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ABSTRACT: As part of an ongoing research effort to improve ground control safety in deep vein  mines, researchers at the  
National Institute for Occupational Safety and Health (NIOSH), Spokane Mining Research Division (SMRD) have  developed a  
simplistic approach to modeling dynamic behavior of rock using commercially available software. This  methodology  will be 
applied to study the behavior of un derground excavations  subjected to dynamic loading from remote seismic sources in order to  
better understand the relationship between seismic wave-parameters, rock  mass damage, excavation  stability, and ground-support 
demands. The potential exists to improve safety in burst prone ground through better understanding of the effects of seismic loads  
on excavations. This paper describes a preliminary one-dimensional investigation of the model that validates its performance and 
provides insight into the dynamic failure of rock. The main  observation is that the dynamic stresses that develop in the rock near a  
free surface are different than those that occur within a constrained solid. In a constrained solid, the dynamic stresses  are directly  
proportional to the velocity amplitude of the propagating  wave. This study  shows that in the vicinity of an  unconstrained surface, 
the accelerations associated with a seismic wave are also important to understanding dynamic stress and rock ejection. As the wave  
passes, forces develop that are equal to the product of the mass and acceleration of the rock  block attempting to eject. For a seismic  
wave of  given peak particle velocity, higher frequencies  will be associated with  higher accelerations and have the potential to be  
more damaging to a rock  surface. Increased use of dynamic  modeling  will develop knowledge of the effects of seismic loading on 
excavations and ground support and may lead to designs that better protect miners.  

1.  INTRODUCTION  

In the last few decades there has been significant 
advancement in computing power and the capabilities of 
numerical modeling software for use in geomechanical 
problem solving. The ability to perform fully-dynamic 
simulations in geomechanics has never been more 
accessible or user friendly than it is today. However, 
practical application of this technology in rock 
engineering projects is not common place as of yet 
(compared with static modeling). Further development 
and increased use of this technology may provide 
significant insights into problems associated with mining 
induced seismicity and thereby help protect miners from 
the hazards associated with rockbursts. 

Dynamic problems are particularly challenging because 
a full characterization of the initial static state can never 
be completely realized in geotechnical engineering, 
hindering the analysis from the start. Additionally, the 
strength and mechanical behavior of intact rock 
(Christensen et al., 1972; Qian et al., 2009; Johnson 

2010), rock joints (Bakhtar and Barton, 1984; Barbero et 
al., 1996; Mohammed et al., 2006), and many ground-
support materials (Ansell, 2005, 2006; Player et al., 
2008) are dependent on loading rate. Moreover, their 
dynamic behavior is not well characterized. Lastly, the 
appropriate dynamic loading must be applied and 
adequate characterization of seismic loads is 
challenging. 

In the case of an earthquake, the source mechanism may 
be hundreds of kilometers from the area of interest, and 
in this case, ground motion input to the base of the 
model is often appropriate. However, in the case of 
mining induced seismicity, the wave could approach the 
excavation from any angle, and the source event could 
be within a few meters of, or even coincide with 
rockburst damage. In this case, actual simulation of the 
source mechanism may be required, further complicating 
the analysis. Simulation of a natural event such as a fault 
slip is particularly challenging, though practical 
modeling work concerning simulating slip mechanisms 
has been performed by Sainokoi and Mitri (2014, 2015). 



 

   

 
 
 

 
 

 

  
 
 

  
   

 

 
 
 
 

 

 

Additionally, the characteristics of source wave motion, 
and how it changes during propagation through the rock 
mass, is at this time not well understood. This is 
especially true within the fractured region surrounding 
an excavation (Hildyard, 2001).  

The problem of dynamic stability of excavations in rock 
is a multifaceted one and will not be fully understood for 
some time. However, data-bound problems are not the 
exception in rock mechanics, but the norm (Starfield and 
Cundall, 1988), and as explored here, application of and 
improvements to available numerical modeling tools 
may help incrementally advance the current state-of-the 
art. 

Figure 1 provides a diagram of the ways in which a 
numerical model may be used. As modeling software 
has become increasingly complex and computers 
increasingly powerful, there is a tendency in 
geomechanical modeling to move away from mechanism 
identification and qualitative parameter study, and 
toward site-specific prediction. However, in a data-
limited field such as geomechanics, modeling is often 
more appropriately used as a tool for parameter study 
and identification of mechanisms (Starfield and Cundall, 
1988). This is particularly true for very complicated rock 
engineering problems involving dynamics. This work 
takes the approach indicated by the left-hand side of 
Figure 1. 

  Figure 1: Spectrum of Modeling Situations (Itasca, 2015) 

  
 

 
 

 

   
  

  

 
 

 
 
 
 

 

 

    
 

  
  
  

  
 

 
 

  
  

 

 
 

  
 
 
 
 
 

  

 

     
 
 

  
  

 

Simple models that capture mechanically significant 
features can often be very valuable. This approach to 
modeling in geomechanics has been advocated by 
Starfield and Cundall (1988), Barbour and Krahn (2004) 
and Hammah and Curran (2009). The incorporation of 
simple numerical modeling in mining engineering 
facilitates (Hammah and Curran, 2009): 

(i) 	 Development of understanding, 
(ii) 	 Proper formulation of questions,  
(iii) 	 Reasonable approximation of behavior and

provision of meaningful predictions, and  
(iv) 	 Aids in the design of solutions and decision  

making.  

