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a b s t r a c t  

This paper presents technical and application aspects of a new software suite, MCP (Methane Control and 
Prediction), developed for addressing some of the methane and methane control issues in longwall coal 
mines. The software suite consists of dynamic link library (DLL) extensions to MS-AccessTM, written in C++. 
In order to create the DLLs, various statistical, mathematical approaches, prediction and classification 
artificial neural network (ANN) methods were used. 

The current version of MCP suite (version 1.3) discussed in this paper has four separate modules that 
(a) predict the dynamic elastic properties of coal-measure rocks, (b) predict ventilation emissions from 
longwall mines, (c) determine the type of degasification system that needs to be utilized for given 
situations and (d) assess the production performance of gob gas ventholes that are used to extract 
methane from longwall gobs. These modules can be used with the data from basic logs, mining, longwall 
panel, productivity, and coal bed characteristics. The applications of these modules separately or in 
combination for methane capture and control related problems will help improve the safety of mines. 

The software suite’s version 1.3 is discussed in this paper. Currently, it’s new version 2.0 is available 
and can be downloaded from http://www.cdc.gov/niosh/mining/products/product180.htm free of 
charge. The models discussed in this paper can be found under ‘‘ancillary models’’ and under ‘‘methane 
prediction models’’ for specific U.S. conditions in the new version. 

1. Introduction 

Longwall mining is an underground mining method that max­
imizes coal production from coal beds that contain few geological 
discontinuities, such as faults, folds, and pinchouts. In longwall 
operations, a mechanical shearer progressively mines a large block 
of coal, called a panel, which is outlined with development entries or 
gate roads. The location of mining along the panel is known as the 
mining face. A schematic representation of a longwall panel is given 
in Fig. 1. Longwall mining is a continuous process in an extensive 
area, where the roof is supported temporarily with hydraulic 
supports, called shields, which protect the workers and the face 
equipment. As the coal is extracted, the supports automatically 
advance and the roof strata are allowed to cave behind the supports. 
The caving of immediate roof strata results in a stress relief in 
overlying formations, which fracture horizontally and vertically 
based on their mechanical strength (Karacan et al., 2007a). This 
caved or fractured zone is called the gob. Singh and Kendorski (1981) 
and Palchik (2003) analyzed the nature of strata disturbances due to 
longwall mining and predicted that the gob created by the collapse 
of immediate roof rocks can reach four to eleven times the thickness 

of the mining height depending on the strength and porosity of the 
overlying rocks (Fig. 1). 

The gob created by longwall mining allows methane that 
was once confined within the overlying strata (or reservoir) to 
release after fracturing and find a path through gob to flow into 
the mine environment. Emissions of methane into the mine atmo­
sphere and accumulation in a working area in the mine may cause a 
dangerous mixture of methane and air, which could lead to an 
explosion. Therefore, it is critical to be able to predict the magni­
tude of methane emissions and act with accurate and appro­
priate methane control measures before the problems become 
severe. 

Due to the large number of variables affecting potential emis­
sion sources, accurate prediction of the rate of methane flow into 
the working areas and eventually into the ventilation system is a 
complex problem. Current prediction models depend on accurate 
representation of the gob and the fractured strata that act as a gas 
reservoir in order to predict methane emissions, the amount of 
mine-air leakage into the gob, and effective control methods. The 
reservoir properties of the gob are extremely important, but 
difficult to compile and interpret (Lunarzewski, 1998; Karacan 
et al., 2007a). This behavior is a product of the challenges and 
unknowns related to the gob environment and its inaccessibility 
for direct measurements and inhomogeneity of the overburden. 
In this regard, knowledge of the dynamic elastic properties of roof 
rock and the overlying coal-measure formations is necessary to 
assess the size and thickness of the gob and fractured interval 

mailto:igq0@cdc.gov
http://www.cdc.gov/niosh/mining/products/product180.htm
http://www.cdc.gov/niosh/mining/products/product180.htm


and to estimate methane flow in these zones (Whittles et al., 
2006, 2007). 

Gob gas ventholes (GGVs) are commonly used to control 
methane emissions from the fractured strata (Fig. 1). 
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Fig. 1. Schematic representations of a longwall mine and the gob created behind the face (modified from Karacan, 2008). Arrows show the direction of air leakage and the 
methane paths in the gob. Side view shows the location of a gob gas venthole above the mined coal seam. 

