U.S. DEPARTMENT OF HEALTH, EDUCATION AND WELFARE CENTER FOR DISEASE CONTROL NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH CINCINNATI, OHIO 45226

HEALTH HAZARD EVALUATION DETERMINATION REPORT NO. 77-103-474

OCCIDENTAL CHEMICAL COMPANY LATHROP, CALIFORNIA

MARCH 1978

I. TOXICITY DETERMINATION

Based on a series of medical evaluations conducted at Occidental Chemical Company in July 1977 the following conclusions are reported:

A) Employees in the Ag-Chem area at the time of the study were judged to be exposed to toxic concentrations of dibromo chloropropane (DPCP).

B) Workers who had an occupational history that included exposure to DBCP were more likely to have abnormalities of sperm counts than controls.

C) Testicular biopsies done in ten individuals as well as cumulative DBCP exposure history indicate a dose-response type situation. Those workers who were exposed the longest were more likely to have reduced or zero sperm counts.

These conclusions as well as other results contained in the report are a result of numerous medical and biological tests. Data obtained from DOW and Shell Companies served to substantiate results at Oxy-Chem and were instrumental in indentifying DBCP as the causative agent.

Page 2 - Health Hazard Evaluation Determination Report HE 77-103

II. DISTRIBUTION AND AVAILABILITY OF DETERMINATION REPORT

Copies of this determination report are currently available upon request from NIOSH, Division of Technical Services; Information and Dissemination Section; 4676 Columbia Parkway; Cincinnati, Ohio 45226. After 90 days the report will be available through the National Technical Information Service (NTIS); Springfield, Virginia. Information regarding its availability through NTIS can be obtained from NIOSH Publications Office at the Cincinnati address. Copies of this report have been sent to:

- a) Occidental Chemical Company
- b) Authorized representative of employees
- c) U.S. Department of Labor, Region IX
- d) NIOSH Region IX

For the purpose of informing the approximately 200-300 employees, the employer shall promptly post for a period of 30 calendar days the determination report in a prominent place(s) near where exposed employees work.

Page 3 - Health Hazard Evaluation Determination Report HE 77-103

III. INTRODUCTION

In late June and early July 1977 the Oil, Chemical, and Atomic Workers Union (OCAW), Local 1-5 asked seven male employees of the Occidental Chemical Company's Agricultural Chemical Division (ACD) to volunteer for sperm analysis. The reason for such an unprecedented action was the persistence of an unfounded suspicion that the men in this area of the plant were infertile. The results of these sperm counts were sent to Dr. Donald Whorton, University of California, who had functioned as a consultant to the Union in the past (the laboratory would only release the results to a physician). By the middle of July, Dr. Whorton had received seven sperm count reports, all of which were abnormal. Dr. Whorton informed the Secretary-Treasurer of the OCAW local of the abnormal results and requested an opportunity to meet with the men. On July 19 Dr. Whorton participated in a joint meeting with the management of Occidental Chemical and the Union. At that meeting Dr. Whorton stated that he wished to talk with the men and to re-test them. This was agreed upon. Later in the afternoon Dr. Whorton met with six of the seven men, five of whom were requested to submit to re-testing. The sixth man was omitted because of a prior vasectomy. Arrangements were made for the men to be re-examined on July 22, 1977 in Berkeley, California. Each man was requested to refrain from further ejaculations until after the examination. Dr. Whorton had a later meeting with both the Union and the management on the evening of the 19th to reconfirm the procedures.

Page 4 - Health Hazard Evaluation Determination Report HE 77-103

On July 22 the five men came to Dr. Whorton's office in Berkeley, California for the re-examination. Each had been given a medical history questionnaire to complete prior to the examination. On arrival at the office each was given a specimen container and each provided a semen specimen. The specimens were immediately taken to the laboratory at Alta Bates Hospital for analysis. Also while at the hospital blood samples were taken for complete blood count with differential, SMA 12, T3 resin uptake, T4, serum testosterone, follicle stimulating hormone (FSH), and luteinizing hormone (LH). A urine specimen for routine urinalysis was also obtained. The men returned to Dr. Whorton's office and each reviewed his medical questionnaire with Dr. Whorton. Dr. Whorton also asked a series of specific questions relating to the genitourinary system. He then performed a complete physical on each individual. Late in the afternoon of the 22nd Dr. Whorton received the results of the semen analyses from the laboratory. Again, all results were decidedly abnormal; most men were azoospermic, the remainder severely oligospermic. Each man was informed of the results of his sperm count.

Dr. Whorton then informed the Union and the Company of the results. On July 23, 1977 he met again with the Union and Company representatives to determine other individuals to be tested. A list of all current ACD workers, mechanics Page 5 - Health Hazard Evaluation Determination Report HE 77-103

assigned to the ACD area, clerical personnel assigned to the ACD, and the laboratory personnel who work with various ACD products was assembled. In addition, several former ACD employees who still worked for Occidental were included. In total, 36 individuals in addition to the original five were examined during the next two weeks. Each received a similar medical examination and underwent similar laboratory testing as the original five. The only exceptions were the vasectomized males who, of course, were not requested to give a sperm sample. The females were not tested for serum testosterone.

Of the 41 workers examined three were women, eleven were men with previous vasectomies, and twenty-seven were men who were able to provide a semen specimen.

None of the three women experienced abnormal menstrual cycles and all had previously borne children. None of the men had loss of libido, difficulty with erection or ejaculation, loss or altered distribution of facial or body hair, evidence of testicular atrophy or epididymal abnormalities, evidence of gynecomastia, or abnormalities of the prostrate. Three had varicoceles, but all three had previously fathered children. Seven of the 36 had never fathered children. Some of the production workers complained of experiencing occasional symptoms such as mild headaches, nausea, light headedness, and weakness when formulating some organophosphorous pesticides. Symptoms due to irritation of the upper respiratory tract were also mentioned by some as being associated with their work in the manufacture of certain thiocarbamate compounds. Page 6 - Health Hazard Evaluation Determination Report HE 77-103

No other important information was brought to light by the history of the physical examination of any of the workers. Laboratory studies revealed no hepatic, renal, hematopoietic, or thyroid abnormalities, other than a few which were consistent with previous medical problems.

Of major note, however, was the relationship between duration of exposure to dibromochloropropane (DBCP) and sperm counts and levels of LH and FSH. Early in the investigation it became apparent that men who had worked in the ACD for three or more years were likely to have decidedly depressed sperm count. Equally apparent was the suggestion that men who had been employed in the ACD for only a very few months appeared to have relatively normal sperm counts. In order to examine the relationship between exposure duration and sperm counts, three women, eleven men with vasectomies, two former employees of ACD, and three men with sperm counts greater than ten million but less than 40 million were excluded from the original group of 41. Remaining were eleven men with indisputably depressed sperm counts (one million or less) and 11 men with sperm counts many consider to be within the normal range. (greater than 40 million/ml). These two groups were then compared by age, time worked in ACD, and serum LH, FSH, and testosterone levels. Table 1 shows this comparison. Here it can be seen clearly that the mean is significantly higher in Group A (severely affected), a finding consistent with the presence of oligospermia in these individuals. The FSH levels in Group B (the normal sperm group) are in a range comparable with those in a larger unexposed population from other studies.

Page 7 - Health Hazard Evaluation Determination Report HE 77-103

Group A also had a higher mean LH level. It is possible that this also represents a response to testicular damage, although serum testosterone levels are similar in the two groups, thus the stimulus for the increase in LH is not known.

The two women workers not currently using oral contraceptives have normal FSH and LH results.

A most striking aspect of the data was the between group relationship of exposure time and response. In group B, mean exposure time was only a few months while mean exposure time in group A was 3 years. Although the paucity of intermediate data points is regrettable, it is worthy to note that the three men with sperm counts greater than 10 million but less than 40 million had exposure times approximating one year.

IV. HEALTH HAZARD EVALUATION

In late July of 1977 both the Union and the Company requested NIOSH to perform a Health Hazard Evaluation on the remaining workers in the plant. NIOSH contracted with Dr. Whorton for this study. Dr. Whorton sub-contracted with Dr. Thomas H. Milby of Environmental Health Associates, Berkeley, and Dr. Ronald Krauss of Alta Bates Hospital. Berkeley, for assistance in this study. Page 8 - Health Hazard Evaluation Determination Report HE 77-103

A. Rationale

After analysis of the results of the first forty-one examinations, the need to address four major questions in the subsequent Health Hazard Evaluation became apparent:

- Did the infertility problem extend beyond the ACD to involve other male employees;
- What was the extent of the infertility problem in former male employees of the ACD;
- 3) Is there a hormonal assay available that is equally effective as a sperm count for identifying affected individuals; and
- 4) Although DBCP was considered to be the most likely causal agent, could one or more other chemical agents also be involved.

