Edison patented the first practical incandescent lamp in 1879, industrial lighting systems evolved rapidly to the modern lighting systems that employ several types of light sources including incandescent, fluorescent, mercury vapor, sodium, and metal halide lamps. Research and observation, both qualitative and quantitative, indicate that improved lighting has in fact resulted in increased worker safety, increased production, and improved worker comfort.

Underground coal mining is one industrial activity that has not kept pace with the application of improved lighting technology in the working environment. There are several reasons for this, including the following:

1. Initially, mining lagged behind other industries because (1) early lamps had short service life in this application because of lack of mechanical strength, and (2) their light output was low, which provided little improvement over the open flame lamps then in use.

2. New electrical equipment had to be introduced into coal mines with particular care because of the potential that it could entail for explosions and mine fires.

3. Systems could not be permanently installed but had to be moved as the mine expanded and advanced.

4. The abusive and hazardous mine environment required the development of special and expensive hardware and circuitry; the limited market did not provide the incentive to develop this special equipment until mine lighting was required by law.

Artificial lighting has always been a necessity in the otherwise totally dark underground mine environment. The types of light sources that have been used in underground coal mine lighting, summarized in Table 1, range from oil-soaked wood chips, reeds, and bulrushes to the present day incandescent and arc-discharge lamps. Developments such as the Spedding flint mill, the Eagle safety lamp, and the carbide lamp were aimed at providing a light source that would not ignite a gassy environment. Prior to perfection of devices that could accomplish this, hundreds of lives were lost to explosions initiated by light sources. Initial efforts to use incandescent electric lamps in the mines occurred in Europe as early as 1902, but

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>Time period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety-type open flame lamps</td>
<td>Wood chips, reeds, and bulrushes soaked in oil</td>
<td>10,000 B.C.-16th century</td>
</tr>
<tr>
<td>Hanging open flame lamps</td>
<td>Wick candles</td>
<td>1000-1900</td>
</tr>
<tr>
<td>Carbide heads</td>
<td>Wood immersed in grass or oil</td>
<td>1000-1900</td>
</tr>
<tr>
<td>Carbide (Spedding flint mill)</td>
<td>Spark from file head against striking steel wheel</td>
<td>1750-1813</td>
</tr>
<tr>
<td>Spot lamps</td>
<td>Wick immersed in oil</td>
<td>1850-1920</td>
</tr>
<tr>
<td>Flame safety lamps</td>
<td>Wick immersed in oil, cotton, or glass</td>
<td>1910-20(^{1})</td>
</tr>
<tr>
<td>Carbide lamps</td>
<td>Calcium carbide and water</td>
<td>1878</td>
</tr>
<tr>
<td>Arc lamps</td>
<td>Carbon electrodes and support (current)</td>
<td>1890-55</td>
</tr>
<tr>
<td>Personal lamps</td>
<td>Incandescent lamp</td>
<td>1920-55</td>
</tr>
<tr>
<td>Cap lamps</td>
<td>Hydrogen high-pressure sodium lamps</td>
<td>1925-present</td>
</tr>
<tr>
<td>Face lighting</td>
<td>Incandescent, fluorescent high-pressure sodium lamps</td>
<td>1975-present</td>
</tr>
</tbody>
</table>

\(^{1}\) Currently used to check for methane at the working face.

\(^{2}\) Still used in some developing countries and some 1- or 2-person mines.
electric lighting was not successfully used at the working face for another 25 yr. The battery powered personal lamp was developed in the 1950's and required the miner to carry a heavy, cumbersome battery that tended to leak. After smaller and lighter weight batteries were developed, the lamp's were mounted on miners' caps instead of being handheld as originally used. By 1935, the cap lamp was in common use and is still a primary source of light in coal mines. In 1969, Congress passed the Federal Coal Mine Health and Safety Act, which included a mandate that "directs and authorizes the secretary to propose and promulgate standards under which all working places in a mine shall be illuminated by permissible lighting while persons are working in such places." As a result of this mandate the Bureau initiated a research and development program to develop (1) information to be used in establishing lighting regulations, and (2) lighting hardware that could be safely used to gain compliance with these regulations. Major results of this research included—

1. Establishment of 0.06 FL as the minimum reflected light level on all surfaces required by the regulations to be lighted.
2. Development and successful demonstration of permissible lighting hardware for underground application.

The Federal lighting regulations, 30 CFR 75.1719 through 75.1719-4, were proposed in 1976 and, following public hearings and comments, were amended and published in 1978. These regulations prescribe the requirements for illumination of working places, in underground coal mines, while persons are working in such places, and while self-propelled mining equipment is operated in such places. A discussion of these requirements and the Mine Safety and Health Administration (MSHA) policies in enforcement are presented in Information Circular (IC) 9674.

OBJECTIVES

The general goal of industrial lighting is to improve safety and increase production. Statistics show that under- ground mining is one of the most hazardous industries and mining personnel should, therefore, benefit most significantly from the use of lighting that is consistent with the capabilities of modern technology. To realize these benefits, mine lighting must achieve specific goals as follows:

1. Increase the visibility of hazards.—Because of the low luminance levels and poor contrast in coal mines, hazards have always been difficult to visually identify. A few examples of such hazards include frayed or cut cables, mis- placed tools and timbers that may prevent a tripping hazard, and slips in roof rock. A primary goal of mine lighting is to increase the visibility of these objects which are visibly manifested by subtle details, and, hence, reduce injuries that may result if the hazards go undetected.
2. Increase visual response of the peripheral field to enable early detection of hazards.—With the narrow-beamed cap lamp alone, movement of personnel, machines, and roof or rib material is difficult to detect when it occurs in a miner's peripheral field of vision, outside the localized main beam of the cap lamp. Another major goal of mine lighting is to allow miners to quickly detect even subtle movement anywhere in their normal field of vision. This will provide additional time for personnel to react and thereby avoid injuries.
3. Improved vision for performance of tasks.—If miners can clearly see the details of tasks, they can perform them faster and with fewer mistakes. Studies in many other industries have conclusively shown that improved light- ing increases productivity and work quality. Cost-effective investments in lighting systems capable of producing very high luminance level have been made at many industrial plants. Hence, an important goal of mine lighting is to illuminate work areas consistent with the needs for optimal performance of underground tasks.
4. Increase general comfort and reduce fatigue.—Working in poorly lighted environments causes worker fatigue, reduces comfort, and adversely affects morale. Improved lighting offers considerable potential for improving the psychological aspects of working in a mine environment and should produce corresponding improvements in related areas such as productivity, absenteeism, etc.

STUDIES

How close have modern mine lighting systems come to achieving these goals? This question can only be an- swered conclusively through controlled studies of mining operations. Unfortunately, there are many interrelated factors, such as geologic conditions, seam height, and gas emissions, which can affect safety and production in the mine environment. Because these conditions change con- tinually and are virtually impossible to precisely control or to isolate, determining the effect of a single factor, such as light levels, is very difficult. Unlike other safety tech- nology such as caps and canopies, "saves" (i.e., prevented injuries or fatalities) attributable to lighting systems are difficult to document or count. Although the studies described show wide variation in the magnitude of results and cannot be considered con- clusive, the analyses consistently indicate improved safety and/or production in the lighted mine sections.

A more reliable evaluation of mine lighting will require detailed studies similar to those conducted for light- ing of roadways, offices, schools, and manufacturing facili- ties. It should be noted that at many mines there is a deficiency in accident reporting—the lack of operators' com- ments or descriptions of lighting conditions associated with mining operations or accidents. Lighting data should be included as part of accident reports to provide an addi- tional basis for assessing the benefits of face lighting and in identifying shortcomings.

SAFETY

Halmos reported that in a Hungarian mine a 60 pct decrease in the accident rate was recorded for a lighted section compared with the rate in a section where only cap lamps were used. In the same study, another test showed that increasing the lighting level by a factor of 12.5 (20 to 250 lux) decreased the number of accidents by 42 pct. A 24-month study conducted in a West Virginia coal mine compared the major accident records for one lighted conventional section with records from five unlighted sections compared with the rate in a section where only cap lamps were used. In the same study, another test showed that increasing the lighting level by a factor of 12.5 (20 to 250 lux) decreased the number of accidents by 42 pct. A 24-month study conducted in a West Virginia coal mine compared the major accident records for one lighted conventional section with records from five unlighted sections.

1. Influence of Lighting on Productivity and Safety in Mining.
sections. Results showed no accidents in the lighted section and a total of 10 accidents (five in one section) in the five unlighted sections.

Mishra and Dixit reported that 35 pct of all minor accidents in India's coal mines can be attributed to poor lighting.

Results showed no accidents in the lighted section. In a 2-month study, the part of the working areas illuminated with general lighting showed a 5 pct increase per worker using only cap lamps. In a second mine, a similar study showed a 26 pct increase in production per worker.

In a 1-yr study at a U.S. mine, a test section equipped with general stop lighting showed a 17 pct increase in tons per worker-shift over the next highest producing section.

Opinion Surveys

A joint committee with representatives from the United Mine Workers of America (UMWA), Bituminous Coal Operators Association (BCOA), and MSHA conducted an extensive opinion survey of room-and-pillar face personnel in 1979, shortly after implementation of the lighting standards. The survey indicated an overall favorable response to systems implemented in seam heights greater than 42 in and an unfavorable response to systems in lower seam height mines, primarily from glare problems. Several changes in official enforcement of the lighting standards resulted from the particular personnel acceptance problems identified in the survey.

Bituminous Coal Research, Inc., conducted a similar study in 1980, interviewing management and face personnel at longwall and room-and-pillar mines. Both management and face personnel unanimously approved of longwall lighting, citing many benefits and no major problems. Acceptance of room-and-pillar systems increased from the 1979 survey markedly so for low seam height applications. Many equipment operators, despite an overall favorable opinion of the room-and-pillar systems, cited problem areas, indicating that careful implementation is required and general improvement is possible.

MAJOR TECHNICAL CONSIDERATIONS

The underground coal mine is one of the most difficult lighting applications encountered by industrial lighting designers. There are several unique technical considerations that must be carefully addressed in designing and implementing mine lighting systems. These considerations are reviewed briefly in the following and are discussed in more detail in other sections of this report and IC 9074.

1. Mine lighting is a nonstationary application.—For most lighting applications, the object or area to be lighted is confined to a specific location and lighting hardware can be permanently installed. In coal mining the working face is not only continually advances (or retreats), but several faces are being mined at the same time by the same equipment. The designer, therefore, has two choices. One is to mount the hardware on the machines so the area around the machine is lighted regardless of where it is operating. The second choice is to mount a system semipermanently at each active face and move the system as the face is advanced. Both systems pose unique problems with respect to electrical design and logistics. At the present time, mine lighting systems are almost exclusively machines mounted.

2. Lighting in a low-reflectivity, low-contrast environment.—Under equal illumination, the brightness of surfaces within a person's field of vision is dependent on the reflectivity of those surfaces. Reflectivity, or reflectance, is a measure of the ability of a surface to reflect incident light supplied by a light source (see chapter 2). In most lighting applications, exposed surfaces reflect a relatively high percentage of light, which helps in providing good visibility of objects and/or surface details. In the coal mine, nearly all surfaces have low reflectivity, especially the ribs and face which have an average reflectivity of only 4 pct. Therefore, to provide a given general level of surface brightness, the output of light sources used in mine lighting systems would have to be much higher (15 to 20 times) than would be required in applications with high reflectivity surfaces.

Another important lighting design consideration is the relationship between the light level required for good visibility of detail, and the contrast between the detail and the background against which it is viewed. For example, if critical details such as roof slips or cracks were white against the dark coal or rock surfaces, very low light levels would be required to see them. However, there is very little contrast between a slip and its background (often distinguishing between shades of gray), so higher light levels are required. Bituminous mines also have this problem, and the designer must consider the relationship between visibility levels and reducing the system's glare level must frequently be made in mine lighting system designs.

3. Abusiveness of the environment.—Few environments expose lighting hardware to the abuse found in the underground coal mine. The major hazards include impacts from striking rib or roof, roof rock falling on the hardware, mechanical shock produced by machine vibration and motion, and corrosion potential from moisture, salts, and other corrosive agents found in mines. These conditions require special consideration in the design and installation of hardware if adequate service life and acceptable maintenance costs are to be realized.

4. Poor power regulation.—Light sources and associated power-control devices are sensitive to fluctuations in supply voltage, especially large and fast fluctuations, and to extended operation above or below design voltage. The effects of poorly regulated power include variation in light output, extinguishment of arc discharge lamps, destruction of lamps, and a general reduction in service life of power-conditioning components because of heat buildup. These problems have been particularly prevalent with dc power systems, which frequently experience extreme high-voltage transients and very poor voltage regulation. A system designer must, therefore, be familiar with the character of a mine's electrical system and take steps to protect against poor regulation and/or transients.

5. Increased electrical hazards.—Any time additional electrical equipment is added to a mining machine, the capacity, and that cables be adequately protected from hazard is increased. This makes it imperative that the system designer comply with all Federal electrical design potential for an electrical fault and an associated shock these standards, discussed in IC

6. Glare potential.—A lighting system is effective only if it improves a person's ability to ascertain visual information from his or her surroundings. Experience with mine lighting has shown that in this regard the effectiveness of many systems is impaired by glare. Factors such as the high light-source output (as required by low coal-surface reflectivity), the extreme contrast between light sources and their low-reflectivity surroundings, the frequent necessity of locating light sources near the line of sight to meet prescribed light levels, and job procedures that place the

CHAPTER 2.—LIGHT PHYSICS

Light is a form of energy that enables us to see; it is known as radiant energy; one of several known energy forms, which include electrical, chemical, atomic, thermal, and mechanical energy. Light is called radiant energy because it travels through space from its point of origin, or source, in all directions as a repeating, or cyclical, wave pattern, much as the mechanical wave that results when a pebble is dropped in a pond. Light waves are made up of both electric and magnetic energy components, and therefore are called electromagnetic waves.

Electromagnetic radiation is a byproduct of any process, such as an electrical, mechanical, or chemical process. Many processes, both natural and artificial, accelerate charges and hence produce electromagnetic radiation. Those processes that produce visible light generally occur at the atomic or molecular scale and involve acceleration of electrons. Some of these are (1) heated bodies (e.g., the common incandescent light bulb), (2) arc discharge (e.g., mercury lamp), (3) fluorescence (e.g., a glow-in-the-dark watch face), and (4) chemical process (e.g., the firefly). Because it consists of waves, radiant energy is characterized by two special properties: wavelength and frequency. Wavelength is the distance covered as an energy cycle repeats itself. Frequency is the number of times the cycle repeats itself during a unit of time, for instance, in 1 s. When wavelength is multiplied by frequency, the product is the speed at which the wave is carried forward from its source. For radiant energy, this speed is a constant in a given transmission medium. The speed equals 186,000 miles per second in vacuum or slightly less in air.

Visible light is only a narrow part of a broad spectrum of radiant (electromagnetic) energy. At one end of this electromagnetic spectrum is cosmic rays; electric power transmission waves are at the opposite end. Even though the effect of, uses of, and the generating processes for the different groups of radiant energy may differ, all are electromagnetic energy differing only in wavelength and frequency. The various categories of energy are arranged on the electromagnetic spectrum on the basis of wavelength and frequency, as shown in Figure 1.

Visually evaluated radiant energy, or visible light, is that portion of the electromagnetic spectrum with wavelength between 380 and 780 nm. Longer or shorter wave-lengths stimulate very little or no response in the eye.
PERCEPTION

The two fundamental interpretations of the light that enters our eyes is made on the basis of that light's physical characteristics. Wavelength composition is interpreted as color and the combination of energy level and wavelength composition is interpreted as brightness.

Colors are, simply, the names assigned to various wavelengths, or mixtures of wavelengths, of visible light. For example, light wavelengths between 380 to 400 nm appear violet in color, while light wavelengths of approximately 600 nm appear yellow (see figure 1).

When seen separately, individual visible wavelengths of light appear as distinct colors. When light consists of a blend of the wavelengths across the entire visible portion of the electromagnetic spectrum, it appears white. (Black is not a color, just the absence of light.) Certain sources, such as incandescent light bulbs and the Sun, give off relatively balanced amounts of all visible wavelengths and hence appear white. When light sources or reflectors give off higher or lower amounts of one or more visible wavelengths, our eyes distinguish such wavelength imbalances as colors. For example, blue and yellow when mixed appear green.

Perception of brightness is affected by two physical characteristics of light—energy content of the light striking the eye and the wavelength composition of that light. The more energy at a given wavelength of light striking the eye, the greater the sensation of brightness produced. However, the eye does not respond to all wavelengths in the 380- to 780-nm range equally. It does not take nearly as much energy in a beam of 555-nm light for it to appear as bright as 650-nm light. Figure 2 shows the brightness response of the eye to different wavelengths of light in terms of a percentage of the response at the wavelength to which the eye is most sensitive (555 nm). This is an average curve; a particular individual's response might vary somewhat. This curve is called the spectral luminous efficiency curve because it depicts the efficiency of light in producing a brightness sensation at various wavelengths. As can be seen from the curve, a meter measuring the total energy of a 650-nm beam of light would have to read nine times as high as one measuring a 555-nm beam of light for the beams to produce an equivalent brightness response.