They are a 
form of supplemental control that removes some methane from the 
gob, preventing it from entering the mine and increasing the load 
on the mine ventilation system. These ventholes are drilled from 
the surface to a depth that places them above the caved zone, so 
that they usually do not directly interact with the ventilation 
system. They are cased, and the bottom section of the casing is 
slotted and placed adjacent to the expected gas production zone 
(Palchik, 2005). GGVs can be equipped with exhausters, which 
provide suction to capture sufficient gas from the fractured zone 
before it migrates into the mine. They are drilled prior to under­
mining, from as little as a week or two to many months beforehand, 
and generally become productive after the mining-induced frac­
tures propagate under the well (Diamond, 1994; Karacan et al., 
2007b). To adequately design and locate GGVs, it is important to be 
able to predict the performance of potential GGVs with a variety of 
borehole and operational parameters. Despite improvements in 

analytical and numerical modeling approaches, it is still difficult to 
accurately predict methane production for GGVs. Predictions may 
underestimate actual gob gas venthole production by at least a 
factor of two. The key factor in this underestimation is the difficulty 
in incorporating a predictive approach with the many factors that 
affect venthole performance (Zuber, 1998). 

The main mine ventilation system must handle methane from a 
variety of sources, including methane that cannot be captured by 
supplemental methane controls like GGVs, and emissions due to 
the gassiness of the coal bed. The specific methane emissions from 
the coal bed vary based on operating parameters. Ventilation air 
that is provided to the mine must be increased for situations of high 
methane emissions to dilute them to safe levels before dangerous 
situations arise. Generally, it is economically feasible to handle 
specific emissions (total gas emission per unit amount of coal 
mined) up to 1000 ft3/ton with a well-designed ventilation system. 
At higher specific emission rates, however, it is difficult to stay 
within statutory methane limits using ventilation alone (Thakur, 
2006). This condition can adversely affect the safety of the under­
ground workforce. 



In case of high specific emissions, other supplemental methane 
control measures, such as degasification of the coal bed using surface 
vertical or horizontal wells, in-seam boreholes, or combinations of 
methods, are needed to mine the coal safely. It is advantageous, and 
economically more feasible, to determine the need for and the most 
effective type of degasification well ahead of mining by considering 
the various geological, coal bed, and mining parameters. The 
preferred methane recovery method depends on the mining para­
meters and the gassiness of the coal seam. In most cases, a 
combination of different drainage methods leads to the highest 
recovery of methane from the coal bed and its overlying strata before 
mining. Since drilling an array of vertical and horizontal boreholes is 
costly, a technical assessment prior to mine development is gen­
erally needed. Such an assessment requires both empirical and 
theoretical approaches. Since a comprehensive mine simulator that 
combines mining operation, coal bed reservoir, and methane 
production parameters does not currently exist, a technique that 
can identify the optimal degasification system for a given set of 
mining and geological parameters could be useful as a pre-planning 
tool prior to mining. 

This paper presents technical methodologies that provide proxy 
solutions to the above-mentioned challenges and demonstrates 
applications of a new software suite that can help mining opera­
tions control and capture methane from longwall mines. 

This software suite contains four main modules: 

•	 Coal measure rock properties—predicts dynamic elastic proper­
ties of coal-measure rock for better roof support and methane 
control. 

•	 Mine ventilation emission prediction—predicts ventilation air 
methane (VAM) emissions from longwall mines. 

•	 Degasification system selection—recommends the best dega­
sification choice. 

•	 Gob gas venthole production performance prediction—predicts 
performance of gob gas ventholes, both methane percent and 
production. 

2. Methane control and prediction (MCP) tool kit for 
longwall mines 

The current version (version 1.3, which is soon to be updated 
with version 2.0) of the methane control and prediction (MCP) 
software was developed with four modules under the MS AccessTM 

shell environment. Dynamic link libraries (DLLs) written in C++ are 
used to extend the analysis capabilities of MS AccessTM. 

The models were developed using a database of information about 
mines, including basic well log, mining, longwall panel, productivity, 
and coal bed characteristics. The resulting models take the same types 
of information as input parameters. In order to obtain good predic­
tions, MCP users need to enter the input parameters as realistically as 
possible for their situation. The modules are most accurate within the 
given min–max range, but there is some extrapolation flexibility in 
the calculation methods, allowing the modules to perform predictions 
beyond the minimum and maximum limits. When the entered data is 
beyond the limits, the program provides a warning and asks the user 
whether he/she would like to continue with the calculations. If the 
user approves, the program continues with its calculations. 

A mean value is also provided for input parameters. The mean 
values are not the arithmetic averages of minimum and maximum 
values, but are the statistically determined mean values from the 
database employed in developing the models. If the user does not 
have a particular input parameter available to them, the mean 
value can be inputted as an approximate representative condition 
for that parameter. 

One of the advantages of these software modules is the ability to 
perform sensitivity studies by varying the values of input para­
meters. Sensitivity studies were prepared in this paper and shown in 
Figs. 5, 8, 10, 11, and 13. These study figures were not created in MCP 
but with a separate program to better visually analyze the data. 

MCP runs with any version of MS AccessTM. Fig. 2 shows the 
modules that are available to the user in the MCP model selection 
window.