In order to answer these questions a rationale for the approach to the medical evaluations of the remaining employees was formulated. Two major decisions were involved. First, to which employees should the examination be offered. Some consideration was given to examining only a sample of the Occidental Chemical Company plant population, and a diagram (Figure 1) was prepared to aid in the sample selection process. However, this notion was abandoned in favor of offering the examination to the entire employee population. This approach was chosen because it was felt that any employee who wished to be examined should be given the opportunity.

The second decision addressed the content of the Health Hazard Evaluation Medical Examination. Careful assessment of

Page 9 - Health Hazard Evaluation Determination Report HE 77-103

the data from the first forty-one examinations made it clear that there would be little gained by exhaustive medical workup on each of the subsequent participants. Accordingly, an abbreviated medical history form and physical examination strategy were devised. The questionnaire focused on the reproductive system, especially reproductive history. Medical evaluation was largely confined to the genitourinary system and laboratory work was limited to sperm counts and evaluation of certain hormonal levels that appeared to hold promise as indicators of effect.

B. Methods

A NIOSH trailer was brought to the plant site and all examinations were conducted therein. The employees were informed by both the Union and the Management about the study and were urged to participate. The transmittal of information was accomplished by both the Union shop stewards and the Plant Foreman. Patients were scheduled for the examination and collection of sperm and blood samples by the company nurse. She distributed specimen containers along with semen collection instruction sheets written by the authors. All sperm specimens were obtained at home immediately prior to coming to Employees were requested to utilize masturbation for work. collection, however coitus interruptus was also acceptable. The blood for determination of the endocrine levels was obtained in the early morning hours prior to 9:00 a.m. All specimens were sent to the clinical and endocrine laboratories

Page 10 - Health Hazard Evaluation Determination Report HE 77-103

at Alta Bates Hospital, Berkeley, California, within two hours of collection. Sperm counts were done daily. The serum for determination of endocrine levels was promptly prepared by the laboratory and frozen for later batch running. Employees of certain work areas (Best products, ACD, field applicators, and distributors) also had blood drawn for SMA 12 analysis at the request and expense of the company.

All patients were seen either by Dr. Donald Whorton or Dr. Tom Wilcox (the participating NIOSH physician). Both physicians completed the history form for each individual by recording the patient's verbal response to oral questions. Physical examinations were also done according to a standardized format.

A major, never well-resolved problem was estimation of individual exposure to DBCP. For data analysis purposes exposure was coded two ways, both qualitative. The first of these qualitative exposure estimates was based upon simply whether the participant had ever worked in the ACD. A somewhat more refined, though yet qualitative estimate of exposure was devised later in the study when it was realized that exposure to the chemical DBCP could have occurred in the past in several areas in the plant in addition to the ACD, notably the pellet plant where DBCP was formulated for a brief period with fertilizers. Applicators, set-up men, and demonstrators constituted another group not originally classified as exposed.

Late in the study, a semi-quantitative estimate of ex-

Page 11 - Health Hazard Evaluation Determination Report HE 77-103

posure was devised. Each employee was questioned about his exposure to DBCP. Time in ACD was considered de facto exposure. The total time of exposure was estimated by months worked in ACD, pellet plant, application, etc. This information was then coded and reduced. The data were grouped according to the time of exposure in groups large enough to be statistically useful. In some individuals in whom the fact of exposure was known, no reasonable quantification could be determined. These employees were placed into a group of unquantifiable exposure.

The various biostatistical strategies applied to the analysis of data gathered from medical histories, physical examinations, laboratory testing, and job classification included simple descriptive presentation of distributions of results by age and exposure categories, calculation of Pearson correlation coefficients, one-way analysis of variance, stepwise multiple regression, and discriminant function analysis.

Production records of formulated products by the ACD from 1968 to July 1977 were combined with the composition information for each product (in terms of technical materials by weight) to determine monthly amounts of technical materials processed by the ACD.

Finally, in an effort to reach employees who chose not to participate in the study, a questionnaire was prepared and distributed by a foreman. The unsigned questionnaires were then returned to a collection box in sealed envelopes. Page 12 - Health Hazard Evaluation Determination Report HE 77-103

V. Results

1. The Study Population

The entire population at risk was 310 individuals. Twohundred sixty-one were hourly plant employees; fifteen individuals were employed as applicators, set-up men, or tractor drivers, and the remainder were salaried employees. Onehundred ninety-six male workers were examined, including the 38 who were originally examined prior to HHE-supported investigation. Five women workers were examined; three prior to the HHE and two included in the HHE-supported evaluation. In addition, two neighboring dairy farmers were examined at their request. Thus a total of 203 individuals were examined and evaluated. This report will focus on the 196 male workers, since no effects of exposure were found in the five women employees. One-hundred twelve workers were not seen; however, 62 of them were reached by questionnaire. The nonparticipants will be discussed later in this report.

Table 2 provides the number and percentage of hourly employees by work area who participated in the examination, the number who responded to the questionnaire, plus the number and percentage of nonparticipants who neither appeared for examination nor completed the questionnaire. Table 3 shows the number of nonvasectomized and vasectomized men by exposure group.

2. The Work Areas

The various work areas within the plant were the warehouse, the ammonia plant, the fertilizer plant, the Page 13 - Health Hazard Evaluation Determination Report HE 77-103

Agricultural Chemical Division plant, Best products, pellet plant, and the phosphate plant. Another large group of employees was comprised of maintenance men who generally tended to work all over the plant. The remaining workers were classified as clerical.

The warehouse was a general operation that usually did not involve handling of products from the ACD plant. The ammonia, fertilizer, pellet, and phosphate plants were related in that they made ammonia-phosphate-type fertilizers. The ACD plant produced agricultural chemicals for use by commercial farms. The Best products produced insecticides and chemicals for household or consumer use. The maintenance employees, sub-divided into many smaller crafts or trades, were employed throughout the plant, frequently rotating in and out of particular areas. Some maintenance employees were assigned to specific areas. This was true in the ACD plant. Other maintenance workers were assigned to specific repair shops and only infrequently visited the plant area. The clerical workers included in the study were those primarily from the ACD plant or adjacent areas.

The applicators were employees who worked for Occidental Chemical Company but were responsible for demonstration, setup operations, or actual application of chemicals for farmers.

Table 4 is the distribution of the participants by work area and age group.

3. Production Records

Tables 5A through F summarize the amount of technical

material used per quarter from 1969 to 1977 for selected chemicals. DBCP, epichlorohydrin, ethylene dibromide, and carbaryl were included because of the possibility that exposure may be associated with adverse reproductive effects. Toxaphene and methyl parathion were added as examples of commonly used chemicals. Other heavily used chemicals included Diazinon, Dinoseb, Endosulfan, Malathion, Maneb. Parathion, and Zineb. Other chemicals were not consistently used during the time period or were used infrequently.

The Table 5A shows that 1, 2-dibromo-3-chloropropane was extensively used throughout the entire period. Information from both individual workers and company officials indicated that in the early 1960's DBCP was used in the pellet plant for impregnation into pellet fertilizers. This process operated for two or three years and has not been utilized since. No production data were available on the amount of DBCP used prior to mid-1968.

4. Estimation of Exposure

Initially, the assumption was made that anyone who worked in the ACD plant was exposed to DBCP. Based on this assumption, there were 135 ACD or former ACD workers and 61 individuals who never worked in the ACD plant. However, further refinement of this exposure index was necessary since DBCP had been used in the pellet plant and was also used by the applicators. By this refinement, 154 individuals were exposed to DBCP; 42 were not. For individuals who were Page 15 - Health Hazard Evaluation Determination Report HE 77-103

currently working in ACD, exposure duration could be calculated. However, for most individuals--for example mechanics --who were periodically in and out of ACD, this exposure tabulation was more difficult. Because of the paucity of reliable records prior to 1976, the investigators were forced to rely upon individual memories to estimate length of exposure. The exposures were added in a cumulative manner in order to provide a sum by months or years. Finally, there were some exposed workers for whom no measure of time could be determined and they were thus placed in the category of unquantifiable exposure.

Personal communications from Dr. Stephen Rappaport and Dr. Robert Spear, industrial hygiene consultants from University of California, Berkeley have shown that in April and July of 1977 eight-hour time-weighted exposure to DBCP in the ACD-plant was less than 0.4 ppm.