The spectral luminous efficiency curve represents a weighting function that must be taken into account when assessing light energy for illumination design. Light measuring instruments incorporate filtering systems and/or employ special sensing devices that discriminate against certain light wavelengths in accordance with this function. Moreover, the function is assumed in the definition of all standard systems of lighting units as will be discussed later.

PHYSICAL BEHAVIOR

As a light travels from a light source to a person's eyes and encounters objects in between, it can be altered in many ways. This section examines these alteration processes which are important to understanding both the basis of what is seen and the light control methods that may be employed in illumination design.

When light or any other form of electromagnetic radiation encounters an object, it is transmitted, reflected, and/or absorbed. Transmitted light is the light that passes through an object. That is, it goes in one side and comes out another. Reflected light is light that does not penetrate an object; rather it bounces off the object's surface. Absorbed light is all the light that is neither transmitted nor reflected; rather it is "soaked up" by the material. The energy of absorbed light is changed to some other form such as heat.

Three ratios—absorptance, reflectance, and transmittance—can be used to quantify how light-energy striking a given material is distributed. These ratios define the proportion of absorbed, reflected, or transmitted light relative to the total amount of light striking an object.
The sum of the three ratios always equals 1, but for any material none of the individual ratios will equal 1. For example, a material that transmits light never has a transmittance equal to 1. Rather, its transmittance is reduced by positive reflectance and absorptance values. Many objects exhibit zero transmittance, but their reflectance will be less than 1, reduced by a positive absorptance value. It is evident that an object’s absorptance acts to reduce the amount of light energy leaving the object’s surface.

Absorption

If an object selectively absorbs light at certain wavelengths, while allowing other wavelengths to be transmitted or reflected, the object is said to have discriminant absorption properties. The discriminant absorption properties create wavelength imbalances in the reflected or transmitted light. As noted earlier, these imbalances are distinguished by the eye as various colors. Objects that appear red under a white light contain molecules, given the special name pigments, which absorb wavelengths in the blue-green portion of the spectrum and reflect red light. Blue objects have pigments that absorb wavelengths in the green-red portion of the spectrum. Other colors, such as brown, purple, or pink, can be obtained through the proportionate mixing of pigments with different discriminant absorption properties.

It is important to recognize that color rendering through the discriminant absorption of various wavelengths of light is a subtractive process. That is, the wavelength mixture in the reflected or transmitted light can only be a subset of the wavelength mixture in the light that struck the object. The total energy of reflected-transmitted light in a given wavelength region cannot exceed the energy of light in the wavelength region that composed the incident beam. However, the relative proportion of one wavelength region to other wavelength regions in the reflected or transmitted beam may be changed, which will change the beam’s color. If an object that reflects only wavelengths from the red portion of the spectrum and absorbs all others is illuminated by a light consisting of blue and green wavelengths only, the object cannot reflect any red wavelengths and would appear much darker and essentially colorless. Hence, regardless of the discriminant absorptive properties of an object, the eye cannot see colors that are not present in the source light that illuminates the object. This has impact on the selection of artificial light sources in cases where color discrimination is important, as with color coding of wire, pipes, etc.

Reflection

Special Importance of Reflected Light

The eye does not see light that is traveling through air (space). Only the source of the light and the objects reflecting light from that source can be seen. For example, the sunlight striking the Moon at night cannot be seen. The space from the Sun to the Moon is completely dark. Only the light being reflected by the Moon’s surface is seen. The reflected light, in turn, allows details of the Moon’s surface to be discerned.

Eyes sense the light that enters them, process the character of this light, and interpret this character back to the object that reflected it. This is accomplished by “focusing an image” on the light-sensitive surface of the eye (the retina). Focusing an image is process by which the light reflected from points on an object in the direction of the eye are, through optical mechanisms within the eye, directed or focused to form an image of the object on the retina. (See chapter 3 for more details.) In this respect, light acts as a coded signal carrying information about an object that reflects it to the eye where the signal is subsequently decoded and translated. Spatial relationships, brightness, and color can be discerned. Hence, it is reflected light that has greatest bearing on what is seen. Because of this, lighting designers must evaluate the environment to find out: (1) the proportion of light the environment reflects and (2) how the reflected light is distributed. As noted previously, the proportion or ratio of light specific surfaces in the environment reflects to incident light on these surfaces is measurable and is called reflectance. The other variable important to designers is distribution of reflected light.
How Objects Distribute Reflected Light

Objects distribute reflected light in different ways, depending upon texture of the surface or near-surface layers of the object. The simplest case of reflection is shown by a perfectly smooth reflector, such as a mirror. For such reflectors, the direction of the reflected light is determined by the direction of the source of light, as shown in figure 3. The beam angle of the light source and the beam angle of the reflected light are equal in size, but on opposite sides of a line perpendicular to the surface. Objects that reflect light in this manner are called specular reflectors.

Diffuse reflectors represent the opposite extreme. Here, the texture of the reflecting surface is rough. Light is scattered in all directions. Such a surface would tend to appear equally bright from any direction of observation. A wall painted with flat paint is an example of a diffuse reflector.

The principle of specular reflectance is used in the design of reflectors for control of light emission from lamps and luminaires. In brief, the curvature of the reflector can be adjusted to control the spread of the beam from a point source of light. The three reflectors shown in figure 4 indicate distribution that can be obtained with three different shapes—parabolic, circular, and elliptical.

![Figure 3](image1.png)

Figure 3. Classification of reflectors.

A. Parabolic reflector

B. Circular reflector

C. Elliptical reflector

![Figure 4](image2.png)

Figure 4. Curved reflectors used to control light distribution.
Surfaces may reflect in combinations of diffuse and specular manners. A polished coal surface, for example, is primarily a diffuse reflector that reflects light uniformly over a wide range of directions but with an increase in light energy reflected at the specular angle of reflectance. Figure 3 illustrates various classifications of reflectors.

The type of reflector, in combination with the angle of observation and the incident angle of the source light striking the object, ultimately determine the perceived brightness of an object and the measured light energy reflected by an object. This leads to complications in reflectance measurement and in design procedures for reflectors, which are a combination of diffuse and specular.

Transmission

Transmission of light through a medium is affected by various properties of the medium. Transparent materials (e.g., clear glass) transmit light without scatter. Objects on the other side or within the transparent object can be seen in sharp detail. Translucent objects (e.g., frosted glass) also transmit light, but with some degree of scatter. Objects on the other side or within appear blurred in form.

Light can be controlled by using a material with certain transmission capabilities to cause scatter. This is known as diffusion (see figure 3). Diffusion is extremely important in the design of lighting systems for visual comfort (i.e., normal glare reduction). It is achieved through various means of treating the transmitting object, including surface etching, incorporation of light-scattering particles within the medium, and application of surface coatings.

The effect of diffusion is to make the light source appear larger and less bright. Consider clear, frosted, and soft-white household incandescent lamps. The two diffuse bulbs make the light source appear to be larger and, hence, reduce the perceived brightness per unit area. In fact, the clear bulb has a brightness per unit area over seven times greater than the frosted lamp. Diffusion always results in some reduction of light energy transmitted and, thus, reduces efficiency of a light fixture. Through proper design of enclosed fixtures, the amount of energy loss can be reduced significantly by interreflection, shown in figure 6.

Many transmitting mediums may selectively transmit some wavelengths while absorbing or reflecting others. This property can be used for removing certain wavelengths to obtain a desired wavelength composition of the transmitted beam. Such a material can change the color of light with little alteration of light distribution. The dichroic reflector, an example of this type of medium, is used in some headlights to reflect a beam of visible light forward but transmit infrared wavelengths backwards; if reflected forward, the infrared energy would tend to heat objects and people.

The atmosphere is never a perfect transmitter of light (transmittance (T) ≠ 1) even in what appears to be the clearest of conditions. This factor must be taken into account in some design problems, especially when fog or dust levels are significant and/or transmission distances are large. For such problems, transmittance is described by a transmissivity ratio, transmittance divided by unit distance.

For instance, light transmissivity is about 0.94 per mile in a very clear atmosphere. That is, 0.94 pc t of the light reaches a receiver 1 mile away and 88 pc t (0.94 X 0.94) reaches a receiver 2 miles away. But in even very light fog, the transmissivity reduces sharply to only 0.85 per mile. Only 0.25 pc t of the light energy would reach a receiver 2 miles away. The concept of transmissivity ratio is primarily used in signal design problems (e.g., in selection of a fan-on signal at a mine).

The direction of light backscatter is another very important factor to consider when working with atmospheric conditions such as dense fog or dust. Backscatter occurs when the particles in the air reflect the light back toward an observer looking through the medium. Backscatter in undesirable directions can impair visibility. For example, to prevent undesirable backscatter, it is necessary to use low-beam headlights while driving in a dense fog.

Figure 5.—Use of surface patterns to control light distribution.

Figure 6.—Effect of interreflection on net light transmission for enclosed light fixtures.
When light passes from one transmitting medium (such as air) to another (such as glass), its speed will change. Figure 7 shows the progression of the light-wave fronts traveling through air into glass. Each line represents the position of the wave front after equal time intervals. As the light leaves the less dense medium (air) and enters the denser medium (glass), it slows down and the distance traveled in a given amount of time is reduced. The net effect is a bending, or deflection, of the light waves, which is called refraction. This principle is illustrated by a straw in a glass of water; the straw appears to be bent at the point where it enters the water. The degree of bending is determined by the ratio of the speed of light in the two media.

The principle of refraction impacts upon lighting in two primary ways.

1. Lenses may be designed utilizing the refractive principle to control the distribution of light from a light source. This is accomplished by adjusting the lens curvature (see figure 8). These lenses may be used alone or in conjunction with specular reflectors to control light.

2. The eye utilizes the principle of refraction to obtain a focused image on the retina. (This is discussed in detail in chapter 3.)

QUANTIFYING LIGHT ENERGY

This section discusses the fundamental concepts that are employed by illumination engineers in the quantification of light energy for design purposes and explains their interrelationships. These concepts enable the designer to evaluate, and thus devise means to control, light energy levels and their distribution.

Two major systems of units are currently used for the quantification of light: Illumination Engineering Society (IES) and International System of Units (SI). The primary difference between IES and SI systems is that the IES system uses U.S. standard measures for linear dimensions in the unit definitions, while the SI system uses metric measures. Current U.S. coal mine lighting regulations customarily use IES units; therefore, these will be used primarily in this report.

Systems of lighting units are unique in that they explicitly apply a human weighting function to the physical energy quantity they measure. That is, all unit systems take into account how the eye exhibits different sensitivities to various light wavelengths in terms of perceived brightness and weight the energy measurements according to the spectral luminous efficiency curve (fig. 7). Radiometric units are used to quantify other types of electromagnetic radiation. They are similar to light energy units, but do not include a weighting function.

All standard systems of light units employ certain basic concepts which are based on convenient and meaningful approaches to light energy measurement and quantification. These basic concepts are luminous flux, illumination (illuminance), luminous intensity, and luminance. Each of these is discussed in detail. Examples are provided to illustrate each and show how the concepts are utilized for design purposes.

Luminous Flux

- Symbol: Φ
- IES and SI unit: lumen (lm)

Quantifying Light Energy

This section discusses the fundamental concepts that are employed by illumination engineers in the quantification of light energy for design purposes and explains their interrelationships. These concepts enable the designer to evaluate, and thus devise means to control, light energy levels and their distribution.

Two major systems of units are currently used for the quantification of light: Illumination Engineering Society (IES) and International System of Units (SI). The primary difference between IES and SI systems is that the IES system uses U.S. standard measures for linear dimensions in the unit definitions, while the SI system uses metric measures. Current U.S. coal mine lighting regulations customarily use IES units; therefore, these will be used primarily in this report.

Systems of lighting units are unique in that they explicitly apply a human weighting function to the physical energy quantity they measure. That is, all unit systems take into account how the eye exhibits different sensitivities to various light wavelengths in terms of perceived brightness and weight the energy measurements according to the spectral luminous efficiency curve (fig. 7). Radiometric units are used to quantify other types of electromagnetic radiation. They are similar to light energy units, but do not include a weighting function.

All standard systems of light units employ certain basic concepts which are based on convenient and meaningful approaches to light energy measurement and quantification. These basic concepts are luminous flux, illumination (illuminance), luminous intensity, and luminance. Each of these is discussed in detail. Examples are provided to illustrate each and show how the concepts are utilized for design purposes.

Luminous Flux

- Symbol: Φ
- IES and SI unit: lumen (lm)
Luminous flux is the time rate flow of light energy. Flux is a power quantity in the same manner as horsepower or Btu per hour. The unit of luminous flux, the lumen, is most frequently used to describe the total lighting power of light sources. Other light energy concepts (e.g., illumination, luminous intensity, and luminance) use the lumen in conjunction with various geometric quantities to describe the distribution of light energy flow to the surroundings. Light sources are often evaluated on the basis of their total lumens output. For example, a 100-W incandescent lamp produces about 1,740 lm. Two or more light sources can be compared on the basis of their total luminous flux, or lumen, ratings. This is analogous to comparing two or more motors on the basis of their horsepower rating.

Total lumen ratings of light sources are extremely valuable for use in making preliminary approximations in lighting design problems. The number of lumens needed in a given situation will help determine the size and/or number of lighting fixtures necessary. These ratings are usually available from hardware manufacturers.

<table>
<thead>
<tr>
<th>Illumination Symbol</th>
<th>E</th>
<th>IES unit</th>
<th>fc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illumination (illuminance)</td>
<td>=</td>
<td>E/A</td>
<td>fc/ft²</td>
</tr>
</tbody>
</table>

Illumination is a measure of the density of luminous flux striking a surface. Mathematically, illumination may be defined as:

\[I = \frac{E}{A} \]

where \(E \) is the illumination produced by the luminous flux, \(E \), falling on a light-receiving surface of area \(A \). (see figure 9). The IES and SI systems have different units for illumination. The lux, used by SI, is the average illumination produced by 1 lm of light distributed over a 1-m² receiving area. The footcandle, used by IES, is the average illumination produced by 1 lm of light distributed over a 1-ft² receiving area.

As an example of the illumination concept, if light energy flowing at the rate of 9 lm is distributed over area A, which is equal to 1 ft², the illumination of area A is 9 fc. If the same energy is subsequently distributed over larger area B, which is equal to 5 ft², then the average illumination of area B is 3 fc, one-third as great as area A. It should be noted that the total illumination levels from two or more light sources shining on a surface are obtained by adding the illumination level produced by each source separately. If light A illuminates the surface to 5 fc and light B illuminates the surface to 3 fc, the surface illumination will be 8 fc if both lights operate simultaneously.

When determining illumination, \(E \) in equation 1 concerns the total lumens striking the receiving surface area, regardless of the originating direction of the luminous flux. Until now, only average illumination over the entire receiving surface has been discussed. The illumination at any point on the receiving surface may also be determined simply by considering a very small area around the point as the receiving area. Point illumination for all points on a surface equals average illumination if the luminous flux is uniformly distributed over a surface. If the illumination is nonuniformly distributed, point illumination, \(E_p \), would vary for each point on the surface.

Average illumination is an easy quantity to measure. Instruments are available that contain light-sensitive materials that convert total light energy striking them to proportional electrical energy levels. The resultant electrical energy levels can then be measured and read on standard (although sensitive) electrical meters. Since the area of exposed, light-sensitive material is known, the electrical energy values can readily be equated to illumination (energy per unit area) values (footcandle or lux). The significance of the fact that illumination is an easy quantity to measure is that illumination measurements can be converted to other light quantities (e.g., luminous intensity), which are meaningful but more difficult to measure directly. Such conversions are illustrated in this report.

Lighting design specifications are often presented in terms of illumination (footcandle or lux) levels. Specifications given in such terms (1) enable a good description to be made of light levels and how light should be distributed in a given environment, (2) make design calculations simpler than if the specifications are made in other terms (e.g., luminance), and (3) enable easy on-site verification that specifications are being met because of the relative simplicity of taking illumination measurements.

Specifications given in terms of illumination levels do not consider how a receiving surface reflects light, however. This is a definite shortcoming because, as noted previously, reflected light determines what is seen. Various properties of the light-receiving surfaces in the surrounding environment can affect reflectivity.

Illumination and the Cosine Law

The cosine law is one of two very useful lighting laws. (The other—the inverse square law—is discussed later.) Based on geometric principles, the cosine law states that the illumination of a surface varies as the cosine of the angle between an imaginary perpendicular line to the surface (i.e., the normal) and the actual direction of the incident light (i.e., angle of incidence, \(\theta \), see figure 10). To illustrate the cosine law, imagine a light beam consisting of uniformly distributed parallel rays traveling in a particular direction. Assume that 10 lm is incident upon surface A, with a surface area of 1 ft², in figure 11. Note that surface A is perpendicular to the direction of the light, which is the traveling. The average illumination of this surface could be calculated according to the discussion in the previous section as follows: \(E_1 = \frac{E_0}{4\pi} \) of 10 lm divided by 1 ft² equals 10 fc.
Now, imagine that instead of intersecting a surface perpendicular to the light's direction of travel, this same 10-lm beam intersects a surface rotated 90 degrees, as surface A' is in figure 11. The illumination is now uniformly distributed over a larger area (A") which is equal to A', divided by the cosine of θ.