Fig. 2. Model selection window of the methane control tool kit software. 

 The following sections of the paper will be dedicated to 
describe each model individually and their applications for the 



interest of the geosciences and methane control/production com­
munity. The technical information related specifically to the 
development of each model will be kept at minimum and will 
be presented in the next section. Interested readers are referred to 
Karacan (2008, 2009a, 2009b, 2009c) for more detailed information 
on the development of these techniques, which utilize various 
statistical, mathematical approaches, prediction and classification 
artificial neural network (ANN) methods (Davis, 1986; Grima, 
2000; Grima et al., 2000; Hardy and Beier, 1994; Krishnamoorty, 
2006; Maier and Dandy, 2000). 

3. Brief technical information and applications of the 
prediction modules 

3.1. Module: coal measure rock mechanical properties prediction 

This module predicts the dynamic elastic properties of coal-
measure rock, which can help mining operations understand 
properties of the gob and make decisions about both roof support 
and methane control. 

The module calculates shear and elastic (Young’s) moduli of a 
formation using the information from basic gamma ray (GR) and 
density (DL) well logs. The shear modulus is the material’s response 
to shearing stresses, such as friction, while Young’s modulus is a 
material’s response to linear stresses and strains. Young’s modulus 
can also be used as an indicator of the stiffness of the material and 
of its yield strength. Higher values for Young’s modulus typically 
represent stiffer materials. 

Dynamic elastic properties can be directly measured by employing 
full wave sonic logs in the boreholes and by determining the transit 
times for primary and secondary waves in a full wave train. However, 
obtaining sonic logs from boreholes requires that the borehole be 
uncased and filled with water (Takahashi et al., 2006). Sonic logs may 
not be available in all situations, or may be too costly to obtain. 
Gamma ray and density logs are commonly run on exploration holes 
and are simple to conduct with few special conditions; therefore, this 
information is usually readily available. The presented approach and 
the associated software evaluates the ‘‘in-situ’’ rock elastic properties 
of coal-measure rocks for prediction purposes with reasonable 
accuracy (Table 1). 

Table 1 
Accuracy of performance measure for dynamic elastic properties. 

Performance measure Shear-modulus Young-modulus 

MSE 
Nominal MSE 
Mean Abs error (GPa) 
Min Abs error (GPa) 
Max Abs error (GPa) 
R 

0.0894 
0.3089 
0.2209 
0.0001 
1.0228 
0.8337 

0.2906 
0.1592 
0.4213 
0.0100 
2.0058 
0.9183 

These outputs are used for strata and fracturing 
and gob caving assessments for gas control and roof support. A 
statistical analysis was preformed including mean square error (MSE), 
Absolute error (Abs error) and R. 

The prediction method developed for the dynamic elastic 
properties of rocks is based on processing the GR and DL logs by 
Fourier transforms, fractal statistics (fGn-fractional Gaussian noise 
and fBm-fractional Brownian motion), and then modeling using 
radial basis functions (RBF). The development detail of this model is 
given in Karacan (2009a). 

3.1.1. Use and application of coal measure rock mechanical properties 
prediction module 

Fig. 3 shows the input screen for the coal measure rock 
mechanical property calculation model. The model uses the data 

from gamma ray and density logs as inputs and calculates shear 
modulus and Young’s modulus for the depth or strata of interest. 

Fig. 3. Input screen for coal measure rock mechanical properties prediction model. 

The gamma ray and density log values from exploration boreholes 
are used to determine coal quality but are also used to assess the 
strength and possible geological abnormalities of the ore and the 
surrounding strata. Fig. 4 shows the output table obtained after 
using this model. 

Fig. 4. Output screen for coal measure rock mechanical properties prediction 
model. 

Although not explicitly programmed in this software, the shear 
and elastic (Young’s) moduli can then be used to determine the 
bulk modulus and Poisson’s ratio using the following relations: 

E ¼ 2Gð1þsÞ 

E 
K ¼ 

3ð1-2sÞ 

where E is the Young’s modulus (GPa), G is the shear modulus (GPa), 
K is the bulk modulus (GPa) and s is the Poisson’s ratio (psi/psi). 

Fig. 5 shows the results of a sensitivity study in which gamma ray 
and density log values were used to obtain different values of Young’s 
and shear moduli. The figure shows that as the gamma ray reading 
increases, both Young’s modulus and shear modulus decrease, 
indicating the presence of clays and higher natural radioactivity. This 
data is consistent with weaker rocks, such as shales. Stronger rocks, on 
the other hand, exhibit higher values of Young’s modulus, density, and 
shear modulus and a lower gamma ray value, which is consistent with 
sandstones and limestones (Karacan, 2009d). These different kinds of 
overlying rock will impart different characteristics to the gob and have 
implications for methane control measures. Also, knowing the types 
of rocks and their elastic properties will improve the understanding of 
caving behavior of overlying formations and the basic requirements 
for better roof-support design. 