5. Sperm Counts

As discussed earlier in this report, it appears that the best indicator of response to DBCP exposure in our population is the sperm count. Accordingly, a number of statistical manipulations, both descriptive and analytical, were carried out on our sperm count data. Of special interest, of course, are the relationships, if any, between sperm counts, exposure, age, work area, and hormone levels.

a. Sperm Count vs. Exposure

The original study, discussed earlier in this report found a clear relationship between exposure time and sperm count, at least in two exposure Page 16 - Health Hazard Evaluation Determination Report HE 77-103

(less than 3 months and more than 3 years). group's In these data, a wide gap containing only three data points existed between the two groups. Table 6 is an attempt to show the relationship between azoospermia and oligospermia (less than 40 million), and normospermia (40 million or greater) by exposure duration utilizing additional data obtained in the HHE. In this comparison, vasectomized men are excluded. A clear increase in the prevalence of oligospermia with increasing exposure is evident from this table. This association is especially striking after 43 months of exposure. Other ways of looking at sperm count and exposure are seen in Tables 7 , 8 , and 9 and Figures 2, 3, and 4.

Figures 2 and 3 show cumulative distribution of sperm count by exposure. Figure 2 is cumulative distribution of sperm counts for two groups: once employed in ACD and never employed in ACD. The median sperm count for once in ACD was 45 x 10^6 /ml, while the median sperm count for never in ACD was 73.3 x 10^6 /ml. Figure 3 is cumulative percentage distribution for sperm count for two groups; exposed to DBCP or never exposed to DBCP. The median sperm count for those with history of exposure to DBCP was 45.6 x 10^6 /ml while for the non-exposed group the median sperm count was 78.7 x 10^6 /ml. The exposure category in Figure 3 is considered by us to be more accurate than that in Figure 2 since the category "never been employed in ACD" includes some individuals exposed to DBCP elsewhere. The reason for use of the median sperm count Page 17 - Health Hazard Evaluation Determination Report HE 77-103

in Figures 2 and 3 is that the median is a better statistical tool in this situation because of the extremes in the data. These extremes are best shown in Tables 8 and 9. In Table 9 for example, in the age group of 30-39, the mean sperm count is 57.6 x 10^6 /ml, the standard deviation is 59.2 x 10^6 /ml, the minimum sperm count is 0, and the maximum is 232 x 10^6 /ml. An even more extreme example is seen in the 40-49 age group: a minimum of zero and a maximum of 358 x 10^6 /ml, a mean of 90.1 x 10^6 /ml, and a standard deviation of 126.2 x 10^6 /ml. This problem is also seen in Table 8.

Table 7 is the cross-tabulation by grouping of sperm counts by 10 million in the exposed and nonexposed groups. This data is represented in Figure 4, a bar graph. There is a marked difference in distribution as the exposed group has a marked predominance of sperm count below 40 million, while the nonexposed group the predominance is above 40 million.

Although analysis of sperm count by place of work provided little useful information, worthy of note is the fact that 9 of 14 applicators had sperm counts less than 40 million.

b. Sperm Count by Age

Because of the possibility that age and sperm count are associated, we examined age vs. sperm count in both exposed and nonexposed employees. Table 10 is a comparison of sperm count by age. The sperm counts are divided into groups Page 18 - Health Hazard Evaluation Determination Report HE 77-103

of ten million. All above 120 million are grouped together. The zero sperm counts were also grouped together in a single category. The reason for selecting these group-intervals will be discussed later in this report. Figure 5 is a scattergram which demonstrates that there is no significant relationship between sperm count and age. Figures 6 and 7 are scattergrams for the 35 nonexposed and 107 exposed employees by sperm count and age. Again, there appears to be no significant association between sperm count and age.

6. Serum Hormone Levels

The initial study of 38 male ACD employees suggested that serum levels of FSH, LH, and/or testosterone might hold promise as valid indicators of DBCP induced sperm count depression. Because of the nontrivial problems involved with collection of semen and interpretation of sperm counts, and also because of surprisingly large and probably increasing prevalence of men with vasectomies, the value of a reliable serum indicator of testicular function would be considerable. Accordingly, we spent a good deal of effort in examining the relationship between levels of these three hormones and age, exposure, and sperm count.

Serum hormone assays for FSH, LH, and testosterone were done on all medically examined participants. The results were categorized into four groups, vasectomized and nonvasectomized by nonexposed and exposed status. The data were analyzed for age relationship. In the nonvasectomized exposed group, nine individuals who had not provided sperm samples were included. In the case of two individuals with sperm counts, the results of the hormone assays were excluded for technical reasons.

a. FSH Values

Tables 11 and 12 show the mean, standard error, and range of FSH levels by 10-year age groups in 35 men never exposed to DBCP and 114 men exposed at one time or another to DBCP. Figures 8 and 9 are scattergrams of the same data. There is a significant increase in FSH with age in both groups.

Tables 13 and 14 show the mean, standard error, and range of LH levels by 10-year age group in 35 men never exposed to DBCP and 114 men exposed to DBCP. Figures 10 and 11 are scattergrams of the same data. There is significant increase in LH with age in the exposed group but not in the unexposed group.

Tables 15 and 16 show the mean, standard error, and testosterone levels by 10-year age group in 35 men never exposed to DBCP and 114 men exposed to DBCP. Figures 12 and 13 are scattergrams of the same data. There is a significant decrease in testosterone with age in the exposed group, but not in the unexposed group.

Comparison of sperm counts and FSH assays were done for both the exposed and nonexposed groups. Table 17 shows the mean FSH value by grouped sperm count values for the nonexposed workers. Table 18 is a different grouping Page 20 - Health Hazard Evaluation Determination Report HE 77-103

of the data in Table 17. Group 1 includes from zero to 29 million sperm per ml. Mean FSH values in Group 1 are much higher than the means of the other three groups. Table 19 is a comparison of group sperm count and FSH values for exposed workers. Table 20 is a condensation of Table 19 in that Group 6 now encompasses sperm counts from 50-99 million, and Group 7, 100 million and above. The most striking observation is the difference in Group 0 from all other groups.

b. LH Values

LH values and group sperm count data were compared for both the nonexposed and exposed populations. Table 21 shows the mean LH values by sperm count group among nonexposed individuals. Table 22 is a condensation of Table 21 similar to that described above for the FSH values. There are no apparent differences in LH among these groups. Table 23 shows the mean LH values by sperm count group for the exposed individuals. Table 24 is a condensation of Table 23. There is a very striking difference between Group 0 (azoospermic) and the other groups.

c. <u>Testosterone</u>

Serum testosterone values were compared to grouped sperm counts for both the nonexposed and exposed populations. Table 25 is a comparison of the mean testosterone levels by grouped sperm counts for the nonexposed population. Table 26 is a condensation of Table 25. There appear to be no important differences among any of the groups. Table 27 Page 21 - Health Hazard Evaluation Determination Report HE 77-103

is the mean testosterone level by sperm group for the exposed population. Table 28 is a condensation of Table 27. Again, there appear to be no important differences among the groups.

d. <u>Comment on Statistical Interrelationships Between</u> <u>Observed Sperm Counts and Hormone Levels</u>

One of the variables of principal interest in this investigation was sperm count. It is illuminating to examine how sperm count is related to the many physiological measures for which data were collected. The mode of statistical analysis known as multiple regression provides a means of examining and understanding the complex dependency of a response, or dependent variable (i.e. sperm count) on a set of stimulous variables (i.e. endocrine levels and SMA 12 measures). Specifically, it is important to know if sperm count can be predicted on the basis of knowledge of a set of one or more physiological measures.

Thirty-five men who had provided both semen and blood samples had never been exposed to DBCP. There were 116 nonvasectomized men who had been exposed to DBCP but this group was reduced to 90 for this analysis because of missing data or unquantifiable levels of exposure to DBCP. Number of months exposed to DBCP was ascertained by the examining physicians and this variable was included in the analysis of this group.

Stepwise multiple regressions were performed separately for both exposed and nonexposed groups. The endocrine variables LH, testosterone, and FSH were considered together with age as independent variables for the unexposed group, and the effects of these variables on sperm count were examined. None of the variables were found to be individually significantly related to sperm count at p = .05. Not surprisingly, the summary table of the stepwise regression demonstrates that no linear combination of these variables was found to be significantly related to sperm count at p = .01.

The matrix of correlation coefficients for the exposed group is provided in Table 29. Some unusually large observed associations are noteworthy; sperm count is inversely related to exposure, LH and FSH at p = .01. Exposure is the likely causal factor in the observed associations between sperm and LH and FSH since it is also highly correlated with these variables at p = .01. LH and FSH are themselves highly correlated and account for the largest observed association, r = .63376. Table 30 is the same correlation for the nonexposed.

Indeed, the summary table of the stepwise regression of all of the independent variables on sperm count indicates that exposure is the overwhelmingly best predictor of sperm count. The variables LH and FSH contribute very little to the prediction of sperm count once exposure is included in the regression equation. The exposure variable itself accounts for 14.7 percent of the total variation. Including all the variables in the regression equation accounts for 27.2 perccent of the total variation. The overall F statistics at each step of the regression are significant at p = .01.