This paper presents a fully-dynamic approach to 
modeling rock mass, which can be used to simulate 

failure and ejection of rock material in the vicinity of an 
underground excavation. Application of this rock mass 
model to a typical hard rock mine drift is presented by 
Raffaldi and Loken (2016). 

2.  FULLY-DYNAMIC SIMULATION  

To perform a dynamic analysis, it is first necessary to 
know the conditions acting on the excavation prior to 
loading it dynamically. Therefore, it is usually necessary 
to first develop a static model of the problem. The basic 
steps required to develop a static numerical model are: 

(i) 	 Develop model geometry 
(ii)	 Discretize the model 
(iii)	 Assign constitutive models and material properties 
(iv) 	 Apply appropriate boundary and initial conditions 
(v) 	 Establish initial equilibrium in the model 
(vi)	 Perform an alteration to the model 
(vii)	 Solve for the solution 
(viii)	 Evaluate the results and revise model if necessary 

Additionally, for a dynamic simulation, there are several 
further steps. These include: 

(ix) 	 Evaluate wave transmission adequacy 
(x) 	 Apply mechanical damping 
(xi)	 Apply dynamic boundary conditions 
(xii)	 Apply dynamic loading 

Steps 7 and 8 must then be repeated for the dynamic 
solution. 

2.1.  ix – Evaluate Wave Transmission Adequacy 
It is necessary to ensure that accurate wave transmission 
is achieved within the model. The main requirement is 
that the element sizes are small enough–with respect to 
the wavelength of the input wave–to ensure numerical 
accuracy. Kuhlemeyer and Lysmer (1973) demonstrated 
that the element size must be smaller than one-tenth to 
one-eighth of the wavelength associated with the highest 
frequency component in the modeled wave. In  
mathematical terms this means that:  

ߣ 
 ∆݈ ൑  (1) 10 
where,  ∆݈ = spatial element size, and  ߣ = wavelength associated with the highest  

frequency component in the wave. 

The wavelength is dependent on both the frequency of 
the wave and the material properties of the medium 
through which it propagates. The limiting wavelength 
can be determined from the wave velocities associated 
with the material with the least stiff elastic properties 
and the wave frequency via Equation 2: 



 
 
 
 
 

  
 
 

  
 
 
 
 
 

   
 

  
 

 
  

   
 
 

  
 
 
 
 
 

  
 
 

  
 

 

 
 
 
 

  

 
  

 
 

 

   

  
 
 
 

 
    

 

  
 
 

 

  
  

 
 
 

  
 

   
 

  

  
 

  
    

 
 

 

  
   

 

ܥ
ߣ  = 
  (2)  ݂
where, ܥ = wave propagation velocity, and  ݂ = wave frequency  

2.2.  x – Apply Mechanical Damping  
Mechanical damping refers to a reduction in wave 
amplitude with vibration. Mechanical damping is the 
attenuation caused by energy dissipation associated with 
propagation through a medium, and is independent of 
attenuation due to geometric spreading. In a numerical 
model it is often necessary to explicitly simulate the 
natural energy dissipation, because without damping a 
system would oscillate indefinitely, and waves would 
propagate without attenuation (other than that due to 
geometric spreading). In numerical modeling of 
geomechanical systems, the goal is usually to simulate 
frequency-independent material damping to reproduce 
the energy losses in the natural system when subjected to 
dynamic loads (Itasca, 2015). The amount of damping 
that removes all oscillation in a system is known as 
critical damping. In structural systems, damping is 
usually between 2 and 10% of critical (Biggs, 1964). 
Damping in geologic materials is usually between 2 and 
5% (Itasca, 2015). A lesser amount of damping (0.5% 
for example) may be required when additional damping 
from inelastic deformations such as plastic flow and slip 
along discontinuities is incorporated implicitly. 

2.3.  xi – Apply Dynamic Boundary Conditions  
Dynamic boundary conditions concern how stress waves 
behave at artificial boundaries. In geomechanical 
modeling, it is often necessary to artificially truncate 
boundaries of a model. In static analyses, displacement 
or stress boundary conditions can be prescribed at a 
distance from the area of interest sufficient to allow 
stresses to return to a virtually undisturbed state. In a 
dynamic analysis, these boundaries cause outward 
propagating waves to be reflected back into the model, 
when in reality, these waves would eventually attenuate 
as they continued onward through the earth. In 
numerical models, boundaries located far enough from 
the region of interest to allow material damping to 
dissipate the energy are usually not practical because of 
the large model dimensions that would be required. 
Therefore, viscous boundaries that absorb energy are 
usually applied along artificial boundaries to prevent 
reflection. 

2.4.  xii  – Apply Dynamic Loading 
Dynamic loading deals with the transient loads that are 
applied during the simulation. The dynamic loading 
could be specified as either a transient stress, 
displacement, or velocity applied over some boundary of 
the model. For earthquake simulations, it could be a time 

history of vertical and horizontal ground motion applied 
at the base of a model. For a problem concerning 
stability of an excavation in the presence of nearby 
blasting, a stress time-history representing the borehole 
pressure from a detonating explosive might be applied to 
an internal boundary within the model. 