Fig. 5. Surface plot created from a graphics program showing shear modulus (GPa) 
and Young’s modulus (GPa) outputs obtained using different density (g/cc) and 
gamma ray (cps) input values. The data points are shown under the surface as dots. 

3.2. Module: mine ventilation emissions prediction 

This module uses an artificial neural network (ANN)-based 
methodology to predict ventilation emissions from longwall mines. 
Ventilation emissions data obtained from different U.S. mining 
regions were combined with corresponding coalbed properties, 
geographical information, longwall operation parameters, and pro­
ductivities to create a database. The database was analyzed using 
principle component analysis (PCA) to reduce complexity and to 
determine the most influencing variables for ANN modeling (Grima, 
2000). Table 2 shows the results of PCA after Kaiser’s varimax 
rotation and the most influencing parameters for ANN modeling. 

Table 2 
Factor loadings of the variables after rotating the principle component (PCR) matrix 
using Kaiser’s varimax rotation. Bold entries show the most influential variables in 
each PCR. 

Variables PCR 1  PCR 2  PCR 3  PCR 4  PCR 5 

Degasification 0.472 0.221 0.163 0.245 0.538 
Basin -0.287 -0.007 0.917 -0.136 -0.145 
State 0.002 0.049 0.951 -0.196 0.002 
Seam height 0.064 0.113 -0.093 0.925 -0.063 
Cut height 0.048 -0.027 -0.225 0.911 -0.043 
Panel width 0.036 0.798 -0.006 0.004 -0.029 
Panel length -0.248 0.701 0.093 -0.202 0.052 
Overburden 0.808 -0.075 -0.129 0.108 0.121 
Number of entries 0.271 -0.178 -0.045 -0.224 0.805 
Cut depth 0.125 0.745 0.056 0.142 -0.076 
Face conveyor speed 0.145 0.834 0.116 0.056 -0.167 
Stage loader speed 0.147 0.811 -0.048 0.070 0.105 
Lost+desorbed gas 0.954 0.024 -0.187 0.065 -0.011 
Residual gas -0.244 0.237 0.748 0.032 0.372 
Total gas 0.960 0.077 -0.036 0.076 0.068 
Rank 0.907 0.031 -0.174 -0.091 0.186 
Coal production -0.221 0.688 0.251 0.114 0.036 

Table 2 gives not only the loadings of each variable in rotated 
components (PCR), but also shows how the variables are separated 

between columns according to their characteristics or to the 
properties that they represent. The table shows that the first PCR 

is mostly related to gas content of the mined coalbed with both 
overburden and rank positively correlated with total and lost plus 
desorbed gas contents. The highest loading is from total gas content 
(0.960), followed by lost plus desorbed gas (0.954), rank (0.907), 
and overburden thickness (0.808). The second PCR represents 
longwall panel dimensions, coal productivity, and underground 
coal transportation. In this group, face and stage loader conveyer 
speeds have the highest loadings (0.834 and 0.811, respectively), 
followed by longwall panel width, cut depth, and panel length. The 
loading of coal production is less. Based on the results of PCA and 
comparative evaluation of various input parameters for their influ­
ence on the results, total gas content, panel width, face conveyor 
speed, coal production, state, seam height, cut height, stage loader 
speed, and number of entries were selected as the input variables for 
the ventilation emission model. 

The ANN model was built using a multilayer perceptron (MLP) 
approach and was trained and tested using the database to achieve 
minimum mean square error (MSE) and high correlations (R) 
between measurements and predictions. Table 3 shows the perfor­
mance parameters obtained from the testing stage of the developed 
network. For detailed information, readers are requested to refer to 
Karacan (2008). 

Table 3 
Testing performance of the final ANN model used in the software after optimizing its 
network parameters. 

Performance parameter 

MSE 1.613 
NMSE 0.086 
Min. error (MMscf/day) 0.003 
Max. error (MMscf/day) 3.087 
R 0.956 

3.2.1. The use and application of mine ventilation emissions 
prediction model 

This module calculates the predicted ventilation methane 
emissions from a longwall mine located in one of a pre-determined 
list of coal producing states (or in basins that are characteristically 
similar in geology to one of the states). The prediction of methane 
emissions is based on the location of the mine and a set of mining 
and geological conditions that most affect the ventilation emissions 
as determined by PCA. The pre-determined list of states is available 
in a pull-down menu on the input screen (Fig. 6), along with other 
required inputs. 

Fig. 6. Input screen for mine ventilation emissions prediction model. 



The output screen gives the values of the input parameters and the 
predicted methane emissions in millions of cubic feet of methane per 
day (MMsfc/day). To run the model again with different conditions, 
the user can select the ‘‘re-run model’’ option (Fig. 7). 