The advantages of using blood samples as opposed to semen samples for screening exposed populations for affected individuals are well recognized. Various discriminant analyses were performed to evaluate the predictive values of the various hormone tests. Tables 31-35 provide the ultimate classifications of the sample arising from the application of the derived discriminant functions to the sample data. Oligospermia was defined differently in each of these tables. Classification by individual discriminant functions was best when oligospermia was defined as less than 20 x 10^6 sperm/ml. (This result is perhaps attributable to the relative contribution of azoospermics being greater when oligospermia is thusly defined).

Tables 36-39 show the results of the predictive values of LH and FSH individually. FSH is the single most sensitive predictor for having the fewest false positives, but use of either FSH or LH results in a large percent of false negatives. Approximately one-half of the true positives are identified by either FSH or LH, but use of LH results in a large number of false positives.

In summary, the FSH either alone or with LH could be used as a screening tool for populations in which sperm samples are unobtainable. However, according to the data of this study, a large percentage of false negatives would occur using either of these indicators. Use of FSH is preferable on the basis of indications that fewer false positives will occur.

7. SMA 12 Results

Complete Serum Multiphasic Analysis (SMA)-12 data was collected on 64 men, 18 of whom were vasectomized. Semen samples were obtained and sperm counts were done on the remaining 46 men. A stepwise multiple regression was performed to ascertain if a linear combination of SMA 12 values and age could be useful in predicting an individual's sperm count. Page 24 - Health Hazard Evaluation Determination Report HE 77-103

Prior to the actual regression calculations a matrix consisting of pairwise Pearson correlation coefficients is calculated for all the regression variables and this matrix is given in Table 40. All pairwise correlations presented in this table are based on 46 men. One may observe that although many of the SMA 12 variables are inter-correlated, only calcium is significantly related to sperm count and this association is significant only at p=.05 and not at p=.01. The largest observed correlation exists between calcium and albumin, r=.65712. Cholesterol is highly related to glucose, total protein and LDH, r=.64719, r=.57802 and r=.55185 respectively. Age is not significantly related to any of the variables at p=.01 for this data.

Table 41 provides a summary of the stepwise regression for assessing the dependency of sperm count on the SMA 12 variables and age. One can see from this table that only calcium contributes significantly (at p = .05) to the prediction of sperm count in the presence of all variables. The percent of the total variation in sperm counts explained by calcium alone is 9.375%. Including the seven most important variables in the regression equation raises this percent of variation explained to 31.391%. (see R square column of Table 41). However, although the overall regression remains statistically significant the inclusion of additional variables into the regression equation after calcium does not Page 25 - Health Hazard Evaluation Determination Report HE 77-103

contribute significantly in reducing the unexplained variation. Table 42 is a summary of the SMA 12 means by area of work. Page 26 - Health Hazard Evaluation Determination Report HE 77-103

8. Questionnaire to Nonparticipants

An assessment of nonparticipants was done by questionnaires. Each worker who had not appeared for a medical examination received a multiple-choice questionnaire and an envelope to ensure anonymity. Sixty-two of the original 112 nonparticipants responded to the questionnaire. Table 43 shows the distribution of the reasons for nonparticipation for those reporting. Table 44 shows the amount of work experience in ACD. It is interesting to note that the majority of the employees were either not interested, had vasectomies, or had sterile wives. Only a small minority did not want to give a semen specimen. Only one individual cited religious reasons for nonparticipation. The majority either had not worked in ACD or had worked there for less than one year. Table 2 shows the total production workers, the number of participants, the number of respondents to the questionnaire, and the number who did not respond to the questionnaire by area of the plant. Eighty percent of all production workers were either examined or responded to the questionnaire. Response by the acid plant workers was very poor; however, the response was much better in the other sections of the plant. During the medical examination, each worker was questioned about current birth control measures. Table 45 shows the results of the responses. The largest two groups either used no birth control measures or the husband had previously had a vasectomy. Thirteen percent of the respondents reported that oral contraceptives were used by their spouse.

VI. Summary and Discussion

The extent of the infertility problem at the Occidental Chemical Company's Lathrop plant can be summarized as follows: 13.1 percent of the exposed, nonvasectomized group were azoospermic, 16.8 percent were definitely oligospermic, and 15.8 percent were mildly oligospermic (20-39 million sperm per ml of seminal fluid). Of the 142 men examined who provided semen specimens, 75.4 percent were eventually classified as exposed. One can assume from the responses of the nonparticipating group that the majority of the exposed individuals were seen.

During the investigation, individuals from areas other than ACD were found to have been exposed at one time or another to DBCP. In the early 1960's the company impregnated fertilizer pellets with DBCP. Some of the individuals who worked in this area were found to be severely affected. Also, a high percentage of the applicators, demonstrators, or setup men were found to be affected.

The likelihood of a causal relationship between DBCP exposure and the observed infertility is great, especially if one considers the other studies reported from Dow and Shell. Examination of Occidental Chemical Company's production records alone would not have allowed the authors to conclude that DBCP was the sole etiological agent.

FSH, LH, and testosterone assays were done in an attempt to find a hormonal indicator that would predict alterations in sperm count, thus obviating the need to obtain a semen Page 28 - Health Hazard Evaluation Determination Report HE 77-103

specimen in a population of employees exposed to a chemical suspected of possessing infertility-inducing properties. Our observations suggest that either FSH or LH (but not testosterone) could be useful in this role if a study population, like ours, contains a high percentage of azoospermics. The predictive value of both FSH and LH decrease to vanishing if one removes the azoospermics from the study population, as we did by statistical manipulation. In short, in a population of men severely damaged to the point of widespread azoospermia, FSH or LH serum values would likely predict the existence of a problem which would then require the collection of sperm samples for clarification. (Attention is called to Tables 31-39 which indicate a high false negative rate where either hormone assay is used as a case finding). In a population of oligospermic men, neither hormone assay could be counted upon to detect a problem. Thus the sperm count remains the single best indicator of DBCP induced infertility.

In the initial study of the 41 ACD employees prior to the initiation of the HHE, there was 100 percent cooperation among the workers. In the later study the nonparticipation rate among workers was considerable, despite the full cooperation and assurance of both the Union and the Company. A number of those who only responded to the questionnaire but were not interested in participating inthis type of a study gave the reason that either they had vasectomies, their wives were sterile or beyond the child-bearing age, or were not interested for unstated reasons. Only a few individuals stated

Page 29 - Health Hazard Evaluation Determination Report HE 77-103

that they did not wish to give a sperm sample; however, the authors feel that the nature of the examination was inhibiting to many potential participants.

The data we have been able to collect do not provide a clear answer to the question of reversibility of DBCP induced infertility, nor to the issue of carcinogenicity; long-term follow-up will be required to answer both questions. There are also no data about mutagenicity of human germ cells and potential fetal mutogenic effects. The data do indicate that DBCP is a selective germ cell or spermatogonia toxin. Page 30 - Health Hazard Evaluation Determination Report HE 77-103 VII. <u>RECOMMENDATIONS</u>

A) If DBCP is produced or formulated in the future, all effort must be made to keep the environmental concentration below the currently proposed OSHA Standard for DBCP of 1 part per billion (PPb).

B) In an effort to determine the reversibility of injury, repeat semen analysis should be performed at least at yearly intervals for the first five years following the identification of the problem.

C) Workers with significant DBCP exposure should be followed and records be kept on these individuals for at least 30 years. This measure would likely discover any long term effects caused by DBCP exposure.

D) Company and Workers cooperation and participation in the NIOSH DBCP Registry is encouraged.

E) The employer follow the recommendation for medical surveillance of workers outlined in the OSHA proposed standard for DBCP.

Page 31 - Health Hazard Evaluation Determination Report HE 77-103

VIII. AUTHORSHIP AND ACKNOWLEDGEMENTS

Report Prepared By:

Donald Whorton, M.D. Thomas H. Milby, M.D. Harrison A. Stubbs, Ph.D. Environmental Health Associates Berkeley, California

Assistance in Medical Survey and Report Preparation

Channing R. Meyer, M.D. Chief, Medical Section, HETAB

Thomas Wilcox, M.D. Medical Officer, HETAB

Originating Office

Jerome P. Flesch Acting Chief HETAB, NIOSH

Report Prepared Under Contract No. 210-77-0164

The following Tables were prepared from data collected during the months of July and August 1977, at Oxy-Chem, Lathrop, California. These data were collected and analyzed as a part of Health Hazard Evaluation 77-103.