3.  ROCK MASS MODEL  

It was necessary for the rock mass model to be capable 
of both plastic deformations, and rock fracture and 
ejection. In order to accomplish this, the numerical code 
UDEC (Universal Distinct Element Code) (Itasca, 2015) 
was chosen. This program is based on the distinct 
element method and is useful when a continuum analysis 
fails to reproduce key mechanisms. In UDEC, the rock 
mass is represented as an assemblage of discrete blocks. 
These blocks are represented as a finite difference grid 
and subdivided into elements that individually deform in 
response to the applied forces or boundary constraints 
according to a prescribed linear or non-linear stress-
strain law. UDEC allows finite displacement and 
rotations between discrete blocks, including complete 
detachment, and it is capable of recognizing new contact 
surfaces automatically during the simulation. 

3.1.  Conceptual Development  
The rock mass model developed in UDEC is composed 
of three different parts: (1) the joints, (2) the joint force-
displacement model, and (3) the constitutive model. 
These three parts act together to determine the overall 
rock mass behavior, and the joints allow discrete rock 
blocks to fracture and dislodge. The joint model governs 
the behavior of these joints, and the constitutive model 
governs the behavior of the intact rock between the 
joints. The overall objectives of the model are to allow 
the rock mass to: 

(i) 	 Fail and deform in a ductile manner under high 
confinement, 

(ii)	 Fail in a brittle manner under low confinement, 
(iii)	 Fracture and allow discrete rock blocks to detach 

from the rock mass under static and dynamic 
loading, and 

(iv) Transmit elastic waves without distortion.  

    Figure 2: Conceptual diagram of rock mass model 

3.2. Rock mass Jointing 
The purpose of the joint system is not to represent actual 
rock structure, but to allow a pathway for the rock to 



 
  

 
 

  
  

  
 

 

  
 
 
 
 
 
 

 
 

 

  
 
 

  
 
 
 
 
 

 
 

  
 
 
 

    
 

 

  

 
 

 
 

   

fracture. A randomized joint pattern was applied to the 
test samples via a Voronoi tessellation joint-generator 
embedded within UDEC. This joint system results in a 
distinct element model consisting of a finite set of 
distinct blocks. The contacts between the blocks are 
treated as boundary conditions and behave according to 
the prescribed joint model and associated joint 
properties. The block model used for the simulations is 
shown in Figure 3. 

The Voronoi joint-generator used to create the distinct 
element block model requires several statistical inputs 
that control the average size and distribution of the 
blocks. UDEC defaults were used for most of these 
properties. Only the average edge length (0.25 m) and 
the Voronoi seed value were specified. The Voronoi 
seed value controls the starting point for the Voronoi 
tessellation. Changing the seed value will result in a 
similar but unique set of randomized joints. Other 
parameters were left as defaults but control additional 
properties such as block size uniformity.  

Figure 3: Model with Voronoi Joints 

Stability and efficiency of UDEC models are sensitive to 
the specified minimum edge length and rounding length 
of block corners and the relationship between these two 
parameters. Edge length refers to the maximum length of 
a distinct element block that can be created in the model. 
Rounding length refers to the radius of rounded block 
corners. In UDEC, the rounding length can be at most 
half the minimum edge length. Careful selection of these 
properties is particularly important when using the 
Voronoi joint generator; even though a given pair of 
edge and rounding length values may satisfy the 
requirements of the program, they may over constrain 
the Voronoi joint generator resulting in either a failed 
Voronoi tessellation or the generation of non-uniform, 
highly angular blocks. This leads to extreme sensitivity 
of the model results to the Voronoi seed number. For the 
modeling described here, the block properties are 
provided in Table 1. 

3.3.  Joint Model  
The area-contact model specified for the joints 

uses a linear approximation of joint stiffness and a 
Mohr-Coulomb slip criterion. Model parameters include 
shear and normal stiffness; frictional, cohesive, and 
tensile strength; and dilation angle. This model is well 
suited for simulating tightly packed rock blocks in area 
contact (as opposed to point contact) (Itasca, 2015). 

  Table 1: Block and Voronoi Tessellation Properties 

 

 
 

 

  

  

 
 

 

  

 
   

 

 
 
 
 

  

 
  

  
 

 

   

  
 

 

Property Units Value 

Block Minimum Edge 
Length 

m 0.025 

Block Rounding Length m 0.010 

Overlap Tolerance m 0.050 

Voronoi Joint Average Edge 
Length 

m 0.250 

Voronoi Joint Seed Value n/a 2 

In addition, strength values weaken with inelastic 
displacement to residual values. Blocks may detach, 
translate, rotate and collide with other blocks. 

3.4.  Constitutive Model  
An isotropic Mohr-Coulomb strain-hardening/softening 
model with tension cutoff was chosen to simulate block 
deformability. During yield the material may either 
strain-harden or strain-soften by varying the strength 
properties as a function of plastic strain. 

3.5.  Material Properties  
The material properties for both the constitutive model 
and joint model are provided in Tables 2 and 3. The 
properties are defined in such a way that the failure 
occurs through the solid when the rock is confined, but 
through the joints when unconfined. 