Fig. 7. Output screen for mine ventilation emissions prediction model. 

Fig. 8 shows information from application of the mine ventila­
tion emissions prediction model conducted for mines operating in 
different states with different mining and geological conditions. 

Fig. 8. 3-D graph showing the predicted mine emissions (MMscf/day) from mines in 
various states as a function of coal seam gas content (scf/ton) and coal production 
(MMtons/year). 

Mines in West Virginia, Alabama, and Virginia have the highest 
gas content, and therefore a higher emissions rate from their 
respective ventilation systems. These mines have lower yearly coal 
production and a higher ventilation air flow to lower the concen­
tration of methane in the ventilation air. The gas content of the coal 
seams mined in Pennsylvania, Ohio, Maryland, Kentucky, Illinois, 
and Colorado are relatively lower, and thus the mines in these 
states have lower ventilation emissions and higher production 
compared to the West Virginia, Alabama, and Virginia mines. 

The output of this module, total predicted ventilation emissions 
in millions of cubic feet per day, can be helpful in determining the 
needs of multiple projects in the mine. For example, having a good 
estimate of the total methane output can provide the operator with 
information to size a ventilation fan or to determine a ventilation 
strategy. 

3.3. Module: degasification system selection 

Since ventilation alone may not be sufficient to control the 
methane levels on a longwall operation, gob gas ventholes (GGV, or 
G), horizontal (H) and vertical drainage boreholes (V), or combina­
tions of these systems (HG or VHG) are drilled and used as 
supplementary methane control measures. In most cases, mining 
operations base their choice of degasification system on previous 
experiences, sometimes without analyzing the different factors 
that may have affected these decisions. 

Table 4 shows the rotated matrix for five components (PCR) and  
the factor loadings for each variable during PCA. This table also 
shows how the variables are separated between columns according 
to their characteristics. Table 4 shows that the first PCR is mostly 
related to gas content of the mined coalbed, overburden rank, and 
the methane emissions. 

Table 4 
Factor loadings of the variables after rotating the principle component matrix using 
Kaiser’s varimax rotation. Bold entries show the most influential variables in each 
rotated principle component (PCR). 

Variables PCR 1  PCR 2  PCR 3  PCR 4  PCR 5 

Basin -0.296 0.010 -0.137 0.907 -0.133 
State -0.004 0.037 -0.198 0.952 -0.020 
Seam height 0.070 0.076 0.939 -0.078 -0.070 
Cut height 0.054 -0.036 0.917 -0.211 -0.067 
Panel width 0.100 0.820 0.035 0.011 -0.059 
Panel length -0.187 0.751 -0.192 0.105 -0.035 
Overburden 0.817 -0.083 0.112 -0.124 0.131 
Number of entries 0.276 -0.158 -0.168 0.022 0.853 
Cut depth 0.186 0.721 0.118 0.064 -0.272 
Lost+desorbed gas 0.949 -0.054 0.067 -0.173 -0.031 
Residual gas -0.212 0.279 0.042 0.777 0.285 
Total gas 0.962 0.002 0.080 -0.016 0.029 
Rank 0.917 -0.011 -0.082 -0.163 0.193 
Coal production -0.173 0.755 0.121 0.213 0.061 
Ventilation emission 0.646 0.339 0.104 -0.251 0.369 

The highest loading is from total gas 
content (0.962), followed by lost plus desorbed gas (0.949), rank 
(0.917) and overburden thickness (0.817). Emissions measured 
from the ventilation system have a loading of 0.646. Selection of a 
degasification system is a direct consequence of emissions or the 
capacity of the ventilation system. Thus, it should be included in any 
model. The second PCR is weighted by longwall panel dimensions, 
cut depth, and coal production. In this group, panel width and coal 
production have the highest loadings (0.820 and 0.755), followed by 
longwall panel length (0.751), and cut depth (0.721). The third PCR 

in Table 4 represents the coalbed and mining heights, where their 
loadings are 0.939 and 0.917, respectively. The fourth PCR in Table 4 
is related to geographical location of the mine determined by state 
and coal basin. They are the only variables in the database that may 
be linked to the impact of underground geology on emissions from 
overlying strata. Their loadings in this PCR are 0.952 and 0.907, 
respectively. However, since a coal basin can be present in more 
than one state and underground geology may change based on 
geographical location, the state variable is more localized and seems 
to be a better identifier for this purpose. The fifth PCR represents the 
number of gateroad entries. 

Based on the results given in Table 4, and comparison tests 
performed with the ANN, total gas content, panel width, coal 
production, state, seam height, cut height, overburden thickness 
and ventilation emissions were selected as the input variables for 
the degasification system identification model. 