Therefore E₂ = φA₂ which equals φA₁ X cos θ or E₁ X cos θ.

If θ is 45°: E₂ = E₁ cos 45° = 10 (0.5) = 5 ft.

Although the cosine law derived was for average illumination, the law also applies equally to point illumination.

Luminous Intensity Symbol—î IES and SI unit—candle (c)

Luminous intensity is a concept used to describe how a light source (e.g., a lamp or luminaire) distributes the total luminous flux, or lumens, it emits into various portions of the space surrounding the source. The geometric concept of the solid angle is used to define the particular portion of surrounding space in question. Before luminous intensity is discussed, the geometric concept of solid angle must be explained.

A solid angle is simply a three-dimensional angle. It is formed by a point at the center of a sphere and a surface, of any shape, which comprises a part of the surface of the sphere. Figure 12 illustrates various forms of solid angles.

The unit of the solid angle is the steradian (sr). A subtended surface area of 1 ft² on a sphere of 1-ft radius forms a solid angle of 1 sr.

Note that the spherical area subtended by a solid angle varies with the radius squared. For example, a 1-sr solid angle would subtend a 1-ft² area on a 1-ft radius sphere. The same solid angle would subtend 4 ft² on a 2-ft radius sphere, or 9 ft² on a 3-ft radius sphere. The following sample problem shows one use of the solid angle concept in a lighting design problem.

Problem.—A mining vehicle incandescent headlight with a spot beam has an effective beam angle of 30°, as shown in figure 13. What spherical surface area will the beam subtend at 10 and 20 ft? (Note, beam angle can be converted to solid angle by using the formula w = π - (1 - cos θ) where θ is the beam angle.)

Solution.—Equation 2 (w = A/πR²) defines the steradian. Therefore, any spherical subtended area, A, at any distance, R, is A = wR². Substituting the equation given for converting plane angles to solid angles, A = π (1 - cos 30°)R². For 30° beam angle, θ, and radius of 10 ft, A₁ = π (1 - cos 30°)(10²) or A₁ = (0.84)(1000) which equals 84 ft². When R equals 20 ft, A₂ = (0.84)(400), which equals 336 ft².

This problem shows how the light distributed from a luminaire might be described using the solid angle concept and how this concept conveniently describes beam spread with distance.

Luminous intensity is defined mathematically as follows:

I = φw,

where I is equal to the luminous intensity of a point source of light in a direction defined by a particular solid angle, φ.
is the total luminous flux (lumens) emanating from the point source within the specified solid angle, and \(w \) is the dimension of that solid angle in steradians. The candle is the luminous intensity unit (both the SI and IES systems) and equals 1 lm/\(\text{s}r \).

Figure 14 illustrates the concept of luminous intensity. The lines in the figure may be thought of as representing equal amounts of lumen, or light energy flow. As shown, solid angle \(A \) and solid angle \(B \) are the same size, but the density of luminous flux in solid angle \(B \) is greater than in solid angle \(A \). Therefore, the luminous intensity is higher in \(B \) than it is in \(A \).

Luminous intensity can be compared to the spray intensity of a garden hose with an adjustable nozzle. If a constant water flow is assumed, the nozzle can be adjusted to spray over a wide angle in a low-intensity spray or over a narrow angle in a high-intensity spray. Luminous intensity differs from spray intensity in that the density of light energy flow (lumens) in a particular solid angle is considered rather than the density of water droplets in the solid angle.

As noted, intensity is a directional quantity, with the direction in question being defined by the line that forms the axis of the solid angle. The intensity of the light source may, indeed, vary with direction. Intensity, as calculated from equation 3, is an average intensity over the entire solid angle, \(w \). As \(w \) is subdivided into smaller and smaller solid angles, the direction of the intensity is better defined and the distribution of light from the source is more accurately established. The following problems illustrate the concept of luminous intensity.

Problem. Assume that the manufacturer’s speci-

Figure 13.—Beam angle of mining vehicle headlight.

Figure 14.—Concept of luminous intensity.

Inverse Square Law

A common problem in lighting system design is determining the illumination on surfaces at various distances from a light source. This problem can be handled using the inverse square law.

\[
\text{Luminous intensity} = \frac{\text{total luminous flux}}{\text{solid angle}}
\]
Given the intensity of the light source depicted in figure 15 in the direction defined by the illustrated solid angle, the flow of luminous flux within that solid angle can be calculated:

\[I = w \omega \cos \theta, \text{ where } \omega = Iw. \]

The illumination of the depicted surface subtended by the solid angle would be equal to this flux, \(A \), divided by the area of the surface, \(A_s \).

Thus \(E = w \omega A_s / I_w A_s \), since \(w = Iw \).

The solid angle concept allows this area to be defined in terms of the distance from the source—\(w = A_s / R^2 \), therefore \(A_s = wR^2 \).

Substituting \(A_s = wR^2 \) into the illumination equation, it is seen that

\[E = IwA_s, \text{ or } E = wR^2, \text{ and } I/R^2. \tag{4} \]

This relationship among illumination, intensity, and distance between the source and light receiving surface is known as the inverse square law. It enables illumination of a surface to be calculated if the intensity of the light source and the distance between the light source and the surface are known.

In general practice, it is common to calculate the illumination at a point on a surface rather than an area on a sphere. The inverse square law can then be modified to use the distance, \(D \), between the light source and the point rather than the radius, \(R \), of the sphere. Equation 4 then becomes \(E = I/D^2 \).

The inverse square law assumes a point source of light. Most real light sources are not point sources, however. Nevertheless, the law can be applied, with negligible error, if the distance between the light source and the illuminated area is greater than five times the maximum dimension of the light source. Consequently, using the law is practical for most purposes encountered in lighting design, except where long, tubular light sources (e.g., fluorescent lamps) are used.

A second assumption inherent in the inverse square law is that the surface area is perpendicular to the direction of light flow. When this is not the case, the inverse square law can be combined with the cosine law as follows:

\[E_2 = E_{normal} \cos \theta \text{ or } E_{normal} D^2 \cos \theta. \tag{5} \]

The following problem illustrates uses of the inverse square law.

Problem.—To what level of illumination would the headlight illuminate an area perpendicular to the lamp axis at a distance of 10 ft? At a distance of 15 ft?

Solution.—Using \(E = I/D^2 \), when \(D = 10 \) ft, \(E = 9,474 \text{ c} \text{/(}10 \text{ ft})^2 \) or 94.7 fc. When \(D = 15 \) ft, \(E = 9,474 \text{ c} \text{/(}15 \text{ ft})^2 \), or 42.1 fc.

Problem.—What would happen to the illumination of each surface if their normals (with respect to the direction of the light) were tilted at an angle of 30° from the lamp axis? At 10 ft, \(E = 94.7 \text{ c} \text{/(}10 \text{ ft})^2 \) or 94.7 fc. Consequently, \(E = 94.7 \cos 30° \text{ c} \text{/(}10 \text{ ft})^2 \), or 82 fc. At 15 ft, \(E = 42.1 \text{ c} \text{/(}15 \text{ ft})^2 \), or 36 fc.

Problem.—To what level of illumination would the headlight beam illuminate an area perpendicular to the lamp axis at a distance of 10 ft? At a distance of 15 ft?

Solution.—Using \(E = I/D^2 \), when \(D = 10 \) ft, \(E = 9,474 \text{ c} \text{/(}10 \text{ ft})^2 \) or 94.7 fc. When \(D = 15 \) ft, \(E = 9,474 \text{ c} \text{/(}15 \text{ ft})^2 \), or 42.1 fc.

Problem.—What would happen to the illumination of each surface if their normals (with respect to the direction of the light) were tilted at an angle of 30° from the lamp axis? At 10 ft, \(E = 94.7 \text{ c} \text{/(}10 \text{ ft})^2 \) or 94.7 fc. Consequently, \(E = 94.7 \cos 30° \text{ c} \text{/(}10 \text{ ft})^2 \), or 82 fc. At 15 ft, \(E = 42.1 \text{ c} \text{/(}15 \text{ ft})^2 \), or 36 fc.

Candlepower Curves and Their Uses

The most common way of presenting lighting data on luminaires and lamps is by the candlepower curve or some variation of this curve. A candlepower curve is a plot of the intensities of a light source in a particular plane, at all angles around it. Figure 16 illustrates a candlepower curve for a household incandescent fixture. As shown, these curves are usually plotted using polar coordinates.

Candlepower curves are extremely valuable for various design calculations. They depict how a light fixture distributes its total luminous flux into the surrounding space. Also, because of the relationship between illumination and intensity—the inverse square law—these curves...
may be viewed as depicting a light fixture's ability to illuminate in various directions. The higher the intensity in a given direction, the greater the ability of that source to illuminate surfaces in that direction. The curves are obtained by making illumination measurements at various orientations with respect to the lighting fixture and utilizing the inverse square law to calculate the intensity at that orientation, as is illustrated in the following problem.

Problem.—Assume that the headlight is suspended in the center of a large room. (The room is painted black to minimize any secondary light reflections from the walls and ceiling.) An illumination meter is used to measure footcandle levels on the horizontal plane around the fixture. The measurements are taken at 3° intervals starting at the lamp central axis. A constant distance of 10 ft between the light and meter is maintained while the measurements are taken (fig. 17). The results of the measurements are as follows, in footcandles:

<table>
<thead>
<tr>
<th>Angle (°)</th>
<th>Footcandles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

Because the beam is symmetrical about the beam axis, these data can be used to plot a candlepower curve (light intensity versus angle of observation).

Solution.—The inverse square law permits each illumination measurement to be converted to an intensity measurement by multiplying it by the square of the distance to the point of observation—\(E = I \times D^2 \), therefore \(I = E / D^2 \).

Since all measurements were made at 10 ft, the footcandle readings can be multiplied by 100 (10^2) to obtain the intensity in candles at that distance:

<table>
<thead>
<tr>
<th>Angle (°)</th>
<th>Footcandles</th>
<th>Candles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9600</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>9800</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>8900</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>6000</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>4200</td>
<td>42</td>
</tr>
<tr>
<td>15</td>
<td>1700</td>
<td>17</td>
</tr>
</tbody>
</table>

Figure 18 shows these values plotted on polar coordinate paper to obtain the candlepower curve.

A candlepower curve applies only to the intensities in a single plane that passes through the light fixture. To fully describe a fixture’s light distribution, several candlepower curves in different planes may be necessary, depending on the symmetry of the light distribution.

One of the primary uses of candlepower curves is to utilize these data to calculate the surface illumination that the fixture would provide, given the geometry and dimensions of a particular setting. The following sample problem illustrates an application of this technique, which involves the inverse square and cosine laws. Note that the technique is also applicable to determination of illumination levels obtained from more than one luminaire. In this case, the calculations would be performed for each luminaire separately and the obtained illumination values would be added at each point.
Problem.—Using the candlepower curve established for the mining vehicle headlight in the previous problem, determine the illumination levels on the coal face if the headlight is mounted on the center of the inby end of the cutting machine and the machine is 8, 12, and 16 ft from the face.

Solution.—The inverse square law and the cosine law, coupled with the candlepower curve, enable calculation of illumination at any point on the coal face. Perform the calculations for 1-ft intervals from the beam axis, as shown in figure 19.

Illumination on a surface normal to the direction of light travel is defined by the inverse square law as $E_{\text{normal}} = \frac{I_s D^2}{D^2}$. When the surface is not normal to D, as is the case in this problem, the actual illumination is reduced according to the cosine law: $E_{\text{actual}} = E_{\text{normal}} \cos \theta = \frac{I_s D^2}{D^2} \cos \theta$.

Both D and θ can be determined by using trigonometry. Referring to figure 19, it can be seen that $D^2 = X^2 + Y^2$. Also, $\tan \theta = \frac{X}{Y}$, therefore, $\theta = \arctan \frac{X}{Y}$.

Perform the calculations for $Y = 8$ ft and $X = 2$ ft from beam axis: $D^2 = X^2 + Y^2 = 2^2 + 8^2 = 68$; $D = \sqrt{68}$ or 8.25 ft; and $\theta = \arctan \frac{X}{Y} = \arctan \frac{2}{8}$ or 14°.

To calculate E_{actual}, a value must be first obtained for I_s when θ equals 14°. This is done by consulting the candlepower curve, where the value shown for I_s is 2,300 c. Hence, $E_{\text{actual}} = \frac{I_s D^2}{D^2} \cos \theta$, or $2,300 \times \frac{1}{8.25 \times \cos 14^\circ}$, or 33 fc.

The footcandle values obtained from the calculations in the preceding problem for different distances from the lamp axis and for the specified distances from the face are presented in table 2.

<table>
<thead>
<tr>
<th>Distance from lamp axis, ft</th>
<th>Distance from headlight to face, ft</th>
<th>Distance from headlight to face, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150</td>
<td>67</td>
</tr>
<tr>
<td>1</td>
<td>121</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Because the candle power curve for the headlight is symmetric about the lamp axis, lines of equal illumination will form concentric rings as shown in figure 20.
An isofootcandle curve shows the distance a source will illuminate to a certain footcandle level in the various directions around the source. A typical drawing includes a family of curves at different footcandle levels.

Problem.—Using the inverse square law, convert the headlight candlepower curve to an isofootcandle curve. Use this curve to determine the illumination levels of a surface normal to the lamp axis and 35 ft away.

Solution.—To convert the candlepower curve to an isofootcandle curve, first read the candela values for a sampling of angles. For the purposes of this problem, the values will be read at 5° intervals. (To insure more accurate curves, one would read the values at smaller intervals, particularly where intensity values change rapidly.)

After the readings are taken, the inverse square law is used to calculate the distance the luminaire will light to the various footcandle values. The results of these calculations are summarized in table 3. Assume the 2-, 4-, and 6-fc isolines are to be plotted.

By taking the distance values for the various footcandle values of interest (2, 4, and 6 fc), the isofootcandle curves can be plotted on polar-coordinate graph paper as is shown in figure 21.

Illumination at a surface 35 ft along the lamp axis may be determined simply by drawing such a surface on the isofootcandle curve (fig. 21). Distances from the axis where the isolines intersect the surface may be scaled from the drawing. Because the headlight isofootcandle curve is symmetric about its axis, the isofootcandle lines would appear as shown in figure 22.

It is evident that use of an isofootcandle curve makes determination of footcandle levels much easier than the technique using candlepower curves applied in the preceding problem.

In physical terms, luminance is a concept used to quantify the density of luminous flux emitted by an area of a light source in a particular direction toward a light receiver such as an eye. The area of a light source, in practice, may be an area of a light reflecting surface, such as a wall or desk top; an area of a light emitter, such as a lamp; or an area of a light transmitter, such as a diffusing lens on a luminaire. The most common definition of luminance, L, is

\[L = \frac{I}{A_{\text{projected}}} = \frac{I}{A_{\text{cos } \theta}} \]

(6)

Referring to figure 23, I is the intensity of light produced by area A of the source in the direction of the receiver, P, and A_{\text{projected}} is the projected area of the source when

<table>
<thead>
<tr>
<th>Degrees from lamp axis</th>
<th>Luminous intensity, c</th>
<th>Distance of illumination on 2, 4, and 6 fc isolines</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9,600</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>6,400</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>5,300</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>4,350</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>3,500</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>3,000</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>Nap</td>
</tr>
</tbody>
</table>

Table 3.—Illumination distances at various degrees from lamp axis and various levels of luminous intensity.

Figure 21.—Isofootcandle curve for a mining vehicle headlight.

Figure 22.—Pattern of illumination with headlight 35 ft from mine face (determined by isofootcandle curve).
viewed from the receiver. \(A_0 \) projected is equal to \(A_0 \cos \theta \), where \(\theta \) is the angle between the normal to \(A_0 \) and the angle of observation. Figure 23 illustrates the concept. When \(A_0 \) is large, \(L \) is the average luminance of \(A_0 \) as \(A_0 \) viewed from the receiver. A, projected is equal to \(A_0 \cos \theta \) angle of observation. Figure 23 illustrates the concept. Perhaps, appear meaningful at first. However, its significance becomes evident when one manipulates the variables involved and compares the effect on the magnitude of luminance with the subjective evaluation of brightness, if the same manipulation were to be observed in an actual lighting application.

First, vary the intensity, \(I \), of the source while keeping the area, \(A_0 \), constant. For example, envision looking at an incandescent light bulb connected to a dimmer switch and the switch being manipulated to increase or decrease intensity. As the intensity of the bulb increases, so does the subjective evaluation of brightness of the area observed, and, in accordance with equation 6, so does the luminance. Next, consider the effect of varying the area of the source while keeping the intensity of the source constant. In this case, envision 10 lighted wax candles first distributed over a 25-in\(^2\) area and then over a 10-in\(^2\) area. If the point of observation was distant from the two areas, the intensity in that direction would be approximately constant in both cases. However, the average luminance (see equation 6), as well as the subjective evaluation of brightness, would be greater when the candles were distributed over the smaller area.

Finally, vary the distance of observation. In this case, consider observing the wall of a room from 8 and 12 ft. From equation 6 it can be seen that luminance is independent of distance of observation except that angle of observation does have bearing. Candlepower curves in the case of lamps and luminaires and accurate reflectance measurements can be used to establish these effects.