Table I

2

Mean Age, Years of Exposure, Sperm Counts, and Serum FSH, LH and Testosterone Levels in 22 Nonvasectomized DBCP Formulators

Group	N ,	Age	- Yrs	Exposu:	re Yrs	· .	Count ⁶ /ml	F. mlu,	SH /ml	LH mIu/1		Testos [.] ng,	terone /dl
		Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
A	11		1.6++	8.0	1.2+	0.2	0.1*+	11.3	1.8+	28.4	3.3++	459	35
в	11	26.7	1.2++	0.08	0.02+	93	18 ⁺	2.6	0.4+	14.0	2.8++	463	31

*Nine workers with 0 sperm/ $_{ml}$; two with 1 x 10⁶/ml.

⁺Difference between groups A and B significant at p < 0.001. ++Difference between groups A and B significant at p < 0.01.

SEM = Standard error of mean.

TABLE 2

NUMBER AND PERCENT OF OCCIDENTAL CHEMICAL COMPANY HOURLY EMPLOYEES BY WORK AREA WHO PARTICIPATED IN MEDICAL OR QUESTIONNAIRE PHASE OF THE STUDY

WORK	TOTAL EMPLOYEES	# EXAM	% EXAM	# RESPONSES TO QUEST.	#NO EXAM OR RESPONSE	% NO EXAM OR RESPONSE
Ag Chem	2.4	24	100	N.A.	0	0
Best	12	11	91	1	0	0
Maint.	135	82	61	25	28	21
Ammonia Plant	28	14	50	11	3	11
Varehouse	28	7	25	13	8	29
Fertilizer Plant	14	5	35	9	0	0
cid Plant	20	4	20	3	13	65
TOTAL	261	147	56	162	52	20

TABLE 3

NUMBER EXPOSED TO DECP BY EXPOSURE GROUP AND VASECTOMY STATUS

<u>Number</u>	Vasectomy Status	Exposure Group
35	Nonvasectomized	Not exposed
107	Nonvasectomized	Exposed
9	Nonvasectomized (no sample)	Exposed
7	Vasectomized	Not exposed
38	Vasectomized	Exposed

TABLE 4

Work Area by 10 Year Age Group, Number And Percent of Total Workforce

·	AGE GROUP							
WORK AREA	20 -29	30 -39	40 -49	50 59	60 -69	ROW TOTAL		
Warehouse	8 (57.1)	3 (21.4)	1 (7.1)	2 (14.3)	0 (0)	14 (7.1)		
Ammonia Plant	6 (37.5)	7 (43.8)	1 (6.3)	2 (12.5)	0 (0)	16 (8.1)		
Fertilizer Plant	2 (40.0)	2 (40.0)	0 (0)	0 (0)	1 (20.0)	5 (2.5)		
AG Chem Plant	17 (44.7)	14 (36.8)	5 (13.2)	2 (5.3)	0 (0)	38 (19,3)		
Best Products	1 (7.7)	8 (53.8)	4 (30.8)	1 (7.7)	0 (0)	13 (6.6)		
Applicators	1 (6.7)	8 (53.3)	4 (26.7)	2 (13.3)	0 (0)	15 (7.6)		
Pellet Plant	3 (30.0)	1 (10.0)	6 (60.0)	0 (0)	0 (0)	10 (5.1)		
Clerical	3 (33.3)	3 (33.3)	2 (22.2)	1 (11.1)	0 (0)	(3.1) 9 (4.6)		
All Over Plant	$\frac{16}{(22.2)}$	32 (44.4)	15 (20.8)	7 (9.7)	2 (2.8)	72 (36.5)		
Phosphoric Acid Plant	2 (40.0)	1 (20.0)	1 (20.0)	1 (20.0)	0	(30.3) 5 (2.5)		
COLUMN TOTAL	59 (29.9)	78 (39.6)	39 (19.8)	18 (9.1)	3 (1.5)	197 (100.0)		

Numbers in parentheses are percent of row or column

TOTAL PLANT POPULATION	310
NUMBER SEEN	197
NUMBER NOT SEEN	112
REACHED BY QUESTIONNAIRE	62

Table 5A

Pounds of DBCP Formulated By The Agricultural Chemical Division By Quarter From 1968 To 1977

lear, Cmpd, ID#	Jan-Mar	Apr-June	July-Sept	Oct-Dec
1968	-		59499.	327520.
1969	503450.	727554.	136916.	162815.
1970	488076.	441971.	212798.	335275.
1971	418602.	355978.	138865.	315800.
1972	429755.	241890.	406146.	428480.
1973	395910.	464980.	193211.	832214.
1974	622673.	6 78446.	422868.	1159824.
1975	852882.	602052.	553775.	503530.
1976	620786.	445723.	961584.	266734.
1977	728790.	362341.	255401.	-

Table 5B

Pounds of Ethylene Dibromide Formulated By The Agricultural Chemical Division By Quarter From 1968 To 1977

Year, Cmpd, ID#	Jan-Mar	Apr-June	July-Sept	Oct-Dec
1968	-	-	0	0
1969	80620.	36785.	0	3610.
1970	45087.	45087. 44401. 0		0
1971	0	47542.	0	0
1972	0	0	0	0
1973	39708.	0	0	12033.
1974	414889.	0	37543.	0
1975	0	0	0	41166.
1976	37543.	54869.	0	39708.
1977	80860. 0		0	-
₩₩Ŧ₩₩₩Ŧ₩₩Ŧ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		والمستواسفة فالمراجع والمحاولة والمراجع والمحاولة والمحاولة والمحاولة والمحاولة والمحاولة والمحاولة والمحاولة		

Table 5C

Pounds of Epichlorohydrin Formulated By The Agricultural Chemical Division By Quarter From 1968 To 1977

ear, Cmpd, ID#	Jan-Mar	Apr-June	July-Sept	Oct-Dec
1968		4000	1098.	3846.
1969	5915.	10196.	3532.	1856.
1970	5986.	6032.	3620.	3873.
1971	4900.	5562.	2558.	3670.
1972	549.	1561.	463.	83.
1973	4635.	5676.	2444.	9666.
1974	7311.	8764.	4850.	12334.
1975	6413.	2314,	5894.	5069.
19 7 6	4540.	4463.	11468.	3261.
1977	8450.	4435.	3132.	-

Pounds Of Carbaryl Formulated By The Agricultural Chemical Division By Quarter From 1968 To 1977

Year, Cmpd, ID#	Jan-Mar	Apr-June	July-Sept	Oct-Dec
1968		ware .	10665.	3541.
1969	2482.	19556.	176768.	2775.
1970	6428.	19240.	66948.	1087.
1971	1345.	17433.	33320.	0
1972	790.	76037.	47545	106.
1973	0	2663.	9490.	0
1974	0	240.	187.	8239.
1975	4161.	2660.	5938.	436.
1976	545.	1691.	2832.	197.
1977	860.	0	158.	

Pounds of Methyl Parathion Formulated By The Agricultural Chemical Division By Quarter From 1968 To 1977

201 N23

ear, Cmpd, ID#	Jan-Mar	Apr-June	July-Sept	Oct-Dec
148				OCL-DEC
1968		~	24287.	503.
1969	100.	38228.	11850.	15.
1970	5006.	38441.	13167.	2372.
1971	5918.	6173.	17118.	7329.
1972	27701.	33477.	27213.	15087.
1973	36483.	39690.	39747.	18692.
1974	12111.	24408.	16089.	21764.
1975	20803.	17248.	20160.	11650.
1976	17712.	57424.	38408.	23630.
1977	22565.	22120.	13482.	~

Table 5E

Table 5F

Pounds of Toxaphene Formulated By The Agricultural Chemical Division By Quarter From 1968 To 1977

Year, Cmpd, ID#	Jan-Mar	Apr-June	July-Sept	Oct-Dec
#211		ан на спорта при с дани (18 группи) — кул на рай и да на 1900 (19 гл		000-000
1968		-	41902.	5123.
1969	6993.	192018.	167107.	817.
1970	224.	96174.	113767.	1360.
1971	428.	157144.	174365.	0
1972	8696.	190845.	42669.	522.
1973	C	21976.	53997.	3199.
1974	17427.	42130.	43933.	0
1975	240.	16709.	85457.	453.
1976	0	47474.	88421.	694.
1977	0	34135.	33092.	