The ANN-based classification model was built using a multi-
layer perceptron (MLP) approach to map the inputs to four different 
degasification options outputting the ‘‘best’’ option with the 
highest probability. Such a model can be used as a decision tool 



for selection of a degasification system and can also be used as a 
screening or planning model. Based on the performance of the 
network with different elements, the final network had two-hidden 
layers with 48 and 28 processing elements, hyperbolic tangent and 
softmax axon as the transfer functions, a momentum term of 0.7 
and a training epoch of 1500. Table 5 gives the performance of the 
classification network that was developed and implemented in 
the software for degasification system identification. 

Table 5 
Testing performance of the final ANN model (Figure C-10) after optimizing network 
parameters. 

ANN Output HG (Horizontal 
+GVB) 

N (None) G (GVB) VHG (Vertical+ 
Horizontal+GVB) 

HG 
N 
G 
VHG 
% Correct 

21 (True) 
0 
1 (False) 
0 
95.5 

3 (False) 
29 (True) 
0 
0 
90.6 

1 (False) 
2 (False) 
12 (True) 
0 
80.0 

0 
0 
0 
12 (True) 
100.0 

The detailed 
explanation of the development of this model is included in 
Karacan (2009b). 

Degasification systems have become necessary due to their 
ability to remove most of the gas from the coal seam prior to 
mining, allowing operations to safely extract the coal. Currently, 
mines use different methods to find the most cost-effective way to 
mine safely and efficiently. With a selection model now available to 
design degasification plans, the mining operation can more pre­
cisely and efficiently choose methods that will maximize degasi­
fication and minimize methane-induced ventilation issues. 

This module uses an ANN-based expert classification system to 
identify the need and the type of degasification system best suited 
for a particular longwall operation. The ANN-based classification 
model was built using a multilayer perceptron (MLP) approach to 
map the inputs to four different degasification options and output 
the probabilities of each output options, as reviewed in the 
application section given in 3.3.1. The model can be used as a 
decision tool for selection of a degasification system and as a 
screening or planning model. For a detailed explanation of the 
development of this model, see Karacan (2009b). 

3.3.1. The use and application of degasification system selection 
model 

This expert classification system identifies the need and the 
type of degasification system for a longwall operation given mine-
specific inputs. The model maps the inputs to four different 
degasification options: 

J N: No degasification needed 
J G: Gob gas venthole only 
J HG: Horizontal boreholes and gob gas ventholes 
J VHG: Vertical boreholes, horizontal boreholes, and gob gas 

ventholes. 

As in the emissions prediction module, the user must select the 
state from the pull-down menu on the input screen, and enter 
additional coal and mining characteristics. When the model is 
executed, it calculates the choice probabilities for available dega­
sification systems based on the inputs given, and maps the 
probabilities to the four degasification systems. 

The output screen for this module shows input information, the 
calculated probabilities for each system, and whether the system is 
recommended (Fig. 9). 

Fig. 9. Output screen for degasification system selection model. This particular 
scenario resulted in a ‘‘best’’ recommendation for a system using vertical and 
horizontal boreholes plus GGVs. 

The system with the highest positive 
probability calculated is labeled ‘‘best’’ in the recommendation 
column. Recommended ‘‘best’’ option in this module indicates the 

degasification system choice with highest probability of success­
fully removing methane from the mine environment. 

Fig. 10 shows that the mines operating in coal seams with higher 
gas content and under mid to high overburden depth require a 
more extensive degasification system comprised of vertical dega­
sification holes, horizontal degasification holes, and gob gas vent-
holes (shown in red as VHG in this figure), while mines operating in 
coal seams with less gas content and in shallower depths do not 
need multiple degasification techniques (N: none needed or G: 
GGVs only) to supplement their ventilation system. Mines operat­
ing in overburden depths from 750 to 1250 ft and in coal seams 
with gas contents less than 200 scf/ton typically have ventilation 
emissions from 1 to 10 MMscf/day. 

Fig. 10. 3-D scatter diagram showing the distribution of the type of degasification 
system (type of Deg) as a function of overburden depth (ft), coal seam gas content 
(scf/ton), and ventilation system emissions (MMscf/day). 

These mines are good candi­
dates for degasification systems shown in both blue (G: GGVs only) 
and green (HG: Horizontal boreholes and GGVs). 

Fig. 11 shows the results of comparing the overburden (ft), panel 
width (ft), and production (tonnes/year) to the type of degasifica­
tion system recommended. It can be seen that the program predicts 



that mines in the mid to high range of overburden depths should 
have more extensive degasification systems, while mines in lower 
overburden have minimal degasification, which indicates that the 
coals have lower gas contents. This prediction is consistent with 
mining experience: deeper coals tend to be gassier than shallower 
coals. Fig. 11 also shows that mines with lower gas emissions have 
higher coal production rates and do not always need degasification 
systems. 