Average Luminance and Candlepower Curves

A candlepower curve of a luminaire can be used in conjunction with the physical dimensions of the source and the definition of luminance to calculate the average luminance of the source when observed from a particular point. This calculation is useful in assessing the visual comfort (i.e., level of glare) of lighting designs. The following sample problem illustrates calculation of the average luminance observed at certain positions.

Problem.—Assume that the lens of the mining vehicle headlight has a 4.5-in diameter. If an individual looks directly at the fixture from position \(P \) (fig. 24), determine the average observed luminance by using the candlepower curve derived previously. What is the average luminance observed at position \(Q \)?

Solution.—Average luminance is equal to intensity divided by projected surface area. Projected surface area may be determined by multiplying the actual area by the cosine of the angle of incidence, \(\cos \theta \). From geometry, actual area = \(\text{diam} \times \text{diam}/2 \times \cos \theta \) or 15.9 in\(^2\); projected area in \(P \) direction = 10.9 in\(^2\); and projected area in \(Q \) direction = 10.9 in\(^2\) or 15.9 in\(^2\).

From the candlepower curve (fig. 18), it can be seen that the intensity at 15\(^\circ\), in the \(P \) direction, equals 1,700 c. Also, the intensity at 5\(^\circ\), in the \(Q \) direction, equals 9,400 c. It is known from equation 6 that \(L = \frac{I}{P_{\text{projected}}} \). Therefore, \(L_P = 1,700 \times 15.4 \text{ in}^2 \), or 10,900 c/in\(^2\), and \(L_Q = 9,400 \times 15.8 \text{ in}^2 \), or 204,500 c/in\(^2\).

Notice that the distance to \(P \) or \(Q \) did not enter the calculations since luminance is independent of distance.

As noted in a previous section, isointensity curves for luminaires are obtained by taking illumination (footcandle) measurements in a low-reflectance room and calculating intensity values using the inverse square law. Since coal mines and mine simulators are typically low reflectance, approximate luminance values of machine-mounted luminaires can be calculated directly from illumination measurements taken on-site without the necessity of having candlepower curves. The following problem explains this technique.

Problem.—The measured illumination at an operator's station 6 ft from a single luminaire is 4 ft. For purposes of this measurement, the illumination meter was angled to the luminaire for maximum reading. The projected area of the luminaire is 30 in\(^2\). Solve for the average luminance of the light-emitting surface.

Solution.—I, = \(ED \) and \(L = I, /Ap \); therefore, \(L = ED/\text{Ap} \). Also, \(I, = \frac{4 \times \text{Ed}^2}{30} = 4.8 \text{ c/in}^2 \).
P, Q, and Headlight are in the Same Horizontal Plane

Figure 24.—Location of observation points P and Q for determining luminance or headlight.

PERFECTLY DIFFUSE REFLECTING SURFACE

Figure 25.—Relationship between intensity and angle of observation for a perfectly diffuse reflector.

Perfectly Diffuse Reflectors and Emitters

Consider a small flat surface emitting or reflecting light such that the intensity varies with direction of observation as

\[I_0 = I_{\text{normal}} \cos \theta. \]

As mentioned earlier, the projected area of the surface at any angle \(\theta \) is

\[A_\theta = A_{\text{normal}} \cos \theta. \]

If the luminance at any angle \(\theta \) is determined, then

\[L_\theta = \frac{I_0}{A_\theta} = \frac{I_{\text{normal}} \cos \theta}{A_{\text{normal}} \cos \theta} = \frac{I_{\text{normal}}}{A_{\text{normal}}} = \text{constant}. \]

For such a perfectly diffuse reflector or transmitter, the luminance is constant for any angle of observation. This surface is called a "perfectly diffuse" reflector or emitter. Many materials, such as a wall painted with a flat paint, approximate this distribution of emitted or reflected luminous flux.

For such a perfectly diffuse reflector or transmitter, the ratio of the luminance, \(L \), of the surface to the total lumens per unit area emitted by the surface can be shown to equal a constant, \(T \), luminance divided by lumens emitted per unit area. Thus,

\[L = \frac{I}{A_{\text{normal}}} \]

This is the equation for luminance, where \(I \) is the total lumens emitted per unit area and \(A_{\text{normal}} \) is the area for which the luminance is being determined.

Also note that since the luminance of a perfectly diffuse reflector has a constant relationship with the lumens emitted per unit area, this luminance can be easily measured directly with a photometric device similar to the one used in the previous section. The only requisite is that the field of view of the device must be totally subtended by the area for which the luminance is being measured. Hence, such a device would be inadequate for small objects, but would work fine for large surfaces such as interior walls, coal ribs and roof, etc.

Relationship Among Reflectance, Illumination, and Luminance

Reflectance, \(p \), is the ratio of reflected to incident light, which may be defined as lumens emitted per unit area divided by lumens incident per unit area. For perfectly diffuse reflectors, lumens emitted per unit area is luminance, \(L' \), and lumens incident per unit area is illumination, \(E \), therefore,

\[p = \frac{L'}{E}. \]

This is an extremely important equation for illumination design because it can be used to determine the illumination that should be provided for an environment, given the desired luminance (i.e., brightness) level and the reflectance of the environment. The following sample problem utilizes equation 7.

The simple relationship among luminance, illumination, and reflectance represented by equation 7 applies only to perfectly diffuse reflectors. Although no surface exactly meets this criterion, such a relationship often applies over a wide range of viewing angles making the use of the formula a practical matter in many cases. Although coal has a specular component in its reflection, the cleaved surfaces are generally not well oriented. In the main, coal can be considered a diffusing surface, and for practical purposes of analysis, perfectly diffusing. In some design problems, detailed reflectance measurements from many angles of observation are often made to assess the limits to which this equation may be applied.

Problem.—Using the footcandle distribution derived for a surface 35 ft from a headlight, determine the luminance of the surface if it is coal with a reflectivity, \(p \), of 4 percent or if it is rock-dusted coal with a reflectivity of 35 percent. In both cases, assume that the surface is a perfectly diffuse reflector.

Solution.—Because it is assumed that the surface is a perfectly diffuse reflector, luminance values in footlamberts are calculated by multiplying the footcandle values by the reflectivity—

\[L' = p \times E. \]

For coal, \(L' = 0.04 \times E \) and for rock-dusted coal, \(L' = 0.35 \times E \).
Limits of Agreement Between Luminance and Perceived Brightness

As noted earlier, luminance is a physical concept that has been defined to correlate with the perceived brightness. It is important to recognize this correlation is not an absolute one, however. If a series of objects were observed under the same level of background illumination, they could easily be arranged in order of perceived brightness and this order would correspond to the ordering that would be obtained if the level of luminance from each object was measured with instruments.

In this case luminance and the subjective evaluation of brightness agree perfectly. Now imagine making a comparison of the subjective brightness of a miner's cap lamp if it was observed in the dark surroundings underground and outside on a sunny day. The cap lamp would not appear as bright when observed outside on a sunny day as it would underground. However, if the luminance of the cap lamp was measured, it would be the same regardless of where it was measured.

CHAPTER 3.—LIGHT AND VISION RELATIONSHIPS

This chapter addresses the visual needs of the worker, which are the ultimate basis for illumination design. These needs are defined by (1) the requirements for optimal functioning of the visual sensory system, and (2) the light needed to establish an appropriate level of visibility necessary for safe, efficient work performance.

The lighting design process begins by carefully determining these needs. Then practical, technical, and economic factors are considered in establishing an appropriate system design.

This chapter explains how light and vision interact. It identifies the visual needs of coal miners and indicates, in general terms, what can be done to accommodate those needs. First, the functions of the eyes and the rest of the visual sensory system are examined. Then, various environmental factors that affect the visibility of surroundings are discussed.

THE EYE AND HOW IT WORKS

The eye (fig. 27) is the organ of sight. It senses the light that enters it and acts as the first processor of this light. It then provides this information to the brain in form of the form, size, shape, color, position, and motion of the objects in view. To understand how light and vision interact, it is helpful to consider the eye as a mechanism made up of two subsystems: (1) the light control system and (2) the receiver-decoder system. The parts of each system are outlined in the following tabulation.

<table>
<thead>
<tr>
<th>Light control system</th>
<th>Receiver-decoder system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyelid: a flap of skin that covers and protects the eye.</td>
<td>Retina and its photoreceptors, cones, rods</td>
</tr>
<tr>
<td>Cornea: the clear, bulging, front portion of the sclera.</td>
<td>Iris: the colored portion of the eye consisting of muscle tissue that extends over the lens</td>
</tr>
<tr>
<td>Iris: the circular opening called the pupil (the pupil itself is not an actual structure).</td>
<td>Lens: the lens is a flexible, transparent capsule surrounded by a ring of muscle tissue, called the ciliary muscle, directly behind the iris.</td>
</tr>
<tr>
<td>Lens: the lens focuses light onto the retina.</td>
<td>Ciliary muscle: the lens is a flexible, transparent capsule surrounded by a ring of muscle tissue, called the ciliary muscle, directly behind the iris.</td>
</tr>
<tr>
<td>Ciliary muscle: the lens focuses light onto the retina.</td>
<td>iris: the circular opening called the pupil (the pupil itself is not an actual structure). Light passes through the pupil to the lens. The iris automatically controls the size of the pupil and, therefore, acts as a diaphragm controlling the amount of light entering the eye.</td>
</tr>
</tbody>
</table>

The purpose of this discussion is to illustrate the limits of the agreement of luminance and the subjective evaluation of brightness. In the case of the cap lamp, the eye adaptation state differed in the two instances and this affected the way brightness was evaluated. Luminance measurements and the subjective evaluation of brightness correlate only when the circumstances of seeing, primarily the eye adaptation state, remain constant.
The ciliary muscle rounds or flattens the lens, thereby adjusting for objects at various distances from the eye.

Parts of the Receiver-Decoder System

The retina is a thin sheet of nerve tissue that lines the back of the eye. Photoreceptors are specialized cells of the retina. The retina contains two types of photoreceptors—rods and cones. The names are based on the shapes of these cells (see figure 27). The functions of the rods and cones differ in many ways, as will be discussed.

The receiver-decoder system uses the retina and its photoreceptors to (1) process characteristics of incoming light—brightness and color—and (2) pass this information on to the brain for final interpretation.

The functioning of the receiver-decoder system and the light control system are examined in detail in the following section. This basic knowledge is extremely important to illumination designers so that they are aware of factors under their control that could impair or enhance these various functions, and they can take appropriate measures in their designs.

LIGHT CONTROL SYSTEM OPERATION

Light Focusing and Accommodation

The eye focuses an "image" of the surrounding environment on the retina by using two parts of the light-control system—the cornea and lens—to bend the incoming light. The light is bent in such a way that all the "rays" of light reflected in the direction of the eye from a particular point, P, on an object viewed are projected onto a corresponding single spot on the retina (see figure 28A). Spatial relationships between the various points on the object are maintained in the image on the retina. The photoreceptors, in turn, respond to the focused image, and the response is integrated by the brain to perceive an object's form and shape. If the eye did not bend the light in such a manner, the light from a particular point on the object would spread over a relatively large area of the retina and only a blur would be perceived (fig. 28B).

The amount of light bending necessary to obtain a focused image varies with the distance between an object and the eye. The ciliary muscle adjusts the shape of the eye's lens, and this changes the degree of light bending. The process of changing the lens shape when focusing objects at various distances is called accommodation (see figure 29). When looking at distant objects, less bending is required, the ciliary muscle is relaxed, and the lens is flattened. When looking at nearby objects, more light bending is required, the ciliary muscle is tense, and the lens is rounded. This tension in the ciliary muscle is why some people get eye strain after looking at close objects after a period of time.

Pupil Size

Pupil size is another important light control function of the eye. As noted previously, pupil size is defined by the position of the iris on the lens. Pupil size serves the following two purposes:

1. It automatically regulates the amount of light permitted to enter the eye under different light levels. When the retina is exposed to low light levels, pupil size gets larger (dilation). When the retina is exposed to high light levels, pupil size narrows (constriction).

2. Pupil size prevents light that would pass through aberrations (i.e., deviations from appropriate curvature) on the outer edge of the cornea and lens from entering the eye. This is accomplished by opening only a limited central area of the lens for light passage. If not for the pupil, the aberrations would somewhat distort the image on the retina. This is why the pupil constricts for near vision.
Other Light Control Functions

Nature has provided the eye with other means for controlling light. The cornea, lens, and eye fluids act as filters. Virtually no light less than 300 nm and very little light above 1,400 nm in wavelength are transmitted by these mediums. Of the light between 300 and 1,400 nm, reduced amounts are transmitted, particularly between 300 and 380 nm. The major effect of this process is that ultraviolet radiation (wavelengths 300 nm) is "filtered," which helps prevent damage to the retina that might occur if the eye were exposed to high levels of ultraviolet radiation. However, it should be noted that these mediums permit considerable transmission of infrared wavelengths (780 to 100,000 nm) which might cause some damage to the retina if exposure is intense.

RECEIVER-DECODER SYSTEM OPERATION

Photoreceptor Function

As noted in chapter 2, the two physical characteristics of light that the eye interprets are its energy level and its wavelength composition. These characteristics ultimately yield perceptions of brightness and color, respectively. The process for making this interpretation begins in the photoreceptors (rods and cones), which contain light-sensitive chemicals (photochemicals). These chemicals react upon light exposure and produce electrical changes in the retina's nerve cells, which are connected to the rods and cones. The nerves subsequently send electrical impulses to the brain where they are processed at various levels to assess brightness and color. Both the rods and cones provide information that enable the brain to make a brightness interpretation of reflected light. However, only the signals from the cones allow the brain to make a color interpretation; rod signals are interpreted merely as various shades of grey. Figure 30 illustrates this interpretation process.

All the details of the process by which the photoreceptors interpret luminance and wavelength characteristics of the light are not precisely known. However, it is known that (1) the direct response of the photoreceptors to light relies on a photochemical reaction; and (2) there are various processes of neural interpretation of these photochemical reactions that enable brightness and color distinctions to be made by the brain.

Operation of the rods is the simplest. Rods contain a light-sensitive chemical called "rhodopsin" or "visual purple." Rhodopsin breaks down into different chemical compounds when exposed to light. This results in a change in electrical energy of the rod cell, one or more of which are connected to a ganglion cell (see figure 31). The change in electrical energy accumulates to a point where the ganglion cell sends a nerve impulse (electrical) to the brain. The frequency of impulses is proportional to the energy of light incident upon the rod. On this basis, the brain responds with an interpretation of what is called brightness.

Operation of the cones is more complex. The cones can be divided into three classes on the basis of the photochemical substances they contain. One class contains a chemical sensitive to short (blue) wavelengths, another sensitive to long (red) wavelengths. All three classes generate nerve impulses in a manner similar to the rods. The impulses from cones at a particular locale on the retina are passed to a portion of the brain where they are processed in the following two manners:

1. In an additive process, the signals whose frequency are proportional to the light energy striking the cone cells in question are combined to provide information that will then be used by the brain to make a brightness assessment.
2. In a differentiation process, the signals from all three classes of cones are compared to make an assessment of the wavelength mixture of light. This information is subsequently interpreted as color.

Following these two intermediate levels of processing, the brain integrates those neural assessments of brightness and color into the singular final perception "seen."

Light Levels Needed To Stimulate Photoreceptors

Typically, several rods are connected to one ganglion cell, whereas fewer, often only one, cones may be connected to a single ganglion cell. Because the photochemical response of all the photoreceptors combine to incite generation of a nerve impulse, the rods can operate under lower light levels than cones. Rods begin to respond to luminances of 0.0001 to 0.001 fL. At approximately 0.001 fL some cones begin to function. All the photoreceptors begin to function when a general luminance level of 0.03 to 0.05 fL is reached.

Figure 30.—Light interpretation process.

Figure 31.—Rods, cones, and neural structure of the retina.
Since only the cones respond to color, this explains why things are seen in dim light are perceived as colorless. For example, think of being in a totally dark room, nothing can be seen (fig. 32A). Gradually, the room begins to get lighter and the outlines of the objects in the room can be seen. No colors can be seen, only various shades of gray (fig. 32B). This is because the rods alone are reacting to the small amount of light available. As the light gets brighter, things become clearer and colors become apparent (fig. 32C). Consequently, general area lighting is desirable to supplement the cap lamp.

Time and Photoreceptor Response

The speed of photoreceptor response to a change in light stimuli is a function of light levels; photoreceptors break down at a rate in proportion to the light energy striking them. This response is quicker at higher levels of illumination. The time delay is of particular importance under situations where reaction times are essential. Consider the next example.

Imagine an operator trawming a shuttle car down an entry and suddenly a person walks out of a crosscut in front of the car. Under low lighting levels, there is a delay between the time the individual steps into the entry and the time the photoreceptors signal the operator indicating the person's presence. This is true even if the operator's line of sight is directly upon the individual. This delay lengthens the total reaction time and can actually be significant enough to mean the difference between a safe stop and one that is too late. Hence, shortening of reaction times is another important benefit that can be realized by increasing general illumination levels in mines.