RELATIONSHIP OF OLIGOSPERMIA AND NORMOSPERMIA WITH EXPOSURE

IN MONTHS TO DBCP IN 126 NONVASECTOMIZED MEN

			EVICODE TO DEC	r		
Sperm Count	None	1-6 Months	6-24 Months	24-42 Months	43 Months	<u>Total</u>
<40 x 10 ⁶ /m1	4 (9.1)	11 (25)	7 (15.5)	8 (18.2)	14 (31.8)	44 (34,5)
>40 x 10 ⁶ /m1	31 (37.8)	37 (45.1)	7 (8.5)	4 (4.9)	3 (3.7)	82 (65,1)
TOTAL #	35	48	14	12	17	126
7	27.8	38.1	11.1	9.5	13.5	100%

EXPOSURE TO DECP

Percentage in parentheses

SPERM COUNTS OF 142 EMPLOYEES OF OCCIDENTAL CHEMICAL COMPANY BY CATEGORY OF EXPOSURE TO DBCP

xposure	SPERM SPERM COUNT IN MILLIONS							NS						
Category	0	1-9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90-99	100-110	110-119	ROW 120+ TOTAI
ever Exposed	1	0	0	2`	1	5	2	3	4	0	2	3	2	10 35
	(2.9)	(0)	(0)	(5.7)	(2.9)	(14.3)	(5.7)	(8.6)	(11.4)	(0)	(5.7)	(8.6)	(5.7)	(28.6)(24.6
nce or Currentl	y				4									
Exposed	14	9	9	11	6	8	8	7	6	2	8	2	2	15 107
	(13.1)	(8.4)	(8.4)	(10.3)	(5.6)	(7.5)	(7.5)	(6.5)	(5.6)	(1.9)	(7.5)	(1.9)	(1.9)	(14.0)(75.4
COLUMN	15	9	9	13	7	13	10	10	10	2	10	5	4	25 142
TOTAL	(10.6)	(6.3)	(6.3)	(9.2)	(4.9)	(9.2)	(7.0)	(7.0)	(7.0)	(1.4)	(7.0)	(3.5)	(2.8)	(17.6)(100.

(parentheses show percentages)

.

Table (8
---------	---

Mean, Standard Error & Range Of Sperm Counts* by 10 Year Age Groups In 35 Employees Never Exposed to DBCP

AGE GROUP	COUNT	MEAN	STANDARD ERROR		
			IMANOK	MINIMUM	MAXIMUM
20 - 29	16	89.7	12.0	30.0	184.0
30-39	8	137.1	38.4	40 D	
40-49	<u> </u>		3014	42.0	372.0
40-49	9	99.0	. 27.3	25.0	201 0
50-59	2	177 6			281.0
	4 -2	147.5	. 147.5	0	295.0
TOTAL	35	106.2		_	~~~,~,~,~, ()
**************************************			والمحمو المحادثة فيصبوه الماحوسية إستجره والجار المتور عموه مصوفات والسيارية المراويسية والمار	0	372.0

* in millions per milliliter

Mean, Standard Error & Range Of Sperm Counts* by 10 Year Age Groups In 107 Employees With History of Exposure To DBCP

AGE GROUP	COUNT	MEAN	STANDARD ERROR	MINIMUM	
00		ana tayan di tana daran di seri di mereka takan di karan		MINIMOM	MAX IMUM
20 - 29	34	65.4	10.3	1.0	244.0
30 -39	46	57.6	59.2	-	
			32.2	0	232.0
40 -49	18	90.1	126.2	0	250 0
0 50				v	358.0
50 -59	9	51.2	16.0	0	153.0
TOTAL	107	(2.0			10010
	LUI	63.8		0	358.0

* Sperm Counts in millions per milliliter

Table 9

877	- L	1.	_	10
1	ap	Τe	2	±υ
		_		

SPERM COUNTS OF 142 EMPLOYEES OF OCCIDENTAL CHEMICAL COMPANY BY 10 YEAR ACE GROUP

GE ROUP	1994 (2000) James (1999 (1996	0	1-9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	8089	<u>90-99</u>	100-110	110-119	120+	ROW TOTAL
	20-	0	4	4	4	1	9	5	3	2	1	4	3	0	10	50
	29	(0)	(8.0)	(8.0)	(8.0)	(2.0)	(18.0)	(10.0)	(6.0)	(4.0)	(2.0)	(8.0)	(6.0)	(0)	(20.0)(35.2)
	30 -	9	3	3	3	6	3]	4	4	1	5	1	3	7	54
	39	(16.7)	(5,6)	(5.6)	(5.6)	(11.1)	(5.6)	(3.7)	(7.4)	(7.4)	(1.9)	(9.3)	(1.9)	(5.6)	(13.0)(38.0)
	40-	4	1	2	4	0	0	2	2	4	0	0	1	1	6	27
	49	(14.8)	(3.7)	(7.4)	(14.8)	(0)	(0)	(7.4)	(7.4)	(14.8)	(0)	(0)	(3.7)	(3.7)	(22.2)(19.0)
	50-	2 (18.2)	1 (9.1)	0 (0)	2 (18.2)	0 (0)	1 (9.1)	1 (9.1)	1 (9.1)	0 (0)	0 (0)	1 (9.1)	0 (0)	0 (0)	2 (18.2	11)(7.7)
	TOTAL	15 (10.6)	9 (6.3)	9 (6.3)	13 (9.2)	7 (4.9)	13 (9.2)	10 (7.0)	10 (7.0)	10 (7.0)	2 (1.4)	10 (7.0)	5 (3.5)	4 (2.8)	25 (17.6)	142)(100.0

(parentheses show percentages)

Mean, Standard Error & Range Of FSH Levels* by 10 Year Age Groups In 35 Employees Never Exposed to DBCP (Nonvasectomized Males)

AGE GROUP	WORKERS	MEAN	ST ANDARD ERROR	MINIMUM	MAXIMUM
20-29	16	2.9	.2	1.6	4.4
30-39	8	3.5	.5	1.8	6.9
40-49	9	3.7	.2	2.7	4.8
50-59	2	6.7	4.0	2.7	10.8
TOTAL	35	3.4		1.6	10.8

Mean, Standard Error & Range Of FSH Levels* by 10 Year Age Groups In 114 Nonvasectomized Male Employees With History of Exposure to DECP

AGE GROUP	WORKERS	MEAN	STANDARD ERROR	MINIMUM	MAXIMUM
20 - 29	36	3.5	• 2	1.3	8.5
30-39	48	5.5	.6	1.1	24.3
40-49	19	7.7	1.4	2.0	28.1
50 - 59	11	5.1	1.2	2.4	15.9
TOTAL	114	5.2		1.1	28.1

Mean, Standard Error & Range Of LH Values* by 10 Year Age Groups In 35 Employees Never Exposed to DBCP (Nonvasectimized Males)

AGE GROUP	WORKERS	MEAN	ST ANDARD ERROR	MINIMUM	MAXIMUM
20 - 29	16	13.2	1.5	4.6	21.8
30 -39	8	14.5	3.2	3.5	29.2
40 - 49	9	14.1	2.5	5.5	28.0
50 -59	2	18.4	7.7	10.7	26.1
TOTAL	35	14.0	an di sana di sa di s	3.5	29.2

Mean, Standard Error & Range Of LH* Levels by 10 Year Age Groups In 114 Nonvasectomized Male Employees With History of Exposure to DECP

AGE GROUP	WORKERS	MEAN	STANDARD ERROR	MINIMUM	MAXIMUM
20 - 29	36	14.4	1.3	1.5	37.8
30-39	48	14.5	1.2	1.0	37.4
40-49	19	18.8	3.3	6.0	56.0
50-59	11	20.2	3.9	3.1	53.2
TOTAL	114	15.7		1.0	56.0

٦

Mean, Standard Error & Range Of Testosterone Levels* by 10 Year Age Groups In 35 Employees Never Exposed to DBCP (Nonvasectomized Males)

AGE GROUP	WORKERS	MEAN	STANDARD ERROR	MINIMUM	MAXIMUM
20 29	16	605.3	30.5	443.0	906.0
30 39	8	574.0	29.0	409.0	661.0
40 - 49	9	545.1	46.4	383.0	760.0
50 - 59	2	531.0	186.0	345.0	717.0
TOTAL	35	578.4		345.0	906.0

and the

* in ng/dl

Mean, Standard Error & Range Of Testosterone* Levels by 10 Year Age Groups In 114 Nonvasectomized Male Employees With History of Exposure to DECP

AGE GROUP	WORKERS	MEAN	STANDARD ERROR	MINIMUM	MAXIMUM
20 -29	36	576.1	32.4	125.0	998.0
30 -39	48	524.4	21.7	275.0	821.0
40 -49	19	447.5	37.5	219.0	775.0
50 -59	11	492.2	42.0	353.0	770.0
TOTAL	114	524.8		125.0	998.0