For the solid, 90% cohesion is lost linearly through the 
first 4% of plastic strain. No other parameters changed 
with plastic strain, and the tension cutoff was set to a 
very large value to force tensile failure to occur through 
the joints. 

 Table 2: Constitutive Model Material Properties 

 

 

 

 

   

  

   

   

   

Parameter Units Value 

Density kg/m3 2700 

Bulk Modulus GPa 29.2 

Shear Modulus GPa 13.5 

Peak Cohesion MPa 16 

Residual Cohesion MPa 1.6 

Peak Friction Angle Deg. 32 

Residual Friction Angle Deg. 32 

Peak Tensile Strength MPa ∞ 



Residual Tensile Strength  MPa n/a  

 
  

 
 

   
  

 

   

   

   

   

   

   

   

  

   
  

 
 

 

   
 

  

 
   

  

 
 

  
  

 
 
 

 

 
 

   
   

  

 
 
 

  
 

 

Joint stiffness properties were assigned values such that 
they had a minimal effect on the overall elastic modulus 
of the modeled rock mass. A tensile strength of 0.5 MPa 
was specified with a residual strength of zero. This 
means that once the joint strength is exceeded in either 
shear or tension, it retains no tensile resistance. The 
reduction occurs in a single step. 

Table 3: Joint Model Material Properties 

Parameter Units Value 

Normal Stiffness GPa/m 292 

Shear Stiffness GPa/m 135 

Peak Cohesion MPa 16 

Residual Cohesion MPa n/a 

Peak Friction Angle Deg. 32 

Residual Friction Angle Deg. n/a 

Peak Tensile Strength MPa 0.5 

Residual Tensile Strength MPa 0 

4.  STATIC BEHAVIOR  

A series of standard direct tension and compression tests 
were modeled using the Voronoi-joint rock mass, to 
evaluate its behavior under simplified loading 
conditions. Also, these models were used to perform a 
partial sensitivity analysis on the joint and constitutive 
properties in order to better understand the model. 

4.1.  Uniaxial  Tensile Test 
To examine the behavior of the material in tension, a 
uniaxial tension test was simulated. The resulting stress-
strain behavior is shown in Figure 4. It is observed that 
the material deformed linearly, reached a peak value and 
then failed in a brittle manner. A tensile crack formed 
perpendicular to the direction of loading, and no shear 
failure of any zones in the model was observed. The 
average vertical stress at failure for the numerical test 
was approximately 0.29 MPa.  

Additionally, the overall elastic modulus of the material 
(measured as the slope of the stress-strain curve) is 22 
GPa. This value is less than the elastic modulus assigned 
to the model zones. This reduction in overall modulus 
occurs as a result of the presence of the joints. Although 
the joints were assigned high stiffness values, they still 
contribute to the overall deformability of the rock mass 
because of the close joint spacing. Therefore, the rock 
mass modulus is a value that must be calibrated by 
adjusting the elastic moduli and the joint normal and 
shear stiffness to obtain the desired value. 

4.2.  UCS and Triaxial Compression Tests 
Next, a series of uniaxial and triaxial tests were 
simulated using the numerical properties listed in Table 
2 and Table 3. This consisted of compression tests 
performed at confining pressures of 0, 2, 4, 6, 8, and 10 
MPa. Figure 5 provides the resulting stress-strain 
relationships for these different tests. It is observed that 
with an increase in confining pressure, there is a 
corresponding increase in peak and residual strength as 
well as a decrease in the unloading modulus. 

 Figure 4: Modeled Direct Tension Test Results 

 
 

 
Figure 5: Modeled Compression Test Results (color indicates 
confinement pressure). 

 

  
 
 

  

Figure 6 shows the plastic state and the velocity vectors 
at the end of the test for confining pressures of 0, 4, and 
8 MPa. For the unconfined test, a shear fracture is 
observed, but also significant tensile cracking. The 
confined tests show a much more clearly defined shear 
failure and the tensile cracks are less developed. 



   
 

   
 

  

 

 
 
  

   
  

 
 
 

 

 

 
   

 

Figure 7 shows gridpoint velocity vectors at the end of 
the simulation. It is observed that while the confined 
tests have split into two halves with well-defined shear 
planes, the unconfined model is both shearing and 
pulling apart in tension along the fractures. 

5.  DYNAMIC BEHAVIOR  

Once the static behavior of the Voronoi rock mass model 
was validated, it was necessary to also investigate the 
dynamic behavior. Due to the presence of the of Voronoi 
joints, there was concern for the ability of the rock mass 
model to transmit an elastic stress wave across these 
joints when they are intact. Several models were 
developed in order to pass simple one-dimensional 
compression and shear waves through the model and 
evaluate various parameters and material response. 