Photoreceptor Wavelength Sensitivity and the Purkinje Shift at Low Light Levels

The luminous efficiency curve was discussed previously (see figure 2). Also known as the eye sensitivity curve, this curve graphically illustrates how the eye exhibits different sensitivity to various wavelengths of light in terms of the brightness perceived. This sensitivity varies because of wavelength selective characteristics of the photoreceptors and because some of the transparent media in the eye tend to absorb or filter out certain wavelengths. The former factor is the most significant. The luminous efficiency curve was derived for typical lighting conditions where cone functioning dominates, i.e., at luminance levels greater than 0.05 ft.l. Cone-dominant vision is called photopic vision.

What about low luminance levels, say of less than 0.01 ft.l., which may be found in some areas in underground mines? Remember that in such low luminance levels, primarily only the rods are functioning. Rod-dominant vision is called scotopic vision. These rods contain different photoreceptors than the cones. The effect is that the eye becomes more sensitive to shorter wavelength light. This change in sensitivity is called the Purkinje shift (named after its discoverer). Figure 34 depicts the Purkinje shift by plotting the spectral luminous efficiency curve for scotopic and photopic vision.

In looking at the luminous efficiency curve for scotopic vision, notice that it has a shape similar to the luminous efficiency curve derived for photopic vision. The only difference in the two curves is that the point of greater sensitivity on the scotopic vision curve has been shifted to shorter wavelength light—from 550 to 502 nm.
The impact of the Purkinje shift in mine illumination design includes the following:

1. Typical light measuring devices are calibrated to the photopic curve. Consequently, serious errors in light measurement under scotopic conditions are possible.

2. As previously discussed, it is best to exceed the threshold for cone function. In areas of the mine where this is not feasible, points that reflect the shorter wavelengths (e.g., green or blue), or light sources that emit relatively more of their energy at shorter wavelengths, might be used to improve visibility. For instance, the British at one time used green fluorescent lamps to light some areas of their mines.

It should be noted that the mesopic range is between levels of 0.01 and 0.05 cd/m². The luminous efficiency curve that describes wavelength sensitivity at these levels lies between the scotopic and photopic curves.

Adaptation

Adaptation is an important function of the eye. When looking at an environment of uniform luminance, the level of light-sensitive chemicals present in the photoreceptors is optimal for performance and in a state of equilibrium. If the level of light is suddenly and significantly altered, even with changes in pupil size to regulate the amount of light permitted to enter the eye, the eye's photochemical balance is upset. As a result, the ability to see details is temporarily suspended or reduced. Consider the following examples.

You have been working underground all day. At quitting time you get on the mantrip and go to the surface on a sunny day. At first, objects on the surface appear much brighter and detail is hard to see. The sunlight may hurt your eyes. The surface environment may appear "glaring," causing you discomfort. This occurs because adaptation to the sunny outdoor environment has caused the level of photochemicals in your eye to become too great to accommodate the sudden increase in the amount of light. After a while, you become comfortable and seeing is easy.

On a sunny afternoon, you walk into a cinema. Justificationally, all you can see is the screen. Adaptation to the sunny outdoor environment has caused the concentration of photochemicals in your eye to become too low to accommodate the sudden decrease in the amount of light. After a while, your eyes become comfortable and seeing is easy.

These examples illustrate that (1) changing adaptation from light to dark or vice versa requires time, and (2) during that time, the ability to see details is temporarily suspended or reduced. Adaptation is reached at different rates by the cones and rods. The cones achieve adaptation much quicker. Thus, light adaptation (going from a dark environment to a light one) is relatively fast. Dark adaptation (going from light to dark) proceeds at a much slower pace. Figure 35 illustrates dark adaptation. The first part of the curve represents the dark adaptation of the cones. This usually takes 1 to 2 min. The curve levels off at the point where the rods come into play. Another 10- to 30-min period is required for the rods to be completely adapted, as can be seen in the second drop in the curve. It may be a total of 30 to 40 min until dark adaptation is complete.

The problem of adaptation when entering or leaving a mine is difficult to accommodate. A gradient in light levels, decreasing from the point of entry to the mine as one proceeds in, will permit the adaptation process to take place gradually and simultaneously reduce the significance of the loss in visual performance. This can be achieved by two methods: (1) increased spacing intervals between light fixtures as the proceeds from the entrance to the mine; and/or (2) by using higher candlepowered fixtures near the entrance. Use of such systems is most desirable in situations where employees' jobs require them to frequently enter and exit the mine, such as track hauling of coal and supplies in a drift mine. Adaptation problems can also be serious on longwall lighting systems if operational status of the luminaires along the face is not maintained. Often a power distribution box will fail, leaving perhaps a 50-ft dark zone along the face that workers traverse, often quite quickly, while performing their jobs.

In addition to general light or dark adaptation, the following adaptation problems can be serious:

Local Adaptation—When a visual field has a large, very bright area on a dark background, or, conversely, a large dark area in a bright background, local adaptation can occur. Local adaptation involves a change in photochemical concentrations in just a portion of the retina. If part of the eye is oriented to an area having significantly higher or lower levels of luminance, there will be significant time delay before that portion of the retina will properly perceive detail. This typically would occur when changing the point of eye fixation to another part of the visual setting.

Neural Sensitivity—In addition to the shift in photochemical concentrations that occurs during any adaptation process, there is a neural component involved. When light levels are changed, there is a brief period when neural sensitivity is decreased. This causes a loss in ability to see detail, which can hinder task performance somewhat, especially if the eye must move from light to dark areas in the course of task performance. Lasting only a few milliseconds, it is not so noticeable as local adaptation.

To avoid visual loss from either of these two causes, the visual environment should be lighted with a reasonable degree of uniformity, avoiding excessively bright or dark areas, especially within the field of common visual tasks.

![Figure 35.—Effect of dark adaptation on seeing.](image)
VISUAL FIELD AND PERCEPTION WITHIN THE FIELD

Figure 36 summarizes the sight process, as discussed up to this point.

This process alone does not fully explain the picture perceived through the eyes. Functions of the receiver-decoder system, the light control system, and other factors combine to determine this picture, including the following:

1. Photoreceptor distribution and neural connections to the brain.
2. Boundaries of the visual field.
3. Combined perception of both eyes.
4. Eye and head movements.

Impact of Photoreceptor Distribution

As implied earlier, there are many independent nerve passages between the photoreceptors and the brain. In some cases, there is a separate passage for each photoreceptor. In others, several receptors are connected to a single passage through a ganglion cell. This “receptor-to-nerve” ratio is quite important. When the ratio of photoreceptors to nerve passages is low, sensitivity to light is relatively low, but ability to resolve detail is high. When many photoreceptors share the same passage, sensitivity to light is high, but detail resolution is impaired. The general relationship between photoreceptor-nerve ratio, depending on type of photoreceptor is shown in table 4.

Table 4.—General relationship between Photoreceptor-nerve ratio

<table>
<thead>
<tr>
<th>Photoreceptor-nerve ratio</th>
<th>Cones</th>
<th>Rods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light sensitivity</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Ability to resolve detail</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

Because of these differences in sensitivity and detail resolution, the distribution of rods and cones across the retina determines how we see in different parts of the visual field. Figure 37 shows this distribution. Overall, there are 20 times as many rods as there are cones in the retina. The rods generally outnumber the cones except in one area—the fovea—which is a tiny region in the center of the retina. At the fovea, the cones are packed exceedingly close together. The distribution of the rods is more

Figure 37—Distribution of rods and cones across the retina.
Two, two-dimensional pictures appear as one, three-dimensional picture when viewed through the stereoscope. Stereoscopic vision is achieved when both eyes work together to share and compare information. What is so special about the human visual system is how the brain takes the images from the two retinas and synthesizes them to form a single, three-dimensional picture. The eye works in much the same way. Stereoscopic vision functions primarily for comparatively near objects (closer than approximately 110 yd). However, if lighting is by cap lamp, which is dependent on head movement, this preference cannot be yielded to. This is an important human engineering problem that can be resolved by proper illumination design. For others, no correction is available, such circumstances, a miner will prefer to move his or her eyes rather than his or her head to obtain focus over a wider visual field than the central 40º. However, if lighting is by cap lamp, those types of distractions can hinder task performance, since it becomes more difficult to fixate on the darker area. Consequently, coal mine illumination systems should avoid exposed point sources of light and high contrast areas.

Miner Nystagmus

Under low light level where the cones do not function, the point of focus shifts 20º to the side of the fovea where rod concentration is greatest (see figure 37). If the eyes work under such conditions for extended periods of time, they will not adjust to focusing on the fovea under normal light levels. This was a common problem for miners before the introduction of the electric cap lamp. The incidence of miner’s nystagmus, once a very serious occupational health problem, has virtually disappeared since the introduction of the electric cap lamp.

COMMON VISUAL DEFECTS

This section discusses some common visual defects and the effects they may have on work performance. Some of these visual defects can be corrected through optical means. Others can be at least partially compensated for by proper illumination design. For others, no correction is available, and they may limit performance of certain tasks in mines. Refractive errors are problems with the cornea-lens system such that the eyes do not focus a sharp image on the retina. The net effect is that the light reflected from a
point on an object is focused over a small area of the retina instead of on a single point. This causes vision to blur. Refractive errors should not limit performance of mining tasks if they are corrected. Table 5 illustrates the common classes of refractive errors, all of which are correctable to some degree by optical means (i.e., wearing glasses or contact lenses).

There are several types of color blindness, which may result from genetic factors, eye disease, or heavy drinking and smoking. They include:

- Total color blindness (gray vision only).
- Blue-green color blindness.
- Two types of red-green color blindness—Deutanopes (both red and green appear yellow) and Protanopes (both red and green appear yellow and some red cannot be distinguished).

Total and blue-green color blindness are rare. Red-green color blindness is most common, especially in white males (8 out of 10 white males have red-green color blindness). Incidence of color blindness is much lower in black males and females, regardless of race.

Color blindness can be a safety hazard. It may restrict performance of some tasks where color distinction is critical to safety. Such tasks include electrical wiring, blast wiring, and handling gas cylinders—tasks in which color coding is used extensively. Traffic signals usually are not a problem for colorblind people since they can distinguish brightness differences between the red and the green. They also can remember the signals' positions relative to each other.

There is a gradual deterioration of the visual system's functions as a person grows older. Most of these problems can be reduced by optical means or by changes in environmental lighting conditions. Table 6 sets forth some of the effects of aging on the eye and some possible corrective measures.

Concerning safe and efficient task performance, it is often the case that the work experience of the older worker offsets the decline in visual performance. However, worker experience must not be relied upon when designing mine lighting systems; the visual needs of older employees should be considered.

ENVIRONMENTAL FACTORS AFFECTING VISION

So far, this chapter has discussed how the visual sensory system functions and how certain design parameters can enhance or hinder the functioning of the visual system. This discussion provides only part of the basis for determining the human visual needs that must be addressed in lighting design. The designer must also be concerned with the visibility of objects and details that make up a visual setting since this can directly affect job performance, efficiency, and safety. This section, therefore, defines and discusses the major factors that determine the relative visibility of objects.

Contrast and Seeing

Contrast is the term used to describe differences in luminance or color between an object and its background. An environment emitting or reflecting uniform levels of luminous flux having homogeneous wavelength composition (color) would create only a perception of uniform brightness and color when viewed. It is only through detection and discrimination of differences (i.e., contrast) in luminance and wavelength composition that the visual system gains any useful information relative to the conditions of the surroundings (color, size, shape, motion, etc.). Hence, contrast detection and discrimination is the most basic and important visual ability. Altering the environment to enhance this ability is a major objective for the lighting designer. A general relationship between environmental contrast and vision is that, under given lighting conditions, the greater the contrast the "easier" it is to see objects, details, and spatial relationships.

<p>| Table 5.—Common classes of refractive errors |
|__|</p>
<table>
<thead>
<tr>
<th>Class</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myopia</td>
<td>Images from distant objects are focused in front of the retina. Also called nearsightedness.</td>
</tr>
<tr>
<td>Hyperopia</td>
<td>Unequal curvature of the refractive surfaces of the eye. As a result, a ray of light is not sharply focused on the retina, but is spread out to form a more or less fuzzy image.</td>
</tr>
<tr>
<td>Astigmatism</td>
<td>Unequal curvature of the refractive surfaces of the eye. As a result, a ray of light is not sharply focused on the retina.</td>
</tr>
<tr>
<td>Presbyopia</td>
<td>Far-sightedness and impairment of vision due to advancing age. This occurs because of problems in bending the lens (accommodation). Causes problems for viewing near objects.</td>
</tr>
</tbody>
</table>

<p>| Table 6.—Age-related eye defects and possible corrective measures |
|__|</p>
<table>
<thead>
<tr>
<th>Defect</th>
<th>Possible corrective measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presbyopia</td>
<td>Medical attention.</td>
</tr>
<tr>
<td>Cataract condition</td>
<td>Careful placement of lighting apparatus, etc.</td>
</tr>
<tr>
<td>Decrease in ability to detect movement in peripheral field</td>
<td>Increase luminance levels.</td>
</tr>
<tr>
<td>Increased glare sensitivity</td>
<td>Careful placement of lighting apparatus, etc.</td>
</tr>
<tr>
<td>Decrease in ability to see detail</td>
<td>Increase luminance levels.</td>
</tr>
<tr>
<td>Increased adaptation time</td>
<td>Gradient spacing of luminaries from light to dark areas. Also, minimize extreme brightness differences in the visual field.</td>
</tr>
</tbody>
</table>

1. The best corrective measures required in a given mining situation could be considerably more extensive than those noted here.
As indicated there are two types of contrast—color (chromatic) contrast and luminance (brightness) contrast. Objects that have the same luminance as their background; i.e., zero luminance contrast, are often differentiated from the background by color or chromatic contrast. Even though color contrast can be significant, the maximum visibilities produced are generally less than 20 pct of the visibility produced by luminance contrast in the underground coal mine there is, relative to other environments, little color contrast. Visibility is determined primarily by luminance contrast. Therefore, the discussion in this section will concentrate on luminance contrast.

It should be noted that the information and relationships subsequently presented in this section were derived from experiments involving only black, gray, and white (achromatic) objects and backgrounds illuminated by white light. At the present time, research is being conducted to determine the effect of color on these relationships, but results are not yet available.

Luminance contrast, C, a physically measurable quantity, is commonly defined by the relationship:

\[C = \frac{L_s}{L_b} - 1 \]

where \(L_s \) is luminance of the background, and \(L_s \) is luminance of the object or detail, and \(L_s \) is difference in object and background luminance.

Luminance and, hence, contrast, is a function of both the reflectivity, \(r \), and illumination, \(E \), of the object and background. When an object and its background (both assumed to be diffuse reflectors) are illuminated by uniform light (\(E \) = constant), contrast is dependent only on reflectivity, i.e.,

\[C = \frac{E_p - E_o}{E_o} = \frac{r_o}{r_b} - 1 \]

Hence, contrast might be controlled in certain situations by applying surface coatings (e.g., paint, reflective tape, etc.) to appropriately alter reflectivity.

Relationship Between Contrast Detection and Illumination Levels

If you were to reduce the illumination on the pages of this report, it is likely that you would have more difficulty reading the text. You would not have changed the contrast between the letters and paper. Contrast, as noted above, remains constant under uniform illumination, regardless of the particular illumination level. However, by reducing illumination levels, you would have reduced your ability to detect or distinguish contrasts.

Figure 40 shows "minimum perceptible contrast," the smallest contrast that can be distinguished, as a function of background luminance levels (which are directly proportional to level of illumination). This curve was derived from data collected under the following conditions:

1. The object being observed was a small circular spot or disk that subtended a solid angle of 4' in the observer's field of vision.
2. The spot had a higher luminance than its background.
3. Observation time was 0.1 s.
4. Each point on the curve represents the level of luminance contrast necessary for detection of the disk by an observer 50 pct of the times they were presented.

The curve shows clearly that lower contrast can be detected as illumination levels are increased. At a background luminance of 0.1 fl, contrast need only exceed 0.06 to be perceptible. Accordingly, increased illumination levels can be used to compensate for low contrast inherent in various tasks. Figure 41 illustrates this effect.

Notice that the curve is steep at lower levels of background luminance and levels off at higher levels of luminance. As background luminance is increased from 0.001 to 0.01 fl, minimum perceptible contrast decreases from 30 to 2.5. As background luminance increases from 10 to 100 fl, minimum perceptible contrast decreases from 0.05 to 0.03. The implication is that levels of illumination are reached beyond which increases do little to increase ability to detect contrasts. The point of most cost-effective illumination depends on the inherent level of contrast detection necessary for efficient performance of a task. Levels of illumination are reached beyond which increases produce only marginal or no increases in visual performance.

The use of this relationship between contrast detection and illumination to define appropriate illumination levels is discussed later. The following sections discuss the other major variables that affect the ability to detect contrasts.

Effect of Object Size

It is accepted that larger objects are easier to see. Size is measured in terms of visual angle (fig. 42), usually in units of "minutes of arc" or degrees (60' equals 1'). This accommodates for the effect of distance from the observer upon the apparent size of the object. Table 7 shows the visual angle subtended by objects of given overall linear dimensions (H in figure 42) at various distances from the eyes of the observer.