* in ng/dl

ANALYSIS OF VARIANCE FOR FSH BY SPERM COUNT GROUPS FOR 35 NONEXPOSED EMPLOYEES

VARIABLE FSH BV SPERP

ANALYSIS OF VARIANCE

SOURCE	0.F.	SUM CF SQUARES	MEAN SQUARES	FRATIO	F PROB.
BETWEEN GROUPS	10	68.3360	6.8336	6.247	.000
WITHIN GROUPS	24	26.2537	1.0939		.000
TOTAL	34	94.5897			

GRCUP GRP 0	CCUNT	MEAN	STANDARD DEVIATION	STANDARD Error	PINIPUN	NAXIMUN	95 PCT	CONF	INT FOR MEAN
GRP 3 GRP 4 GRP 5 GRP 6 GRP 6 GRP 7 GRP 8 GRP 10 GRP 11 GRP 12 GRP 13	2 1 5 2 3 4 2 3 2 10 35	1C.2CC0 4.5CC0 3.1CCC 2.72CC 4.2CC0 4.4333 2.55C0 3.45C0 2.7CC0 3.C6C0 3.4829	- 1414 1.0010 - 8485 2.1455 - 8651 - 6364 - 9165 - 4243 - 9240	-1000 -4477 -6000 1.2387 -4425 -4425 -4500 -5292 -3000 -2922	4-4000 1.6000 3.6000 2.0000 2.1000 2.4000 1.8000 1.6000	4.6000 3.7000 4.8000 3.8000 3.0000 4.4000 3.0000 4.8000 10.8000	3.2294 1.4771 -3.4237 8965 1.5417 -3.1678 1.3232 -1.1119 2.3990		5.7706 3.9629 1.8237 9.7632 4.3583 8.2678 5.8768 6.5119 3.7210
	LNGR	CUPED CATA	1.6679	-2819			2.9099	10	
	FIXED EFF Rancch Eff	ECTS PCDEL ECTS PCDEL	1.0459 3.0834	•1768 •9297			3-1180	τα το το	4.0558 3.8477 5.5543

TESTS FOR HOMOGENEITY OF VARIANCES

. . .

Group 0 = Azoospermia

Group $3 = 30-39 \times 10^6/m1$

Group 12 = $110-119 \times 10^{6}/m1$ Group 13 = $>119 \times 10^{6}/m1$

ANALYSIS OF VARIANCE FOR FSH BY SPERM COUNT GROUPS FOR 35 NONEXPOSED EMPLOYEES

VARIABLE FSH BY SPERM

÷

ANALYSIS OF VARIANCE

SCURCE	0.F.	SUN OF SQUARES	MEAN SQUARES	5 04710	
BETWEEN GROUPS	3	34.0683	•	F RATIO	F PROB.
WITHIN GROUPS	31		11-3561	5.817	.003
YCTAL		60.5214	1-9523		
	34	94.5897			

GRCUP	CCUNT	PEAN	STANDARD DEVIATION	STANDARD ERROR	₽1N1MUM	MAXIMUM	95 BCT	CONC	*** *
GRP 1 GRP 2 GRP 3 GRP 4 TCTAL	3 6 11 35	& & & & & & & & & & & & & & & & & & &	3.6387 .9087 1.3289 .8711	2.1008 .3710 .4188 .2249	4.4000 1.6000 2.0000 1.8000	10.8000 3.7000 6.9000 4.8000	-2-4391 1-8298 2-5760 2-6376	TO TO TO TO	INT FOR MEAN 15.6391 3.7369 4.4421 3.6024
	UNGR	CUPEC CATA	1.6679	-2019	1-0000	10.8000			
	FIXED EFF	ECTS PODEL	1.3972	-2362			2.9099	TO	4.0558
	RANDCH EFF	ECTS PCCEL	6.6242	3.3121			3.0012	to	3.9645
				2-3121			-7.0576	10	14.0233

TESTS FOR HOMOGENEITY OF VARIANCES

CCCHRANS C = MAX. VARIANCE/SUM(VARIANCES) = .7903, P = .0C0 {APPRCX.} BARTLETT-BCX F = 4.268, P = .CC5 MAXIMUR VARIANCE / MINIMUM VARIANCE = 17.447

Group 1 = $0-29 \times 10^{6}/m1$ Group 2 = $30-39 \times 10^{6}/m1$ Group 3 = $50-99 \times 10^{6}/m1$ Group 4 = $\geq 99 \times 10^{6}/m1$

ANALYSIS OF VARIANCE FOR FSH BY SPERM COUNT GROUPS OF 105 EXPOSED EMPLOYEES

VARIABLE FSH By Sperm

а

ANALYSIS OF VARIANCE

SCURCE Between Groups Within Groups Total	D.F. 13 91	SUM OF SQUARES 1253.5356 824.6428	MEAN SQUARES 96-4258 9-0620	F RATIO 10-641	F PROB. O
	104	2078.1785			

GRCUP GRP 0 GRP 1 GRP 2 GRP 3 GRP 4 GRP 5 GRP 6 GRP 7 GRP 8 GRP 7 GRP 8 GRP 7 GRP 8 GRP 10 GRP 11 GRP 12 GRP 13 TCTAL	COUNT 14 8 9 10 6 8 8 7 6 2 8 2 2 15 105 UNGRO	<pre></pre>	STANDARD DEVIATION 6.6898 2.7867 2.2038 2.0716 9368 2.3487 1.1940 2.2620 .6772 .6364 .7838 1.4849 1.3435 1.6796	STANDARD ERROR 1-7879 -9852 -7346 -6551 -3825 -8304 -4222 -8550 -2765 -4500 -2771 1-0500 -2771 1-0500 -2788	MINIMUM 4.8000 2.2000 2.8000 1.6000 2.9000 1.7000 3.1000 1.9000 2.3000 2.3000 2.1000 3.7000 1.5000 1.5000	MAX IMUM 28.1000 9.8000 9.1000 8.5000 6.3000 6.3000 7.9000 2.8000 4.8000 4.8000 4.8000 5.0000 5.0000 5.0000 28.1000	95 PCT 10.0803 2.0703 3.8838 2.5581 3.4335 2.8114 3.0518 1.1080 3.3226 -3.3678 2.6948 -10.1915 -7.4209 2.5888	ro	INI FOR MEAN 17.8054 6.7297 7.2718 5.5219 5.3998 6.7386 5.0482 5.2920 4.7441 8.0678 4.0052 16.4915 16.7209 3.7845
	FIXEC EFFE		3.0103	• 2938			4.4644	Ta	6.1946
	RANDCH EFFE	CTS MCCEL	2.8873	.7717			4-7460	ro	5.9131
IESIS FCP	HGPCGENEITY	CF VARIANCES					3.6625	TO	6.9966

TESTS FOR HOPOGENEITY OF VARIANCES

Group 0 = Azoospermia Group $1 = 1-9 \times 10^6 / m1$. . . Group $12 = 110 - 119 \times 10^6 / ml$ Group 13 = $> 119 \times 10^6 / m1$

ANALYSIS OF VARIANCE FOR FSH BY SPERM COUNT GROUPS FOR 105 EXPOSED EMPLOYEES

VARIABLE FSH By Sperm

ANALYSIS OF VARIANCE

SOURCE	D.F.	SUM OF SQUARES	MEAN SQUARES	a	
BETWEEN GROUPS			FLAN STORNES	F RATIO	F PROB.
CONCON GREUPS	7	1242.2261	177.4609	20.592	0
WITHIN GRCUPS	97	835.9524	8+0181		•
TGTAL	104	2078.1785			

GROUP	COUNT	PEAN	STANDARD DEVIATION	STANDARD Error	MINIMUM	MAXIMUM	95 061	CONC	
GRP 0 GRP 1 GRP 2 GRP 3 GRP 4 GRP 5 GRP 5 GRP 5 GRP 7 TGTAL	14 8 9 10 6 8 31 19	13.9429 4.400 5.5778 4.0400 4.4167 4.7750 3.5645 3.368 5.3295	6.6898 2.7867 2.2038 2.0716 .9368 2.3487 1.3556 1.1591	1.7879 .9852 .7346 .6551 .3825 .8304 .2435 .2659	4.8000 2.2000 2.8000 1.6000 2.9000 1.7000 1.7000 1.5000 1.5000	28.1000 9.8000 9.1000 8.5000 5.1000 8.5000 7.9000 5.6000 28.1000	10.0803 2.0703 3.8838 2.5581 3.4335 2.8114 3.0673 2.7762	T0 T0 T0 T0 T0 T0 T0 T0 T0 T0	INT FOR MEAN 17-8054 6-7297 7-2718 5-5219 5-3998 6-7386 4-0618 3-8955
		CUPEC CATA	4.4702	.4362			4.4644	TO	6.1946
	FIXED EFF Randch eff	ECTS PCCEL	2.9357	• 2865			4.7609	ra	5.8981
			0.0107	2.1357			. 2794	ro	10.3796