Figure 6: Zone Shear Failure for Compression Test with 
Confining Pressures of (a) 0 MPa, (b) 4 MPa, and (c) 8 MPa 

 Figure 7: Velocity Vectors for Compression Test with 
Confining Pressures of (a) 0 MPa, (b) 4 MPa, and (c) 8 MPa 

 

 
   

 
  

 
  

 
 
 

   

 

5.1.  One-Dimensional Wave  Propagation 
A simple model was developed consisting of an elastic  
bar; one half was assigned steel properties while the  

other was assigned aluminum properties. The modeled 
bar was 2 m thick by 500 m long. (Although the term 
bar is used, the model assumes plane strain in the out-of­
plane direction.) Triangular elements with a maximum 
edge length of 0.3 m were used in both sides of the bar. 
The bar was constrained against vertical movement 
along its length. Viscous boundary conditions were 
applied along both ends of the bar to absorb the reflected 
wave on the left side, the transmitted wave on the right 
side, preventing the waves from being reflected back 
into the model. The loading was specified as a transient 
normal stress applied along the left end of the model. A 
conceptual diagram of the model is provided in Figure 8. 

 Figure 8: One-Dimensional P-Wave Propagation Model 

To verify the model, the results are compared to the  
experimental work of Johnson (2010) and to  the  
analytical solution for the amplitudes of transmitted and  
reflected waves for an incident wave provided by Jaeger 
et al. (2007) which states that: ܣ௧ 2ܼ
 

 

= ଵ  (3) 
 

(4) 
 

(5) 
 

௜ ܼଵܣ + ܼଶܣ௥ ܼଵ − ܼ= ଶ 
௜ ܼଵܣ + ܼଶ 
where, ܣ௜ = amplitude of incident wave  ܣ௧ = amplitude of transmitted wave ܣ௥ = amplitude of reflected wave ܼଵ = acoustic impedance of medium 1  ܼଶ = acoustic impedance of medium 2  

 
and for a p-wave, 

 ܼ௣ = ௣ܥߩ = ඥܯߩ௣ 
where ܼ௣ = acoustic impedance for p-wave ߩ = density of medium  ܥ௣= p-wave speed for medium ܯ௣ = ܭ +   constrained modulus = 3/ܩ4

The steel and aluminum  sections of the model were  
assigned the same material properties as in  Johnson’s  
experiment. In order to calibrate his testing apparatus, 
Johnson passed a strain  wave with an amplitude of  
approximately 0.0027 through a steel  incident  bar into  
an aluminum bar and recorded the amplitude of the  



  
 

reflected and transmitted wave after the wave passed 
across the steel/aluminum interface. 

  Table 4. Steel and Aluminum Elastic Properties 

 
 
  

   

   

Material Density 
Young’s 
Modulus 

Poisson’s 
Ratio 

Viscomax 350 Steel 8.08 g/cm3 200 GPa 0.30 

Aluminum 7075-T6 2.81 g/cm3 71.7 GPa 0.33 

The peak particle velocity (PPV) to be applied  in  the 
model can be determined from the peak amplitude of the  
strain wave using Equation 6: 

(ݐ)ݒ  = 
(ݐ)ߝܥ	 (6)  

where, (ݐ)ݒ = part
 icle velocity as function of time,  ܥ = wave speed for the medium, and (ݐ)ߝ 
	= particle strain as function of time  

This can easily be converted to a stress input using 
Equation 7:  

(ݐ)ߪ  =  (7) (ݐ)ݒܥߩ2

where, (ݐ)ߪ = particle stress as a function of  time  ߩ = material density ܥ = wave speed for the medium (ݐ)ݒ = wave particle velocity as a function of time  
 
Equation 5 may be used for either a p- or an s-wave.  
Note that the constant of ‘2’ in the equation  is a 
numerical requirement  resulting from the application of  
the stress history across a viscous boundary condition 
(Itasca, 2015).  

A single pulse with a frequency of 100 Hz was applied  
to the  steel  on  the left side of the bar.  Although this  
wavelength is much  larger  than that which was produced  
in  Johnson’s experiment, the peak strains (amplitudes)  of 
the reflected and transmitted waves at the
steel/aluminum interface are solely functions of the  
material properties (equations 4–6).  

The results of the simulated test are presented in  Table 5  
with those from the analytical calculation and the  
laboratory experiment performed by Johnson (2010). It  
is observed that the numerical and analytical solutions  
are in agreement within six percent. The experimental  
results differ by more due to measurement error and  
energy losses in the system. The modeled incident,  
reflected,  and transmitted waves are shown in  Figure  9.  

 
Table 5. Comparison of Modeled and Experimental Incident, 
Reflected and Transmitted Strain Waves 

   

   

   

Value 
Type  

Incident  
Strain-Wave 
Amplitude  

Reflected 
Strain-Wave 
Amplitude  

Transmitted  
Strain-Wave 
Amplitude  

Lab 0.0027 -0.0013 0.0036 

Analytic 0.002700 -0.001240 0.003940 

Model 0.002700 -0.001235 0.003692 

  5.2. Response of a Single Joint 
  

 
  
     

 
 

   
 

  
  

 
 

 

A model was then constructed to investigate the way that 
the intact joints behave when a wave is passed across 
them. This is important because the joints were intended 
to allow the rock to fracture, not to represent actual 
discontinuities in the rock. Therefore, it was imperitive 
that their effect on wave propogation be minimal prior to 
fracture. The model used was similar to that of the one 
presented in Section 3, except that the entire bar was 
assigned the elastic properties used for the rock mass 
model (Table 2), and a single vertical joint was placed in 
the center of the bar with the same properties as listed in 
Table 3. 