<table>
<thead>
<tr>
<th>Visual angle</th>
<th>Apparent object size at 20 ft from observer, in</th>
<th>10 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>2'</td>
<td>0.01'</td>
<td>0.07</td>
</tr>
<tr>
<td>1'</td>
<td>0.10'</td>
<td>0.41</td>
</tr>
<tr>
<td>0'</td>
<td>0.42'</td>
<td>1.4</td>
</tr>
<tr>
<td>20'</td>
<td>120'</td>
<td>0.16</td>
</tr>
<tr>
<td>0.10'</td>
<td>0.09'</td>
<td>0.34</td>
</tr>
<tr>
<td>0.05'</td>
<td>0.06'</td>
<td>0.20</td>
</tr>
<tr>
<td>0.01'</td>
<td>0.03'</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Approximately 1/4 in.
First, examine the relationship between size and level of background illumination for viewing a black object on a white background. The contrast under such a situation is at a maximum (approaching infinity) since the reflectivity of the object and background are at opposite ends of the reflectance range (0 to 100 pct). Figure 43 shows the results of such an experiment. It is obvious that there is a minimum size object that can be discerned regardless of level of illumination. This limit occurs at a visual angle of 0.4' (28 ten-thousandths of an inch when viewed from 2 ft) and is imposed by physiological characteristics of the eye (i.e., photoreceptor size and spacing). Also notice the asymptotic nature of the curve. If one were to increase light levels from 100 to 1,000 ftL (a 10-fold increase in illumination probably accompanied by a 10-fold increase in energy costs), one would only gain about a 5-pct increase in ability to see detail at this contrast level.

Object size, contrast, and illumination level are, of course, interrelated. A change in the magnitude of one variable affects the magnitude of the others necessary for perception of the object. The "spot on uniform background" experiment discussed in the previous section has been conducted with size of the spots a variable, and the results are shown in figure 44.

It is evident from figure 44 that increased levels of luminance (obtained by increasing illumination) are necessary to maintain perception as object size decreases at any given level of contrast between object and background. Notice, also, that the curves are further apart as object size decreases. Unless contrast is very high, extremely high levels of illumination (1,000 ftL or more) may be necessary in performance of tasks involving discernment of small details (e.g., certain fine assembly tasks). Localized illumination, concentrated on the task vicinity, is a practical method for attaining these levels.
BACKGROUND LUMINANCE IN FOOTLAMBERTS

Figure 44.—Relationship between minimum perceptible contrast and background luminance for various size objects.

Effect of Time

Figure 45 shows the spot on uniform background experiment conducted for various time exposures of the dot. This figure supports the following conclusions.

1. At any given contrast level, less time is necessary to perceive an object as illumination levels are increased.
2. The effect of time becomes nearly insignificant once viewing time exceeds approximately one-third of a second.
3. Because of the steepness of the curve in the 0.001- to 0.1-fl. range (also, the range of luminance levels in many mines) time for perception may tend to become critical relative to reaction times for recognizing hazards even if contrasts are relatively high. For example, if contrast between the object and background were 0.5 (a 50 pct difference in reflectivity) and illumination levels were at 0.05 fl., it would take at least one third second to see the object. Although this example applies specifically to an object subtending an angle of 4', when designing or evaluating a lighting system, the general relationship shown by the curves of figures 44 and 45 can be applied to other sized objects to obtain an indication of the “time to see.” Curves equivalent to figures 44 and 45 are not currently available for a range of object sizes.

Concept of Visual Acuity

Thus far, the discussion has been directed at contrast detection and the major environment factors—contrast, illumination level, object size, and viewing time—which affect this ability. As may have been noticed, the experiments cited to explain these relationships involved very simple discriminations—was, or was not, the disk-shaped test object visible. What if the experiment were made a little more difficult and the observer was asked not only to distinguish the presence of the object but to discern whether it was a “C” or an “O.” Such an experiment would yield a measure of “visual acuity” or ability to resolve fine details.

Figure 46.—Determining dimensions of critical detail for visual acuity experiments.

The size aspect of a visual acuity experiment is usually quantified in terms of the visual angle subtended by the “critical detail.” Figure 46 illustrates how the dimension of the critical detail is assessed in some common experimental test objects. Visual acuity is the concept employed in the Snellen chart used in standard vision tests. The difference between visual acuity and simple contrast detection is that perceptual processing in acuity experiments of visual information is considerably more complex. Moreover, the level of processing may differ from one acuity task to another. The level and complexity of processing involved in distinguishing between a hexagon and an octagon would differ substantially from distinguishing between a C and an O. Hence, visual acuity cannot always be directly related to contrast detection, but experiments to date show that it does vary in a similar manner with luminance level and time of exposure.

Quantifying and Measuring Visibility

An attempt to quantify the visibility of an object is an attempt to quantify the degree of difficulty in seeing it. Lighting designers define the visibility quantity, V, as the ratio of the contrast between the object or detail in question and its background under a particular level of background luminance, Cbackground, to the minimum contrast between the object or detail and its background that would be necessary to just perceive the object at the same background luminance level, Cthreshold: i.e., $V = \frac{C_{\text{object}}}{C_{\text{threshold}}}$.

The size aspect of a visual acuity experiment is usually quantified in terms of the visual angle subtended by the “critical detail.” Figure 46 illustrates how the dimension of the critical detail is assessed in some common experimental test objects. Visual acuity is the concept employed in the Snellen chart used in standard vision tests. The difference between visual acuity and simple contrast detection is that perceptual processing in acuity experiments of visual information is considerably more complex. Moreover, the level of processing may differ from one acuity task to another. The level and complexity of processing involved in distinguishing between a hexagon and an octagon would differ substantially from distinguishing between a C and an O. Hence, visual acuity cannot always be directly related to contrast detection, but experiments to date show that it does vary in a similar manner with luminance level and time of exposure.
Figure 47 explains the concept in terms of the spot on a uniform background experiment. From the graph, it can be seen that if the contrast between the spot and background was 10.0, the visibility of the spot would be 101 = 10 at a background luminance of 0.1 fL and 100.2 = 50 at a background luminance of 1.0 fL. Note that visibility increases with increasing levels of task illumination.

Visibility meters are devices that employ a clever optical arrangement that enables measurement of the \(C_{\text{actual}} / C_{\text{threshold}} \) ratio for real objects and details. These measurements form a useful tool in determining appropriate levels of illumination for actual tasks.

As noted previously, a visibility measurement is always referenced to a particular level of background luminance. The optical arrangement shown in figure 48 enables one to reduce the observed contrast between any real world object and background to the threshold for detection while maintaining a constant apparent background luminance. It accomplishes this by reducing the luminance of both the object and background by a factor, \(f \), by passing the light through a nonwavelength discriminant filter and then adding a veiling luminance, \(L_v \), which compensates for the filtering and maintains the apparent background luminance. Adjustment of the glass wedges and the veiling light source is interdependent such that the luminance levels seen by the observer are given by object luminance, \((L'_{o}) = L_o + f \cdot L_v \) and background luminance \((L'_{b}) = L_b + f \cdot L_v \). But as previously stated, the meter is adjusted so that \(L'_o = L_o \). Under these conditions, threshold contrast is given by

\[
C_{\text{threshold}} = \frac{L'_o}{L'_b} = \frac{(L_o + f \cdot L_v)}{(L_b + f \cdot L_v)} = \frac{C_{\text{actual}} \cdot L_v}{L'_o - L'_b}
\]

Hence, the setting, \(f \), defines the visibility of the task. Note that such an assessment is conveniently made without the direct measurement of contrast.

Use of Visibility Measurements

A measurement of the visibility of a particular task applies only to the level of background luminance under which the measurements were taken. One can estimate, however, how this visibility level will vary with changes in illumination level. The process is to relate field measurements to the relationship between visibility and background luminance defined by the spot on uniform background experiment. This relationship, as noted previously, has been carefully measured in the laboratory. In general terms, this is accomplished as follows.

1. The critical detail of the task is reduced to threshold by a visibility meter.
2. The threshold contrast of the 4' test object is identified for the particular background luminance of the visibility measurement. Since both the 4' test object and the critical detail being measured are at threshold, their visibilities are equal. That is, \(V_{\text{task}} = V_{\text{test object}} = V_{\text{threshold}} = 1 \).

3. Using the procedure discussed in the previous section, this equivalent contrast can be used to define the visibility of the task at any other level of background luminance (i.e., any other level of illumination). This assumes that the relationship between the visibility of the task and the test object is constant, i.e., the shape of the threshold curves for the two objects is the same.

The value of this technique is that if one knows the level of visibility necessary one can then determine the appropriate background luminance level and subsequently

Figure 47

The Concept of Visibility and how it varies with level of background luminance.

Figure 48

Principle of visibility meter operation.

Figure 49

Determining contrast of 4' test object which is equivalent to real world task critical detail using visibility measurements.
the background illumination level (if background reflectivity is known). Studies have been done to establish such a minimum acceptable visibility level, and it has been frequently cited in the range from 6.7 to 8.

The results obtained by this procedure, however, must be carefully scrutinized. Some of the major limitations inherent in the technique follow.

1. The fact that (a) the curve for the test object flattens in the higher background luminance level range, and (b) the scales are logarithmic, which means that slight errors yield significantly different "required" levels of background luminance.

2. There is considerable debate as to the minimum visibility level that is adequate. Factors that have been considered are knowledge of what and where the test object will appear, whether the object is moving or stationary, and determining the presence of the object with 100 pct accuracy. Designers are not sure of the applicability of the factors to each situation and whether others may be significant.

3. The degree that the visibility of real world tasks correlates with the 4' test object curve is not known.

Regardless, this technique is a valuable tool to use in the definition of appropriate levels of illumination for a work task and is quite practical to use in many situations.

Consideration of Performance

The ultimate measure of the effectiveness of a lighting system must be the performance of the individual working in the environment illuminated by it. This performance may be measured in terms of hazard avoidance and speed and accuracy of task performance. The problem is that several factors ultimately combine to determine performance, including vision, processing of visual information, and motor skills. The significance of vision (and hence, illumination level) is difficult to resolve independent of the other factors and may vary from task to task. For example, the speed and accuracy of typing are easily measured, but how significant was lighting to the results? Were the errors a result of not seeing the words correctly or were they a result of deficiencies in motor skills? Similarly, it is necessary to distinguish every letter, 99 pct of the time when reading, since the tendency is to reorganize the letters in "chunks" called words or phrases.

The procedure defined in the previous section provides valuable insight but not a precise definition of the optimum illumination level for performance of a particular task. The net effect on performance must be considered if the most cost effective level of illumination is going to be established. Much work is currently being carried out to define this interrelationship.

TYPES OF ARTIFICIAL ILLUMINATION

Lighting systems are frequently classified into three types on the basis of how they deploy and distribute luminous flux.

1. General lighting
2. Localized general lighting
3. Local or supplementary lighting

General lighting provides an approximately uniform illumination over the entire area of the work plane. A great advantage of general lighting is that it permits complete flexibility of task location. However, if light levels for performance of a small number of tasks is high relative to other tasks performed in the work area, it is likely not to be cost effective to accommodate these tasks.

Localized general lighting consists of a functional arrangement of luminaires giving greater weight to the visual task or work areas where most light is necessary. It also provides illumination for the entire room area. This type of illumination has the advantage of improved utilization of light compared to general lighting by concentrating on specific task areas.

Local or supplementary lighting provides lighting over only a small task area and its immediate surrounding area. It is an economical means of providing higher levels of illumination where needed. Local lighting by itself, however, is seldom desirable. It should be used in conjunction with general lighting to prevent excessive changes in adaptation.

TYPICAL TASK ILLUMINATION LEVELS

Recommended task illumination levels for a large variety of work environments are presented in the IES Lighting Handbook. To illustrate the range of these values, minimum values of illumination for a few industrial scenarios are shown in table 8.

<table>
<thead>
<tr>
<th>Area</th>
<th>High-precision inspection</th>
<th>Office</th>
<th>Steel rolling mills</th>
<th>Machine shops</th>
<th>Rough assembly</th>
<th>Sawmill, saw area, transfer tower</th>
<th>Coal tips and loading stables, breaking, screening, and loading</th>
<th>Railroad yards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,000</td>
<td>75</td>
<td>95</td>
<td>75</td>
<td>95</td>
<td>10</td>
<td>10</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Defining appropriate illumination levels for underground coal mines is a complex task. In the early 1970's, the Bureau of Mines sponsored two studies to determine recommended levels of background luminance for underground coal mines. The following two major conclusions drawn from these studies, which had significant importance in the establishment of the current regulations.

The threshold for photopic vision is approximately 0.05 ft-L. The luminance in any position of the visual field within 50° of the fovea (center of vision) should exceed 0.05 ft-L.

In one of the studies, 90 mining tasks were evaluated (visibility measurements taken) to determine the minimum luminance required for mine workers to see adequately. A sampling of results is shown in table 9 along with the illuminance provided by the central portion of a miner's cap lamp. Of 90 evaluated tasks, 16 pct required luminance levels greater than 0.07 ft-L. The maximum luminance required by a task was 0.819 ft-L and the minimum required was 0.004 ft-L. In most cases, illumination provided by direct viewing with a cap lamp was in excess of the minimum required for the tasks. Note that these values are a small, but statistical sampling. The luminance...
required for a specific task can vary widely because of variations in task and background reflectances that can occur.

The outcome of these studies and subsequent refinements have resulted in the current lighting regulations published in the Code of Federal Regulations, Title 30, parts 75.1719 through 75.1719-4. The code specifies that the luminous intensity (surface brightness) of surfaces that are in a miner's normal field of vision of areas in working places that are required to be lighted shall not be less than 0.06 ftl when measured in accordance with part 75.1719-3. The code also specifies that, each person who goes underground shall be required to wear an approved personal cap lamp or an equivalent portable light.

Current regulations often require the use of a complex combination of general, localized general, and supplementary types of lighting. The need for these systems has evolved as a result of numerous field evaluations and studies conducted by the Bureau of Mines and MSHA. The regulations also address factors including glare, equipment reflectance requirements, luminance design, and methods for illumination measurement. The regulations are discussed in detail in IC 9074.

COLOR IN MINING

As noted in chapter 2, a color must be present in a light source if it is to be seen in the light reflected by an object. White light comes from a source (lamp) emitting radiant energy relatively balanced in wavelengths across the visible spectrum and permits all colors to be seen. Many light sources, however, emit only specific wavelengths in the visible spectrum. For example, high-pressure sodium lamps, often used in coal mines because of their high efficiency in converting electrical energy to light energy, emit wavelengths in the yellow and orange part of the spectrum. Because of this, color rendition is limited. Coal, even under white light, has an indistinguishable hue. Therefore, accurate color rendition when viewing coal itself is usually not important. But color rendition is important for viewing of signs, color-coded wiring, etc. In general, when these tasks are being performed, miners are wearing tungsten-filament cap lamps that emit a white light. Typically, the lamp is the primary source of light illuminating the significant colored objects, and it is acceptable to use a nonwhite source for general lighting in such instances. However, there may be cases where nonwhite sources would be undesirable.

Using paints and surface coatings of colors at the points of high sensitivity on the spectral efficiency curve can, under certain conditions, make an object more visible. For photopic visual conditions, paints in the green to blue band might be used (see figure 34). When selecting paints to be used to increase visibility, keep in mind that total reflectivity of the paint is generally a more important factor than color. In most instances, a highly reflective paint is preferable, regardless of color.

Colors are, or can become, associated with certain meanings. Thus, color is often used as a means of coding, or signaling. When using color codes, it is important to be consistent. Workers are more likely to respond automatically in the event of an accident if hazards are uniformly color-coded. Table 10 contains some recommended color codes for signs and for painting equipment where caution or signaling must be exercised in handling.

<table>
<thead>
<tr>
<th>Task</th>
<th>Task description</th>
<th>Min background, ftl</th>
<th>From cap lamp, ftl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate reset switch</td>
<td></td>
<td>0.019</td>
<td>14.9</td>
</tr>
<tr>
<td>Read methane meter</td>
<td></td>
<td>2</td>
<td>212</td>
</tr>
<tr>
<td>Watch leading arm (header)</td>
<td></td>
<td>2</td>
<td>212</td>
</tr>
<tr>
<td>Locate base of coal face</td>
<td></td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Locate corner of loading head</td>
<td></td>
<td>12</td>
<td>330</td>
</tr>
<tr>
<td>Detect empty conveyor on shuttle car</td>
<td></td>
<td>4</td>
<td>5,890</td>
</tr>
<tr>
<td>Locate red mark on rib</td>
<td></td>
<td>6</td>
<td>367</td>
</tr>
<tr>
<td>Track shuttle car to conveyor head</td>
<td></td>
<td>4</td>
<td>2,100</td>
</tr>
<tr>
<td>Detect track cable against rib</td>
<td></td>
<td>30</td>
<td>341</td>
</tr>
<tr>
<td>Align hose with rib</td>
<td></td>
<td>10</td>
<td>212</td>
</tr>
<tr>
<td>Locate red order against roof</td>
<td></td>
<td>19</td>
<td>212</td>
</tr>
<tr>
<td>Detect bits on cumber chain</td>
<td></td>
<td>13</td>
<td>367</td>
</tr>
<tr>
<td>Align arm on roof bolt</td>
<td></td>
<td>4.5</td>
<td>367</td>
</tr>
<tr>
<td>Position front of cutter</td>
<td></td>
<td>5</td>
<td>2,100</td>
</tr>
<tr>
<td>Track face drill bit to rib</td>
<td></td>
<td>12</td>
<td>367</td>
</tr>
<tr>
<td>Locate new bit</td>
<td></td>
<td>5</td>
<td>2,100</td>
</tr>
<tr>
<td>Locate miner conveyor</td>
<td></td>
<td>20</td>
<td>0.017</td>
</tr>
</tbody>
</table>

When using color codes, be sure the dimension of the color-coded area subtends at least a 0.5° solid angle. This requires assumptions to be made on viewing distance (fig. 50). Smaller dimensions may make the color indistinguishable. This guideline may be applied to the marking of escape ways.