Fig. 11. 3-D Surface diagram showing the overburden (ft), coal production (MMtons/year), panel width (ft), and the type of degasification method suggested (type of degassif) 
using the degasification system selection module. The data points are shown under the surface as dots. 

3.4. Module: gob gas venthole production performance prediction 

Gob gas ventholes are used to help control methane inflows into 
a longwall operation by capturing it before it enters the ventilation 
system. It is important to understand the effects of various factors, 
such as drilling parameters, location of borehole, applied vacuum, 
and mining/panel parameters to evaluate the performance of GGVs 
and to predict their effectiveness in controlling methane emissions. 
Until the development of MCP, a practical model for this purpose 
did not exist. This module develops an ANN-based methodology to 
predict GGV production rates and methane concentrations based 
on venthole location, mining parameters, borehole location with 
respect to panel and surface terrain, and exhauster pressure. 
Detailed information is given in Karacan (2009c). 

Various factors affect the performance of gob gas ventholes 
producing from an active or completed mine. Table 6 shows the 
sensitivity values of outputs to these various inputs, as well as the 
total sensitivity in standard deviations about the mean due to 
sensitivities of gas flow rate and methane percentage to inputs 
when they are considered together. 

Table 6 
Sensitivity (in standard deviations) of performance parameters (gas flow rate and 
percent methane) to individual input parameters used in this model and the total 
sensitivity (third column) when both performance parameters are combined. Bold 
values are the total sensitivity above the average sensitivity value (33.8) calculated 
using all inputs. 

Input variable Gas flow Percent Total 
rate methane (Std. dev.) 

Panel completed (Yes) 13.1 8.1 21.2 
Panel completed (No) 28.2 3.6 31.9 
Is face advancing? (No) 24.3 10.3 34.7 
Is face advancing? (Yes) 18.7 0.3 19.0 
% of panel mined 45.2 3.1 48.3 
Linear advance rate 7.5 1.4 8.9 
Surface elevation 34.4 6.6 41.0 
Overburden 16.1 4.2 20.3 
Casing diameter 81.2 4.4 85.6 
Casing distance to coalbed 7.7 2.2 10.0 
Distance to tailgate 67.7 1.7 69.5 
Distance from panel start 52.3 12.2 64.5 
Panel length 37.7 4.3 41.9 
Panel width 5.1 1.4 6.5 
Barometeric pressure 14.0 0.6 14.6 
Average vacuum at wellhead 22.1 1.9 24.0 

The average total sensitivity 
was calculated as the arithmetic average of third data column in 
Table 6, which gave a value of 33.8. For the sake of this analysis, the 
total sensitivity values above this average of 33.8 were considered 
as high sensitivities of gob gas venthole performance to the 
corresponding input variables. According to this approach and 
the data in Table 6, (a) face advance (whether it is advancing or not), 

(b) percentage of the panel that has been mined, (c) surface 
elevation of the venthole (above sea level), (d) casing diameter, 
(e) distance of the venthole to the tailgate, (f) distance of venthole 
to panel start, and (g) panel length are more influential for the 
venthole performance. 

It is important for methane control to have a practical model to 
decide the design parameters of a GGV before drilling it, or to respond 
to an emerging situation by changing some of the operating para­
meters. However, a practical model for these purposes currently does 
not exist. The aim of this software module is to develop an ANN-based 
methodology to predict gob gas venthole production rates and 



methane concentrations based on venthole location, mining para­
meters, borehole location with respect to panel and surface terrain, 
and exhauster pressure. 

For this purpose, a two-layer ANN model with 22 processing 
elements in the first hidden layer and with 16 processing elements 

in the second hidden layer was developed. Hyperbolic tangent 
activation function, ’’Tanh,’’ between the layers with momentum 
parameters of 0.7 and 2500 iterations were also used. Table 7 gives 
the performance of the network model that was used and 
programmed into this module to predict production performance 
of the GGVs. Detailed information is given in Karacan (2009c). 

Table 7 
Predictive performance of the GGV performance prediction network obtained 
during testing phase. 

Performance indicator Total flow scf/day Percent methane 

Nominal MSE 
Mean Abs error 
Min Abs error 
Max Abs error 
R 

0.13569 
1235.92 
166.91 
20,628.04 
0.930 

0.08595 
3.52427 
0.02904 
24.2980 
0.956 

3.4.1. The use and application of GGV production performance 
prediction model 

This module calculates the total gas production rates and the 
methane concentrations in the produced gas stream of the GGV 
based on venthole location in the panel, mining parameters, 
venthole location with respect to panel and surface terrain, and 
applied exhauster pressure. The input screen requires the panel 
status (active or completed), face status (advancing or idle), vent-
hole location data, venthole completion parameters, and the 
operational properties of its exhauster. The model output is GGV 
total production in scfm and methane concentration percentage 
(Fig. 12). 