 
 

Figure 9: Incident, Reflected and Transmitted Wave for One-
Dimensional Wave Propagation Test Model. 

   

 
 

  
  

 

 

The joint was first modeled as elastic with infinite 
strength in order to simulate the case in which the 
strength of the joint was not exceeded. Later the joint 
was assigned a Mohr-Coulomb failure criterion with a 
tensile strength cutoff to verify its strength. Figure 10 
shows a schematic of the model geometry and boundary 
conditions. 

 
 

Figure 10: One-Dimensional P-Wave Propagation Model for 
Investigation of Behavior of a Single Joint. 

 



 
 
 
 

   
 

  
 

 

 
  

 
  

 
 

   
 

 

A single pulse was propogated across the joint. Again, 
strain histories were recorded on each side of the bar. 
Figure 11 shows the velocity histories measured on each 
side of the bar and verifies that the compression wave 
passes through the joint virtually unaltered. The joint 
angle was changed to 45° to check if the angle of 
incidence had any effect on wave transmission. A 
virtually identical result was achieved. 

Next, the model was reconfigured so that a shear wave 
could be propogated through it. This is accomplished by 
fixing the bar in the direction parallel to the direction of 
wave propogation, allowing the bar to deform in the 
vertical direction. A conceptual depiction of this model 
is provided in Figure 12. 

A shear wave was propagated across the joint and 
velocity histories were recorded on each side. The wave 
was again observed to be virtually unaltered on both 
sides of the joint. 

 
 

Figure 11: Incident and Transmitted wave across a single joint 
with no joint failure. 

 
 

 
Figure 12: One-Dimensional S-Wave Propagation Model for 
Investigation of Behavior of a Single Joint. 

 
  

 
  

 
 

 
 

    

 

 
 

 

 
   

 
 

  
  

 

The joint was then changed to a Mohr-Coulomb model 
with a friction angle of zero and cohesion of 16 MPa. A 
shear wave with a peak stress of around 36 MPa was 
applied to the bar. The joint was observed to fail in shear 
as the wave passed, allowing only a portion of the wave 
to transmit through the joint. The peak stress transmitted 

to the other half of the bar was found to be almost 
exactly 16 MPa. Figure 13 shows a plot of the stress 
histories recorded on the two sides of the joint. 

Two experiments were performed to test joint tensile 
strength. In the first, a tensile stress was applied. In the 
second, tension was generated by reflection of a 
compression wave, which was accomplished by 
removing the viscous boundary condition on the right 
end of the bar. In both cases, the bar was split into two 
halves at the joint. 

5.3.  Elastic  Wave Propagation 
Aluminum parameters used in Section 4.1 were replaced 
with the Voronoi rock mass model parameters from 
Sections 2 and 3. Compression and shear waves were 
propagated through the material. Initially, peak particle 
velocities were limited to avoid failure. A schematic of 
the model is provided in Figure 14. 

 Figure 13: Incident, Reflected and Transmitted Wave across a 
single joint with no joint shear failure. 

 
  

 
Figure 14: Diagram of one dimensional wave propagation 
model for Voronoi rock mass model. 

  
   

   
 

Velocity histories were recorded at three locations. One 
history was recorded in the steel incident bar and two on 
the right and left ends of the Voronoi rock mass. The 
two points in the Voronoi rock material were used to 
compute the wave speeds. Elastic properties were 



computed from the calculated wave speeds using 
Equations 8 and 9 (Kolsky,  1963). 	 ܭ + 3/ܩ4
ܥ  = ඨ  (8) ௣ ߩ
ܥܩ  = ට ൗߩ (9) 	 ௦ 


where, ܥ௣ = p-wave speed ܥ௣ =s-wave speed  ܭ = Bulk Modulus ܩ = Shear Modulus ߩ = material density 

The damping ratio of the material (if any) is computed  
based on the amplitude decay between the two 
measurement points. Table 6 provides the calculated p- 
and s-wave propagation speeds in the Voronoi rock 
material; also, the Young’s modulus, Poisson’s ratio, and 
damping ratio which were computed from these speeds.  

 Table 6. Dynamic Properties Calculated in the Model 

  

 

  

 

  

  

 
 

  
 

  
   

 
  

 
 
 

 
   

  

  
 

 

 

Property Value 

p-wave speed (m/s) 3048 

s-wave speed (m/s) 1778 

Cp/Cs 1.71 

Young’s Modulus (GPa) 22.9 

Poisson’s Ratio 0.24 

Damping Ratio 0% 

The calculated properties are within 5% of the static 
values. It is important to note that these properties are 
not necessarily the true material properties of the 
modeled material, and this calculation was performed 
simply as an exercise to verify that the wave 
transmission in the jointed model was appropriate. The 
Young’s modulus calculated for the Voronoi rock mass 
material during the simulated UCS and triaxial 
compression tests was 22.1 GPa. The back-calculated 
modulus based on the measured wave speed is 22.9 GPa. 
Based on the propagation speed, the wavelength 
associated with the frequency of the applied stress wave, 
the decrease in amplitude between the two histories, and 
distance between these history locations, the damping 
ratio for the Voronoi rock material was found to be 
negligible. However, this is only for the set of joint 
properties used in this work. Raffaldi (2015) observed a 
damping ratio of 4% for a similar model based on coal 
material properties in which the joints stiffness values 
were lower. 