Imagine that there is a light flashing on and off at a frequency of N or hertz cycles per second. If the frequency N is greater than the critical fusion frequency, the impression of perfectly constant luminance is perceived. The eyes

Table 9.—Sample of measured coal mine task luminance requirements

<table>
<thead>
<tr>
<th>Task dis-</th>
<th>Task description</th>
<th>Min background, ftl</th>
<th>From cap lamp, ftl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate reset switch</td>
<td></td>
<td>0.019</td>
<td>14.9</td>
</tr>
<tr>
<td>Read methane meter</td>
<td></td>
<td>2</td>
<td>212</td>
</tr>
<tr>
<td>Watch leading arm (header)</td>
<td></td>
<td>2</td>
<td>212</td>
</tr>
<tr>
<td>Locate base of coal face</td>
<td></td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Locate corner of loading head</td>
<td></td>
<td>12</td>
<td>330</td>
</tr>
<tr>
<td>Detect empty conveyor on shuttle car</td>
<td></td>
<td>4</td>
<td>5,890</td>
</tr>
<tr>
<td>Locate red mark on rib</td>
<td></td>
<td>6</td>
<td>367</td>
</tr>
<tr>
<td>Track shuttle car to conveyor head</td>
<td></td>
<td>4</td>
<td>2,100</td>
</tr>
<tr>
<td>Detect track cable against rib</td>
<td></td>
<td>30</td>
<td>341</td>
</tr>
<tr>
<td>Align hose with rib</td>
<td></td>
<td>10</td>
<td>212</td>
</tr>
<tr>
<td>Locate red order against roof</td>
<td></td>
<td>19</td>
<td>212</td>
</tr>
<tr>
<td>Detect bits on cumber chain</td>
<td></td>
<td>13</td>
<td>367</td>
</tr>
<tr>
<td>Align arm on roof bolt</td>
<td></td>
<td>4.5</td>
<td>367</td>
</tr>
<tr>
<td>Position front of cutter</td>
<td></td>
<td>5</td>
<td>2,100</td>
</tr>
<tr>
<td>Track face drill bit to rib</td>
<td></td>
<td>12</td>
<td>367</td>
</tr>
<tr>
<td>Locate new bit</td>
<td></td>
<td>5</td>
<td>2,100</td>
</tr>
<tr>
<td>Locate miner conveyor</td>
<td></td>
<td>20</td>
<td>0.017</td>
</tr>
</tbody>
</table>
Glare is addressed in this chapter from an engineering standpoint. Techniques to assess the merits of alternative illumination system concepts involving measurements and computations are presented. Application of specific methods to eliminate or reduce glare are presented in IC 9074.

Glare is a very significant factor in determining the design of underground coal mine illumination systems. It is the most frequent cause of complaint and dissatisfaction with mine illumination systems, and it may detract significantly from the benefit of those systems. It is so prevalent in the mine environment because luminaires must often be located close to the mine worker’s line of sight and they are viewed against a very dark background, which results in a high contrast between the light source and its surroundings.

Glare is a visual sensation that can result in annoyance, discomfort, loss in visual performance, or reduction of visibility. Some degree of glare is constantly experienced in an illuminated environment. Out of doors, the Sun can be an extreme source of glare. The headlights of an oncoming car at night is a classic glare example. Less obviously, when driving at night, even the dashboard lights inside the car are a source of glare since they reduce the ability to see the road and can also be a distracting source of discomfort.

Glare is a complex subject. Its effect on visibility, visual performance, and comfort is dependent on many variables including the brightness of the glare source, general luminance level of the environment, sensitivity of an individual to glare, location of the glare source, and nature of the visual task. Unfortunately, no simple method is currently available to determine the acceptability of an illumination system from the standpoint of glare when light sources are in the field of view. The methods presented in this chapter are solely for the purpose of providing a means for the designer to determine the relative merits of alternative design approaches to eliminate or reduce glare.

Flicker can cause an optical illusion, known as the "stroboscopic effect," which could present a significant hazard. It occurs when viewing shiny, rotating objects (e.g., gathering heads on loading machine) illuminated by the fluorescent lights operating above the critical fusion frequency. Under certain combinations of lamp flicker and rotational speed, the stroboscopic effect causes the object to appear to be standing still, or moving slowly in the opposite direction. This effect can be prevented by taking proper measures in design of the lamp circuitry and/or selection of appropriate lamps.

Flicker affects the apparent brightness of a light source. At high flashing frequencies, the perceived brightness of the source is equal to the proportion of time the light was on. For example, with a 1:1 on-off ratio at high flashing frequency, the apparent brightness equals one-half of the brightness that would be perceived if the light were burning steadily. At lower flashing frequencies (2-20 Hz) however, flickering enhances brightness. A source flashing at a low frequency appears brighter than if the light source was constant. This is referred to as brightness enhancement or the Bartley effect.

Flickering lights are used as warning devices in coal mines. When this is the case, the flash frequency must be less than 5 Hz. A frequency of 1 Hz is common. It is best if the on-off time ratio is low (e.g., 0.2 s on and 1.0 s off).

Color can be used on warning lights. A green light is easier to detect, while a red one is slightly harder to detect than a white signal, although the difference among all three colors is not very significant. A frequent problem is that the signal lights operate at a low frequency above the critical fusion frequency, the apparent brightness equals one-half of the brightness that would be perceived if the light was on. For example, with a 1:1 on-off ratio at high flashing frequency, the apparent brightness equals one-half of the brightness that would be perceived if the light were burning steadily. At lower flashing frequencies (2-20 Hz) however, flickering enhances brightness. A source flashing at a low frequency appears brighter than if the light source was constant. This is referred to as brightness enhancement or the Bartley effect.

Flicker can cause an optical illusion, known as the "stroboscopic effect," which could present a significant hazard. It occurs when viewing shiny, rotating objects (e.g., gathering heads on loading machine) illuminated by the fluorescent lights operating above the critical fusion frequency. Under certain combinations of lamp flicker and rotational speed, the stroboscopic effect causes the object to appear to be standing still, or moving slowly in the opposite direction. This effect can be prevented by taking proper measures in design of the lamp circuitry and/or selection of appropriate lamps.

Flickering lights are used as warning devices in coal mines. When this is the case, the flash frequency must be less than 5 Hz. A frequency of 1 Hz is common. It is best if the on-off time ratio is low (e.g., 0.2 s on and 1.0 s off).

Color can be used on warning lights. A green light is easier to detect, while a red one is slightly harder to detect than a white signal, although the difference among all three colors is not very significant. A frequent problem is that the signal lights operate at a low frequency above the critical fusion frequency, the apparent brightness equals one-half of the brightness that would be perceived if the light were burning steadily. At lower flashing frequencies (2-20 Hz) however, flickering enhances brightness. A source flashing at a low frequency appears brighter than if the light source was constant. This is referred to as brightness enhancement or the Bartley effect.

Flicker can cause an optical illusion, known as the "stroboscopic effect," which could present a significant hazard. It occurs when viewing shiny, rotating objects (e.g., gathering heads on loading machine) illuminated by the fluorescent lights operating above the critical fusion frequency. Under certain combinations of lamp flicker and rotational speed, the stroboscopic effect causes the object to appear to be standing still, or moving slowly in the opposite direction. This effect can be prevented by taking proper measures in design of the lamp circuitry and/or selection of appropriate lamps.

Flicker affects the apparent brightness of a light source. At high flashing frequencies, the perceived brightness of the source is equal to the proportion of time the light was on. For example, with a 1:1 on-off ratio at high flashing frequency, the apparent brightness equals one-half of the brightness that would be perceived if the light were burning steadily. At lower flashing frequencies (2-20 Hz) however, flickering enhances brightness. A source flashing at a low frequency appears brighter than if the light source was constant. This is referred to as brightness enhancement or the Bartley effect.

Often, flashing lights are used as warning devices in coal mines. When this is the case, the flash frequency must be less than 5 Hz. A frequency of 1 Hz is common. It is best if the on-off time ratio is low (e.g., 0.2 s on and 1.0 s off).

Color can be used on warning lights. A green light is easier to detect, while a red one is slightly harder to detect than a white signal, although the difference among all three colors is not very significant. A frequent problem is that the signal lights operate at a low frequency above the critical fusion frequency, the apparent brightness equals one-half of the brightness that would be perceived if the light were burning steadily. At lower flashing frequencies (2-20 Hz) however, flickering enhances brightness. A source flashing at a low frequency appears brighter than if the light source was constant. This is referred to as brightness enhancement or the Bartley effect.

Flicker can cause an optical illusion, known as the "stroboscopic effect," which could present a significant hazard. It occurs when viewing shiny, rotating objects (e.g., gathering heads on loading machine) illuminated by the fluorescent lights operating above the critical fusion frequency. Under certain combinations of lamp flicker and rotational speed, the stroboscopic effect causes the object to appear to be standing still, or moving slowly in the opposite direction. This effect can be prevented by taking proper measures in design of the lamp circuitry and/or selection of appropriate lamps.

Figure 50.—Guideline for minimum dimension of letter or marking width to insure recognition of color.

Glare is a visual sensation that can result in annoyance, discomfort, loss in visual performance, or reduction of visibility. Some degree of glare is constantly experienced in an illuminated environment. Out of doors, the Sun can be an extreme source of glare. The headlights of an oncoming car at night is a classic glare example. Less obviously, when driving at night, even the dashboard lights inside the car are a source of glare since they reduce the ability to see the road and can also be a distracting source of discomfort.

Glare is a complex subject. Its effect on visibility, visual performance, and comfort is dependent on many variables including the brightness of the glare source, general luminance level of the environment, sensitivity of an individual to glare, location of the glare source, and nature of the visual task. Unfortunately, no simple method is currently available to determine the acceptability of an illumination system from the standpoint of glare when light sources are in the field of view. The methods presented in this chapter are solely for the purpose of providing a means for the designer to determine the relative merits of alternative design approaches to eliminate or reduce glare.
visual task evaluator, are available to assess the acceptability of illumination systems. It is hoped that these and future studies will lead to improved methods to design and evaluate coal mine illumination systems. There are three types of glare: disability, discomfort, and reflected. Only the first two of these types will be discussed because of their importance in the design of underground mine lighting systems. Studies to compare the glare of alternative illumination concepts using quantitative techniques are presented along with example calculations. Application of those glare reducing techniques from the standpoint of system design is further discussed in IC 9074.

DISABILITY GLARE

Disability glare is defined as glare resulting in reduced visual performance and visibility. Discomfort glare can accompany disability glare, but discomfort glare is a measure of discomfort or annoyance only. It is important to realize that these two types of glare are distinctly different phenomena. Disability glare is caused by the action of stray light, which enters the eye and scatters within. It causes a "welling luminance" over the retina which, in turn, has the effect of reducing the perceived contrast of the objects being viewed. This effect can be demonstrated very clearly if one positions oneself in a location where a luminaire is between you and the rib or face. Observe how well you can see a detail at the rib. Now, place a shield between yourself and the luminaire in a manner that does not change the illuminance on the face and again observe how well you can see the object. Visibility of the detail will likely improve. This difference in visibility is a measure of level of disability glare. In conducting such an experiment, it is important to realize that one should not "blame" the luminaire for a loss of visibility. The engineering feat is to minimize its effect while maintaining adequate net visibility levels.

Although one generally associates discomfort with the term glare, discomfort does not necessarily accompany disability glare. Imagine standing on a sunny day near the base of a hill a few hundred yards or so from the opening of a tunnel into the hillside. The tunnel appears black and no detail within the tunnel can be discerned. One could, however, view the tunnel opening through a tube and, if the tube was long enough, details within the tunnel opening could be perceived. The effect of the tube is to reduce the amount of stray light that enters the eye and ultimately causes a veil of the retinal image of the tunnel. In this example, disability glare exists without noticeable discomfort. This can also be the case with underground mine lighting systems. One should not rely on a complaint of discomfort as stimulus to investigate a glare problem.

The effects of disability glare have been quantified through extensive empirical study. The following are basic equations that can be used to evaluate this change in visibility. When a glare source is not in the field of view, the perceived contrast between the detail and the background luminance, as discussed in chapter 3, is represented by the equation

\[C' = \frac{L_d - L_b}{L_b} \]

where \(C' \) is the apparent contrast of the detail with the presence of a glare source. This expression reduces to

\[C' = \frac{L_d - L_b}{L_b} \]

Expressed in this form, one can see that since \(L_b \) is in the denominator its effect is to reduce the apparent contrast. As explained in chapter 3, this reduces the object's visibility level.

To quantify this relationship, a way of establishing the magnitude of \(L_b \) is needed. Extensive empirical work has shown the following relationship to be adequately descriptive of situations where a single glare source is present.

\[L_b = K \cdot E^{0.2} \]

where \(E \) is the illumination, in footcandles, produced by the glare source in the pupil or a plane perpendicular to the observer's line of sight; \(K \) is the angle, in degrees, between the glare source and the line of sight, and \(K \) is a proportionality constant.

The relationship shows that \(L_b \) is directly proportional to \(E \) and inversely proportional to \(K \). As a practical matter, \(E \) can be calculated from luminaire intensity curves, based on the inverse square law presented in chapter 3, by

\[E = \frac{L_d}{D^2} \]

If \(E \) is based on direct illumination (footcandle) measurements, the photopic should be oriented to the luminaire and the cosine law applied to calculate \(E \):

\[E = \frac{L_d}{D^2} \cos \theta \]

Substituting these relationships in the expression for the veiling luminance, \(L_v \), we have

\[L_v = L_b \]

where \(L_b \) is the background luminance, in footlamberts. For the purposes of this discussion it is evident that the effects of disability glare are greatest for high intensity luminaires that are close to the observer and, also, close to the line of sight. As the luminaire is moved away from the line of sight, the disability glare effect decreases since \(L_b \) is inversely proportional to both \(E \) and \(D^2 \).

Disability Glare Relationships

Figure 51: Geometric parameters for disability glare.
As noted previously, the physiological basis for disability glare is light scatter within the ocular mediums of the eye. As might be expected, this will vary from one individual to another. Accordingly, the value of K has carefully been established for the "average" observer but, as discussed, rather wide variances exist. There is a significant relationship between the value of K and the age of the observer. That is, physiological changes that occur as a person ages increase light scatter within the ocular mediums and raise L,. Accordingly, the value of K has carefully been established for the "average" observer but, as discussed, rather wide variances exist. There is a significant relationship between the value of K and the age of the observer. That is, physiological changes that occur as a person ages increase light scatter within the ocular mediums and raise L,. To accommodate this, K may be defined as a function of two variables:

\[K = K_{z0} \times K_{\alpha} \]

Where Kz0 is the mean value for normal 20-yr-old observers. K, is a multiplier that adjusts the value of K for the age of the observer. The relationship of K, to age is shown in figure 52. These are average values of K, for each age group. As can be seen, K, is constant at 1.0 up to an age of approximately 42 yr and then rapidly increases.

The mean value of Kz0 is a function of the background luminance. For luminance in the range of 0.06 fL, Kz0 is 17.6. For normal room lighting Kz0 is equal to approximately 10. The higher value of Kz0 in low luminances is due to the larger pupil size allowing more stray light to enter the eye.

Figure 53 illustrates the variation in K as a function of age and the variation in K within age groups when the background luminance is 0.06 fL. These data indicate that disability glare can vary widely among individuals in the particular age group and the values of K for various age groups overlap by large amounts. Note that some individuals in the 20- to 30-yr age group can be more sensitive to glare than some in the 70- to 80-yr age group.

Where multiple glare sources are in the field of view, experiments have shown that it is valid to represent the veiling luminance as the sum of the veiling luminance from each source:

\[L = K_{x} E_{p} (0.25 + \sum K_{x} E_{p} (0.25) / \sum K_{x} E_{p}) \]

These equations provide a useful tool for the illumination system designers when their objectives are to compare alternative illumination system concepts from the standpoint of minimizing disability glare. The following example illustrates their application.

Application of the Disability Glare Relationships

The machine depicted in figure 54 is a continuous miner for which five lighting arrangements have been established, each capable of providing the minimum required 2-fc face and roof illumination. In each system, a fluorescent luminaire is a disability glare source along one of the operator's principal lines of sight. Each of these options will be compared from the standpoint of minimizing the visibility of a detail at the coal face.

Measured values of the important photometric parameters for each of the concepts are given in table 11. To

![Figure 52](image_url)
Figure 52. Disability glare constant age factor.