Fig. 12. Output screen from the gob gas venthole production performance model, 
showing the predicted total gas flow rate (scfm) and methane concentration (%) 
from a GGV and the associated input data. 

Scenarios with various input parameters were analyzed to test 
the outputs and the sensitivity of the model. One scenario analyzed 
the relationships between distance of the GGV from the start of the 
panel, GGV total production rate, panel length, and linear face 
advance (Fig. 13). 

Fig. 13. Surface diagram showing the distance of the GGV from the start of the panel (ft), gob gas venthole (GGV) total production rate (scfm), panel length (ft) and linear face 
advance (ft/day) obtained using the GGV production performance prediction module. The data points are shown under the surface as dots. 

The analysis shows that the GGV has a higher 
production rate when operating above a longwall with a length of 
9500–12,000 ft and with a linear advance rate greater than 30 ft/day. 
When varying the length of the longwall block and linear advance 
rate, the variable ‘‘GGV distance from the start’’ did not seem to have 
a great impact on the output values. MCP allows the user to keep the 
other variables constant while changing the GGV distance from the 
panel start, and therefore can show how this variable can influence 
both GGV production and methane percentage. 

Another scenario analyzed methane concentration (Fig. 14). The 
highest predicted methane concentrations occurred at the start and 
end of the longwall panels. The largest concentration was predicted 
at the beginning of the panel and with a linear advance rate 
between 25 and 30 ft/day. This is not surprising, because the first 
GGV in a panel has a larger reservoir of easily accessible methane 
primarily due to abutment effects at the ends of the longwall panel 
than GGVs in other locations along the panel. A higher predicted 
concentration of gas and production rate is also visible at the end 



of the panel further from the start. As with the first GGV, this 
indicates that there is a larger gas reservoir from which the GGV can 
produce. 

Fig. 14. Surface diagram showing the distance of the GGV from the start of the panel (ft), gob gas venthole (GGV) total production rate (scfm), linear face advance (ft/day), and 
methane concentration (meth conc) from GGV (%) obtained using the gob gas venthole production performance prediction module. The data points are shown under the 
surface as dots. 

Table 8 
Conversion factors for converting English units to SI units 

Name of unit Symbol Definition Relation to SI units 

atmosphere (standard) atm =101 325 Pa 
cubic foot cu ft =1 ft  x 1 ft  x 1 ft  =0.028 316 846 592 m3 

cubic foot per minute CFM =1 ft3/min ¼4.719474432 x 10-4 m 3/s 
foot (International) ft =(1/3) yd=0.3048 m=12 inches =0.3048 m 
foot per minute fpm =1 ft/min ¼5.08 x 10-3 m/s 
inch (International) in =1/36 yd=1/12 ft = 0.0254 m 
inch of mercury (conventional) inHg =13 595.1 kg/m3 x 1 in  x g E3.386 389 x 103 Pa 
inch of water (39.2 1F) inH2O E 999.972 kg/m3 x 1 in  x g E249.082 Pa 
pound per square inch psi =1 lbf/in2 E6.894 757 x 103 Pa 
ton, short sh tn =2 000 lb ¼907.184 74 kg 

4. Conclusions 

In this paper, NIOSH’s new MCP (methane control and predic­
tion) software has been introduced with brief details of its 
development and with applications of methane control and 
methane emissions predictions. The software modules, used 
together or separately, can help mining operations predict and 
control longwall methane drainage. MCP software can calculate the 
elastic and shear moduli of coal-measure rock and the total 
ventilation output of methane. Both can help to determine if the 
methane can be captured and controlled safely and allow time to 
develop control measures to more effectively ventilate working 
areas. The degasification system selection module determines the 
safest way to degasify a longwall mine with given characteristics 
using proven techniques. Finally, MCP can predict the performance 
of gob gas ventholes and accurately determine the impacts of 
drilling/exhauster parameters, borehole location, and mining para­
meters on GGV performance. 

Previously, there were no simple ways to estimate and plan for 
methane drainage and emissions, other than from past experience 
in a specific coal seam or at a certain operation. Numerical 
modeling techniques were available, but could be very time 
consuming and could require expertise to use them. The MCP 
software is a practical, new way to predict methane drainage, 
estimate ventilation emissions, plan methane drainage techniques, 
and predict the effectiveness of GGVs. The applications of the MCP 
software modules for methane control-related problems can help 
improve the safety of mines and the underground workforce. 

5. International unit conversions 

See Table 8. 

Disclaimer 

The findings and conclusions in this report are those of the 
author(s) and do not necessarily represent the views of the National 
Institute for Occupational Safety and Health. Mention of any 
company or product does not constitute endorsement by NIOSH. 
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