5.4.  Dynamic Fracture of a Single joint 

PPV  is usually the wave parameter chosen  for  
correlation with rock  mass damage because it directly  
corresponds to stress in a constrained medium (Edwards  
and Northwood, 1960; Duvall and Fogelson, 1961).  
However, the mechanical behavior of  a solid in the 
vicinity of an unconstrained surface (such as an 
underground excavation) is different. For a wave of  
fixed PPV, the associated accelerations will increase  
linearly with increasing wave frequency. The peak  
particle acceleration (PPA) associated with a 60 Hz  
wave of the form: 

ሾ1ܸܲܲ(0.5) = (ݐ)ݒ  − cos(2ݐ݂ߨ)ሿ (10) 
 

where, (ݐ)ݒ = velocity as a function of time 

ܸܲܲ = peak particle velocity  

݂ = frequency  ݐ = time  

will be three times greater than  that of a 20 Hz wave.  
This is evident after taking the derivative of Equation  10  
with respect to  time to obtain the acceleration function  
shown in  equation 11. 

(݂ߨ)ܸܲܲ =		(ݐ)ܽ  sin(	2ݐ݂ߨ)  (11) 

where, ܽ(ݐ) = acceleration as a function of time  

and all other parameters have been previously defined.  

Further, because force is proportional to the product  of  
mass and acceleration, it is expected that accelerations 
are also important to understanding the mechanics of  
dynamic rock damage and failure.  

A model was developed that consisted of  a single block  
attached at the end of a bar. Both the block and the bar  
were elastic and of the same  material  (as d escribed in  
Section 3.5). A vertical  joint separated the bar from the 
block  and was assigned a tensile strength ranging  from  
zero to  infinity. A schematic is shown  in Figure 16.  

 
 

Figure 16: One-Dimensional S-Wave Propagation Model for 
Investigation of Behavior of a Single Ejecting Block 

  
 

A single-pulse compression wave with a PPV of 3 m/s 
was propagated along the bar, across the joint, and 
allowed to reflect at the free surface. It was observed 
that, for a wave of any frequency, if the tensile strength 



  
 

   
 

 
  
  

 
 
 
 

  
 
 

  
  

 

was infinite, the wave was simply reflected back as a 
tensile wave and the peak particle velocity measured at 
the free surface was 6 m/s. This value is exactly double 
that of the constrained wave, consistent with theory 
(Kolsky, 1963). Conversely, when the tensile strength of 
the joint was set to zero, the block ejected with a 
velocity of 6 m/s for all modeled frequencies. However, 
as the tensile strength of the joint was increased, the 
ejection velocity decreased. 

For a given frequency, and a pulse shape of the form 
given in Equation 10, the ejection velocity will decrease 
from 6 m/s to 3 m/s as the tensile strength is increased. 
At some threshold value of tensile strength, the block 
will no longer eject. This threshold tensile strength 
increases linearly with frequency and is shown in Figure 
17. The relationship between tensile strength and 
ejection velocity for 20, 40, and 60 Hz waves of PPV of 
1, 2 and 3 m/s is shown in Figure 18. 

 Figure 17: Relationship between frequency and joint tensile 
strength threshold. 

 
 

 
Figure 18: Relationship between ejection velocity and joint 
tensile strength for the modeled ejecting block 

   

 
 
 

  

  
   

  
 

   
  

  
  

 
   

  
 

 

The PPA will occur where the slope of the velocity wave 
is steepest. If we consider the shape of the wave used, 
the maximum acceleration will occur when the velocity 
is half the peak value and will vary linearly with 
frequency.  In this case PPA occurs at the quarter point 
of the period, or at t = 0.25/f. The greater the frequency, 
the steeper the slope, and the greater the peak 
acceleration. At the point of maximum velocity (PPV), 
the slope of the velocity wave is zero, and therefore the 
acceleration is also zero. In between these extremes the 
acceleration will increase from zero to its maximum (the 
PPA) which will depend linearly on frequency. 

The value of acceleration at which the block ejected is 
plotted for all three frequencies and PPVs (Figure 19). 
The relationship between joint strength and acceleration 
required to cause failure is linear for an ejecting block of 
fixed mass. That is, for a given joint tensile strength, 
there is a threshold value of acceleration that will cause 
failure, independent of frequency and PPV. This result 
indicates that acceleration, not velocity, is the key factor 
in understanding rock ejection during seismic loading. 

 
 

Figure 19: Relationship between particle acceleration at joint 
failure and joint tensile strength for the modeled ejecting 
block. 

  
 

   
  

 
 
 
 
 

 
 
 

 
  

 

Fracturing in confined portions of the rock mass from 
excess stress levels, on the other hand, is more directly 
related to PPV as the stress that develops in an axially 
confined portion of the bar is proportional to velocity 
and not acceleration. Because the stress in a confined 
medium is due simply to the strains that develop in the 
material as the wave passes, the peak stress does not 
depend on acceleration. However, at an unconfined 
surface, there is no longer any material to produce a 
compressive reaction force, and a tensile force develops 
on the joint that is equal to the product of the mass and 
the acceleration of the block that is attempting to detach. 
The force required to detach the block from the rest of 
the rock mass is equal to the area of the joint times the 
joint strength. In Figure 20, the accelerations that caused 
joint failure for all of the cases in Figure 19 are 



 
 
 

    

  
 

   
 

 
   

 
 

  

 

multiplied by the mass of the block, and plotted versus 
the force required to cause joint failure. It is seen that for 
a block near a free surface, the acceleration accounts for 
all of the force required to fracture the joint. 