![Figure 53](image_url)
Figure 53. Mean and distribution of the disability glare constant, K, as a function of age.

![Figure 54](image_url)
Figure 54. Example of disability glare analysis.
evaluates these alternatives, the computed threshold con-
trast, \(C_{\text{task}} \), of the object on the coal face will be compared to an assumed threshold contrast criteria profile (the visi-
bility reference function, see figure 47). The visibility
threshold reflectance of the object, \(\rho_d \), at the coal face will also be computed and compared for each concept.

The contrast between the object at the coal face and the coal face is expressed as
\[
C_{\text{task}} = L_d - L_\text{coal} \rho_d \rho_\text{coal} E_\text{coal}.
\]

The reflectance of the background (coal face) is assumed to be 4 pct.

Concept

The illuminance, \(E_\text{glare} \), impinging on a plane normal to the line of sight of the machine-operator is
\[
E_\text{glare} = E_\text{coa} \cos \theta_\text{glare}.
\]

When the value for general luminance is in the range of 0.08 to 0.081, the glare constant, \(K \), equals 17.6. The resulting veiling luminance is
\[
L_v = K L_d^{0.4} = 17.6 L_d^{0.4}.
\]

The apparent contrast of the perceived task (object against the coal face) is
\[
C' = L_d / L_v = L_d / K L_d^{0.4} = 1 / K L_v^{0.4}.
\]

Therefore the apparent contrast is
\[
C' = L_d / (L_d / K L_v^{0.4}) = K L_v^{0.4}.
\]

Using this procedure, values of threshold contrast, \(C^* \), and threshold object reflectance, \(\rho^* \), for the four other lighting concepts can now be computed and compared. Note that these computed values are not meaningful in themselves because of the many assumptions and simplifica-
tions of the illuminated environment. However, on a com-
parative basis, the values are meaningful in determining the relative effect of the varied parameters on operator visibility. The four alternate concepts shown in figure 54 are described as follows.

Concept b

The fluorescent luminaire was repositioned (rotated 90°). The change reduced the illumination from the glare source on the operator.

Concept c

The fluorescent luminaire was repositioned by lowering it within the machine structure. This change increased the angle, \(\theta_\text{glare} \), but did not change the illumination on the machine operator when compared with concept b.

Concept d

The lighting arrangement is the same as in concept a, however, a semitransparent glare shield has been added so that the illumination impinging on the operator’s eye is reduced by 95 pct.

Concept e

The lighting arrangement is the same as in concept d with the exception that additional headlamps were added, which doubled the average face illumination level com-
pared to the other four concepts.

As shown in table 12, concept e results in the poorest visibility. Visibility is improved progressively with concepts b through e.

<table>
<thead>
<tr>
<th>Concept</th>
<th>(L_d)</th>
<th>(C_{\text{task}})</th>
<th>(\rho_d)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.52</td>
<td>0.18</td>
<td>0.126</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>0.63</td>
<td>0.16</td>
<td>0.126</td>
<td>5</td>
</tr>
<tr>
<td>c</td>
<td>0.50</td>
<td>0.16</td>
<td>0.126</td>
<td>4</td>
</tr>
<tr>
<td>d</td>
<td>0.50</td>
<td>0.16</td>
<td>0.126</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>0.48</td>
<td>0.16</td>
<td>0.126</td>
<td>1</td>
</tr>
</tbody>
</table>

General methods that the designer can utilize to reduce or eliminate disability glare and its adverse effect on visi-
bility follow.

Remove the glare source completely from the field of view or shield it from view, preferably with an opaque glare shield. The advantage of shielding is shown when comparing the threshold object reflectances for concepts a and d. Adding the glare shield to concept a reduced the required object reflectance needed for visibility by 0.126 to 0.082.

Reduce the glare from the glare source that impinges on the observer as much as possible. Consider alternative luminaire types and orientations that mini-
mize the illuminance. Note the position of glare source in concept b significantly reduced the glare illuminance com-
pared with the same luminaire in concept a.

Place luminaires as far from principal lines of sight as possible. Veiling luminance values are reduced signifi-
cantly as the angle, \(\theta_\text{glare} \), is increased since \(L_v \) is a function of \(\theta_\text{glare} \).

Note that when the angle was increased from 15° to 30° in concepts b and c, \(L_v \) was reduced from 0.12 to 0.026

\(L_v \). As \(\theta_\text{glare} \) approaches zero, veiling luminance values become extremely high. These values are considered valid for angles of 8° as low as 1° as long as the source does not impinge on the true line of sight.

Increase the illuminance of the task object and back-
ground. For example, in concept e the task illumination was doubled as compared with illumination in concept d and the threshold reflectance of the object was reduced.
Discomfort glare is a sensation of annoyance or discomfort glare is a phenomenon distinctly different from disability glare. Results from two coal mine illumination surveys conducted in 1979 indicated that discomfort glare is a major source of dissatisfaction with underground coal mine illumination systems. A recent Bureau study confirmed that, from the standpoint of discomfort glare, underground coal mine illumination systems can be very uncomfortable. In this study, discomfort glare was measured in a simulated mine on various illumination systems mounted on a continuous miner and roof bolting machine.

The results of the study also present suggested modifications to the standard equations for evaluating discomfort glare. These modified equations are presented in this chapter. The basic relationships for quantitative discomfort glare analysis are outlined in the following discussion and a suggested method to evaluate and compare alternative illumination systems for the purpose of minimizing discomfort glare is presented. This method does not predict whether a particular design is acceptable from the standpoint of discomfort glare. To determine how much discomfort glare is acceptable is a complex task in underground coal mines since the overall benefit of improved visibility may at times outweigh the adverse effect of discomfort glare.

For example, headlamps on continuous miners can intermittently impose on the mine worker. As in the case of disability glare analysis, the presented method of computing discomfort glare is solely for the purpose of providing the designer with a method of comparing the merits of alternative design approaches. The absolute values of computed discomfort glare are not precise because of assumptions that must be made in the analysis. These assumptions are discussed at the end of this chapter.

Discomfort Glare Equations

The following method of discomfort glare analysis is based on the IES visual comfort probability method. The standard equations of this procedure have been modified to incorporate modifications recommended in a recent Bureau study that evaluated discomfort glare in the low background luminance range encountered in underground coal mines.

Single Glare Source

A single glare source is a source of light that impinges more on the line of sight of the observer than on the background. The glare source and background are visible to the observer as indicated in figure 55. The empirical definition of the glare source is that subtends the glare source and extends to the observer as indicated in figure 55. A, the projected area of glare source in the direction of the observer, in square feet.

![Figure 55](https://via.placeholder.com/150)

The geometric parameters involved in discomfort glare evaluation are depicted in figure 55. For a single glare source the fundamental discomfort glare formula is

\[M = \frac{LQ^2}{d^2} \]

where \(M \) is the index of sensation, \(L \) is the source luminance, \(Q \) is a function of the solid angle \(\theta \) that subtends the glare source, and \(d \) is distance from the observer to the glare source, in feet.

The empirical definition of \(Q \) is:

\[Q = \frac{20.42 + 1.52u}{0.075} \]

where \(u = \frac{A}{\pi d^2} \).

The method of discomfort glare analysis presented in this chapter is a suggested method to evaluate and compare alternative illumination systems for the purpose of minimizing discomfort glare.
P is the position factor. It accounts for the relative glare sensation dependent on the position of the glare source with respect to the line of sight. Position factors for glare sources above the line of sight are given in figure 56. V and L are the vertical and lateral displacements of the glare source from the line of sight and R is the distance from the observer to the glare source as illustrated in figure 55. Position factors for the entire visual field below the line of sight are not available with the exception of one location 20° below the center of the line of sight. The comparative values of P for 20° below and 20° above the line of sight are 1.58 (below) and 1.96 (above).

Until data become available for position factors below the line of sight, a suggested approximation for \(P_{below} \) would be to invert the \(P_{above} \) chart and reduce the position factors for \(V/R \) and \(L/R \) values by a factor of \(1.58/1.96 \) or 0.8.

F is the field luminance. In the development of the discomfort glare equation, field luminance was precisely defined as the surface brightness of an 80-in\(^2\) uniformly illuminated spherical background. Potential glare sources were evaluated by placing sources of light against this background. In the actual environment the field luminance is not precisely defined. In general, it should be a weighted average of the various backgrounds in the field of view and should include the glare sources as contributors to determine an equivalent field luminance. Three techniques to define the approximate value of field luminance follow. The first two are direct measurement techniques and the third is a computational method that provides a means to evaluate alternative designs without necessarily constructing laboratory simulations. While the derived value of F will differ for each method, if the same method is used to compare alternative lighting concepts, error will be minimized.

Method 1.—A measure of field luminance is the illuminance on the observer's eyes on a plane that is normal to his or her line of sight. This method of measuring field luminance is shown in figure 57A. Note that although the measurement is in footcandles, if one assumes the background to be a perfectly diffuse reflector, this value is also the field luminance, in footlamberts. The meter must be cosine corrected to accommodate for the significant luminances that impinge on it from various angles. Remember the meter measures the lumens per square foot impinging on it from all directions over a solid angle of 2\(\pi \) sr (a hemisphere), Since a definition of the footlambert is a diffuse source that also emits \(1 \) lm/ft\(^2\), one can imagine the measurement equivalent to that of a uniform diffuse field in front of the observer. Note that since the acceptance angle of the photometer is \(180° \) (2\(\pi \) sr) and the field of view of an observer is less (approximately 5 sr), this approach introduces some error. Also, a meter with good cosine correction over all incident angles illumination is required.

Method 2.—With this method, a diffuse reflecting card of known reflectance is placed at the observer's location as shown in figure 57B. The luminance of the card surface that also emits \(1 \) lm/ft\(^2\), one can imagine the measurement equivalent to that of a uniform diffuse field in front of the observer. Note that since the acceptance angle of the photometer is \(180° \) (2\(\pi \) sr) and the field of view of an observer is less (approximately 5 sr), this approach introduces some error. Also, a meter with good cosine correction over all incident angles illumination is required.

Method 3.—This procedure permits the calculation of field luminance by averaging the various luminances over the visual field of the eye. The following approximate equation can be used: \(F = L_{background} + L_{glare} \cos \theta \) for \(\theta = 1/5 \).

\(L_{background} \) is the luminance of the background, in footlamberts; \(L_{glare} \) is the luminance of each glare source, in footlamberts; \(\theta \) is the angle subtended by each area, in radians; and \(\theta \) is the angle between the observer's line of sight and the glare source. The constant, 5, is the approximate total visual field of the eye in steradians and \(\omega_{background} + \omega_{glare} = 5 \) sr.
The discomfort glare rating (DGR value) for a scene that consists of multiple luminaries can be computed using the following empirical equations:

\[\text{DGR} = \sum_{i=1}^{n} \text{L}_i \cos \theta_i \cdot \frac{\text{A}_i}{R_i^2} \]

where \(\text{L}_i \) is the source brightness, \(\theta_i \) is the angle of view, \(\text{A}_i \) is the area of light emitting surface, and \(R_i \) is the distance from the observer to the source. The \(\text{DGR} \) for a scene can then be compared to the discomfort glare rating (BCD value) for a scene.

Multiple Glare Sources

The discomfort glare caused by multiple glare sources can be computed using the following equation:

\[\text{DGR}_{\text{multiple}} = \sum_{i=1}^{n} \text{DGR}_i \]

where \(\text{DGR}_i \) is the discomfort glare rating for the \(i \)-th glare source. The \(\text{DGR}_{\text{multiple}} \) can be further refined by expanding the \(\text{L}_i \cos \theta_i \cdot \frac{\text{A}_i}{R_i^2} \) term to account for the individual glare sources.

Multiple Glare Sources

The discomfort glare rating (DGR value) for a scene that consists of multiple luminaries can be computed using the following empirical equations:

\[\text{DGR} = \sum_{i=1}^{n} \text{L}_i \cos \theta_i \cdot \frac{\text{A}_i}{R_i^2} \]

where \(\text{L}_i \) is the source brightness, \(\theta_i \) is the angle of view, \(\text{A}_i \) is the area of light emitting surface, and \(R_i \) is the distance from the observer to the source. The \(\text{DGR} \) for a scene can then be compared to the discomfort glare rating (BCD value) for a scene.

Visual Comfort Probability

There are no current established standards that specify maximum discomfort glare ratings for underground coal mine illumination systems. Results from the discomfort glare study sponsored by the Bureau, however, do provide DGR data that can be useful guidelines for the illumination system designer. This data is depicted in figure 58 where DGR values as calculated using the previously discussed theory are plotted versus VCP. VCP is the probability for mining population.

Figure 58.—Discomfort glare rating versus visual comfort probability for mining population.
Solution.—The field luminance at the helper station is approximately equal to the luminance impinging on the diffuse reflector, $F = R, 0.8(2.7) + 0.52(0.00690.2)$. Evaluating for the index of sensation, M, for each glare source, $M = LQlPF0.32$, where source luminance, $L = nER2$. For luminaire 1, $L = 1.52(0.00690.2)$. For luminaire 2, $L = 1.52(0.00690.2)$. For luminaire 1, $Q1 = 0.8(2.7) + 0.52(0.00690.2)$, which is 0.63, and $Q2 = 0.8(2.7) + 0.52(0.00690.2)$, which is 0.83.

Solving for position factor, P, for luminaire 1, $V/R = 0.8(2.7) + 0.52(0.00690.2)$, and for luminaire 2, $V/R = 0.8(2.7) + 0.52(0.00690.2)$.

The position factors, P, determined from figure 56 are $P1 = 0.73$, $P2 = 0.82$, and $P3 = 0.24$. (Note that K is the adjustment factor for sources below the line of sight.)

$M_1 = LQ1/P0.32$, $769(0.63/2.16(0.013))$ or 184 and $M_2 = 713(0.83/0.063/1.25(0.013))$ or 245. M_1 is equal to the sum of the individual glare indexes, $Mt = 429$. $DGR = M_1$ and $VCP = 1.010.2$ or 1.25.

The discomfort glare equations were originally developed for work environments typically encountered in offices, schools, etc., where luminaires are ceiling mounted and where the background luminance levels are far in excess of those encountered in coal mine illumination systems. Factors that limit the accuracy of this method when it is applied to underground mine illumination systems follow.

The field luminance is a complex function that, computed or measured, can be related to the basic laboratory measurements from which the glare equation was derived in an approximate manner only.

The equation for computing Mt is based on multiple luminaires in ceiling arrangements. This equation may not accurately represent multiple luminaires that occur when it is applied to underground mine illumination systems.

The discomfort glare analysis for a single glare source is shown in figure 59. The DGR for the scene as viewed by the helper in the indicated direction of sight is 298. This DGR value results in a VCP rating of 35 pt.

Limitations of the Discomfort Glare Analysis

The discomfort glare equations were originally developed for work environments typically encountered in offices, schools, etc., where luminaires are ceiling mounted and where the background luminance levels are far in excess of those encountered in coal mine illumination systems. Factors that limit the accuracy of this method when it is applied to underground mine illumination systems follow.

The field luminance is a complex function that, computed or measured, can be related to the basic laboratory measurements from which the glare equation was derived in an approximate manner only.

The equation for computing Mt is based on multiple luminaires in ceiling arrangements. This equation may not accurately represent multiple luminaires that occur when it is applied to underground mine illumination systems.
UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT

| Abbreviation | Unit of measure | To convert to- | Multiply by-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>candle</td>
<td>lux</td>
<td>1</td>
</tr>
<tr>
<td>c/in²</td>
<td>candle per square inch</td>
<td>lux per square meter</td>
<td>0.000645</td>
</tr>
<tr>
<td>c/s</td>
<td>cycle per second</td>
<td>lux</td>
<td>1</td>
</tr>
<tr>
<td>fc</td>
<td>footcandle</td>
<td>lux</td>
<td>10.76</td>
</tr>
<tr>
<td>ft²</td>
<td>square foot</td>
<td>lux</td>
<td>1</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
<td>lux</td>
<td>1</td>
</tr>
<tr>
<td>in</td>
<td>inch</td>
<td>lux</td>
<td>1</td>
</tr>
<tr>
<td>in²</td>
<td>square inch</td>
<td>lux</td>
<td>1</td>
</tr>
<tr>
<td>lm</td>
<td>lumen</td>
<td>lux</td>
<td>1</td>
</tr>
<tr>
<td>lm/ster</td>
<td>lumen per steradian</td>
<td>lux per steradian</td>
<td>1</td>
</tr>
</tbody>
</table>

SELECTED CONVERSION FACTORS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Unit of measure</th>
<th>To convert to—</th>
<th>Multiply by—</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/in²</td>
<td>candle per square inch</td>
<td>candle per square meter</td>
<td>0.000645</td>
</tr>
<tr>
<td>c/m²</td>
<td>candle per square meter</td>
<td>footlambert</td>
<td>1,550</td>
</tr>
<tr>
<td>fc</td>
<td>footcandle</td>
<td>lux</td>
<td>10.76</td>
</tr>
<tr>
<td>fl</td>
<td>footlambert</td>
<td>lux</td>
<td>452.4</td>
</tr>
<tr>
<td>lx</td>
<td>lux</td>
<td>footcandle</td>
<td>0.092903</td>
</tr>
</tbody>
</table>