5.5.  Dynamic Failure 
Lastly, the model used in Section 5.3 was altered so that 
a p-wave with a PPV of 3 m/s was applied. Based on the 
equation developed by Kaiser et al. (1996), this is 
approximately equivalent to the PPV at a distance of 20 
m from a mining induced seismic event of magnitude 
3.0. This is large enough to cause significant damage to 
underground excavations. The wave was propagated 
through the model and the right end of the bar was left 
unconstrained so that the wave could cause damage. 

  
 

Figure 20: Relationship between the product of block mass 
and block acceleration and the product of joint tensile strength 
and joint area 

  
 

  
 

  
 

  
 

 

The unconstrained end of the bar was ejected to the right 
during the simulation. Figure 21 shows the velocity 
vectors and damage that occurred for a joint tensile 
strength of zero. The width of the ejected area 
corresponded with exactly one-half of the wavelength 
associated with the propagating wave. Further, the peak 
ejection velocity was equal to twice the PPV of the 
wave, corresponding to the doubling of the velocity at a 
free surface. 

 
   

 

Figure 21: Velocity Vectors and Joint Opening for One-
Dimensional Wave Propagation in Rock Mass Model with no 
tensile strength 

 
 
 

  
 
 

   
  

  

  
  

 
  
 

 
   

  
  

  
 

  
    

 
 

 
 
 
 

 
  

  
 
 
 

  
 

  
 
 
 

 

 
 

   
   

  

 

 

The ejection velocity was observed to decrease with 
distance into the rock bar. The ejection velocity and the 
damaged length of bar was also observed to decrease 

with increasing joint tensile strength. However, the 
relationship between the wave parameters and damage is 
more complicated and the absence of confinement with 
distance from the free surface prevents any meaningful 
results from being extracted. A two-dimensional (2-D) 
simulation with appropriate in situ stresses is required. 

6.  CONCLUSIONS  

Based on the simulated quasi-static and dynamic 
experiments, the Voronoi joint rock mass model is 
appropriate for use in mechanism-based dynamic 
simulations involving rock fracture and ejection. The 
model behaves reasonably under both static and dynamic 
loading. It is also capable of accurate wave propagation. 
Significant understanding of the dynamic simulation 
process was achieved as well as a better understanding 
of wave propagation and dynamics in general. The rock 
mass model presented in this work has the ability to: 

(i) 

(ii) 

(iii) 

(iv) 

Fail and deform in a ductile manner under high 
confinement, 
Fail in a brittle manner under low confinement, 
Fracture and allow discrete rock blocks to detach 
from the rock mass under both static and dynamic 
loads, and 
Transmit elastic waves without distortion. 

This preliminary one-dimensional investigation, 
provides insight into the dynamic failure of rock 
materials. It shows that the stresses induced in the rock 
near a free surface during dynamic loading are 
significantly different than those that occur within a 
constrained solid. In the vicinity of an unconstrained 
surface, the accelerations associated with a seismic wave 
are important to understanding rock fracture and 
ejection. Forces develop along planes of weakness that 
are equal to the product of the mass and acceleration of 
the rock block attempting to eject. For a seismic wave of 
given PPV, higher frequencies will be associated with 
higher accelerations and have the potential to be more 
damaging to a rock surface. 

The main objective of this work was to develop a model 
which could be used for further study and to better 
understand the physics associated with dynamic rock 
damage. It is acknowledged that one of the limitations of 
this rock mass model is that it is based only on static 
material properties, and it is well known that many 
materials, including rock, exhibit different strength 
behavior under static and dynamic loading. However, 
dynamic behavior of rock is difficult to quantify and to 
do this would require considerable rock and site 
information. Therefore, incorporating such complexity 
is, at this time, beyond the scope of this work. 

Despite this limitation, this rock mass model can be used 
to further investigate the stability of underground 
openings subjected to ground vibrations. In the future, 



 
 
 
 
 

 

   

 
 

 
 

 
 

  

 

   
  

 
 

  
 

 

 

 
 

  
  

 

  
  

 

 
 

    

 

  
 

  

 

 

 

  
 

 

 
  

 
 

 

 
 

  
 

  

 

 
 

 

  
  

 

   
  
 

 

this basic methodology can be adapted and modified to 
incorporate specific joint patterns, more complex 
material and joint models, and etc., as needed. The 
beginnings of such work is presented in a companion 
paper that applies this method to a 2-D excavation model 
(Raffaldi and Loken, 2016). 

DISCLAIMER  

The findings and conclusions in this paper have not been 
formally disseminated by the National Institute for 
Occupational Safety and Health and should not be 
construed to represent any agency determination or 
policy. 

Mention of any company or product does not constitute 
endorsement by the National Institute for Occupational 
Safety and Health. 
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