TESTS FOR HOMOGENEITY OF VARIANCES

CCCHRANS C = MAX. VARIANCE/SUM(VARIANCES) = .6282, P = .0C0 (APPROX.) BARTLEIT-BCX F = 11.761, P = .0C0 PAXIMUM VARIANCE = 50.991

Group 0 = Azoospermia Group 1 = 1-9 x $10^{6}/m1$... Group 6 = 50-99 x $10^{6}/m1$ Group 7 = >99 x $10^{6}/m1$ ANALYSIS OF VARIANCE FOR LH BY SPERM COUNT GROUPS FOR 35 NONEXPOSED EMPLOYEES

VARIABLE LH By Sperm

ANALYSIS OF VARIANCE

SOURCE	Ø.F.	SUM OF SQUARES	₽EAN SCUARES	F RATIO	F PROB.
BETWEEN GROUPS	10	373.2608	37.3261	.634	.771
WITHIN GROUPS	24	1413.1747	56-6823		
TOTAL	34	1786.4354			

GRCUP	COUNT	PEAN	STANDARD Deviation	STANDARD ERROR	PINIPUP	MAXIMUM	95 PCT	CONF	INT FOR MEAN
GRP 0 GRP 3 GRP 4 GRP 5 GRP 6 GRP 10 GRP 11 GRP 12 GRP 13 ICTAL	1 2 1 5 2 3 4 2 3 2 10 35	26.1000 10.7500 21.1000 11.6200 10.8000 17.0000 11.0000 13.7647 10.5500 15.3500 14.0686	2.4749 4.2808 11.5258 3.6373 8.9818 10.6066 6.9974 8.2731 8.3770	1.7500 2.1828 8.1500 2.1000 4.4909 7.5000 4.0399 5.8500 2.6490	9.0000 5.0000 7.5000 8.4000 3.5000 5.7000 4.7000 4.6000 3.5000	12.5000 16.4000 21.8000 14.7000 28.0000 18.5000 18.2000 16.4000 29.2000 29.2000	-11.4858 5.5598 -89.9055 1.7643 2.7081 -84.2965 -3.6160 -63.7813 9.3575	TO TO TO TO TO TO TO	32.9858 17.6802 117.2055 19.8357 31.2919 106.2965 31.1493 84.8813 21.3425
		CUPED DATA	7.2486	1.2252			11.5786	10	16.5586
		ECTS MCCEL	9.2085	2.7765			11.3916 7.8822	70 70	16.7456 20.2549

TESTS FOR HOMOGENEITY OF VARIANCES

• • •

CCCHRANS C = MAX. VAR(ANCE/SUM(VARIANCES) = .2386, P = .904 {APPRUX.] BARTLETT-8CX F = .530, P = .834 MAXIMUM VARIANCE / FINIMUM VARIANCE = 21.689

Group 0 = Azoospermia

Group $3 = 20-29 \times 10^6/m1$

Group $12 = 110 - 119 \times 10^6 / m1$ Group 13 = $> 119 \times 10^6 / m1$

TABLE 2	2
---------	---

ANALYSIS OF VARIANCE FOR LH WITH SPERM COUNT GROUPS

FOR 35 NON-EXPOSED EMPLOYEES

VARIABLE LH BV SPERM

ANALYSIS OF VARIANCE

SOURCE	G.F.	SUM CF SQUARES	MEAN SQUARES	FRATIO	F PRO8.
BETWEEN GROUPS	3	18.1303	6-0434	- 106	.956
WITHIN GROUPS	31	1768.3051	57.0421		
TOTAL	34	1786.4354			

GRCUP	CCUNT	PEAN	STANDARD DEVIATION	STANDARD Error	MINIMUM	MAXEMUN	95 PCT	CONF	INT FOR MEAN
GRP 1 GRP 2 GRP 3 GRP 4 TCTAL	3 6 11 15 35	15.2667 13.2000 13.6091 14.3933	9.0335 5.8340 7.7273 7.7359	5.2155 2.3817 2.3299 1.9974	9.0000 5.0000 3.5000 4.6000	26.1000 21.1000 28.0000 29.2000	-6.5739 7.0776 8.4178 10.1094	TO TO TO TO	38.3073 19.3224 18.8003 18.6773
	UNGR	CUPED CATA	7.2486	1.2252	3.5000	29.2000			
	FIXED EFF	ECTS PCDEL	7.5526				11.5786	10	16.5586
				1.2766			11.4649	10	16.6723
RANDCM EFFECTS P		CLIS PLUEL	25.7135	12.8567			-26.8467	τα	54.9839

TESTS FOR HOMOGENELTY OF VARIANCES

```
CCCHRANS C = MAX. VARIANCE/SUP(VARIANCES) = .3470, P = .537 (APPROX.)
BARTLETI-BCX F = .224, P = .880
MAXIMUM VARIANCE = 2.398
```

```
GROUP 1 = 0-29 \times 10^{6}/m1
GROUP 2 = 30-49 \times 10^{6}/m1
GROUP 3 = 50-99 \times 10^{6}/m1
GROUP 4 = 99 \times 10^{6}/m1
```

ANALYSIS OF VARIANCE FOR LH WITH SPERM COUNT GROUPS

FOR 105 EXPOSED EMPLOYEES

VARLABLE LM BV SPERM

ł

ANALYSIS OF VARIANCE

SCURCE	C.F.	SUM OF SQUARES	MEAN SQUARES	FRATIO F PROB	•
BETWEEN GROUPS	13	3680.1250	283.0865	3.213 .001	
WITHIN GROUPS	91	8016.9242	88.0981		
TOTAL	104	11697.0491			

			STANDARD	STANDARD					
GRCUP	CCUNT	PEAN	DEVIATION	ERROR	PININUM	MAXIMUM	95 PCT	CONF	INT FOR MEAN
GRP O	14	29.9643	15.1109	4.0386	12.0000	56.0000	21.2395	τo	38.6891
688 1	8	17.1375	10.0739	3.5616	6.2000	33.0000	8.7156	TO	25.5594
GRP 2	9	17.4556	8.5055	2.8352	10.1000	37.8000	10.9177	10	23.9934
GAP 3	10	13.2800	6.0157	1.9023	1.5000	20.3000	8.9766	TO	17.5834
GRP 4	6	12.7333	2.3572	.9787	10.0000	16.7000	10.2176	TO	15.2490
688 5	8	16.9875	11.0206	3.8964	2.7000	31.0000	7.7741	τo	26.2009
GRP 6	8	11.9625	8.6627	3.0627	2.9000	29.7000	4.7203	TO	19.2047
GRP 7	1	11.8571	4.7634	1.8004	6.4000	18.0000	7.4518	10	16.2625
GRP 8	6	13.8667	6.6722	2.7239	6.0000	23.2000	6.8647	TO	20.8686
689 9	2	11.9000	11.1723	7.9000	4.0000	19.8000	-88.4790	TO	112.2790
GRP 1C	8	16.5375	11.1102	3,9309	4.8000	37.4000	7.2425	TO	25.8325
GAP 11	2	10.0000	.9899	.7000	9.3000	10.7000	1.1057	ra	18.8943
GRP 12	2	8.55CO	3.0406	2.1500	6.8000	11.1000	-18.3683	ra	36.2683
GRP 13	15	11.6000	6.9201	1,7868	5.0000	28.2000	7.7678	TO	15.4322
TCTAL	105	16.0829			1.5000	56.0000			
	UNG	RCUPEC CATA	10.4053	1.0350			14.0305	TO	18.1352
	FIXED EF	FECTS PCDEL	9.3861	.9160			14.2634	TO	17.9023
	RANOCH EF	FECTS MCCEL	5.4137	1.4469			12.9571	10	19.2086

TESTS FOR HOMOGENEITY OF VARIANCES

CCCHRANS C = MAX. VARIANCE/SUM(VARIANCES) = .2251, P = .016 (APPROX.) BARTLETT-BCX F = 2.299, P = .CO5 MAXIMUM VARIANCE / MINIMUM VARIANCE = 232.999

GROUP 0 = AZOOSPERMIAGROUP $1 = 1-9 \times 10^{6}/m1$ GROUP $12 = 110-119 \times 10^{6}/m1$ GROUP $13 = >119 \times 10^{6}/m1$

ANALYSIS OF VARIANCE FOR LH WITH SPERM COUNT GROUPS FOR 105 EXPOSED EMPLOYEES

VARIABLE LH By Sperm

Ŷ

ANALYSIS OF VARIANCE

SCURCE	C.F.	SUM OF SQUARES	MEAN SQUARES	F RATIO	F PROB.
BETWEEN GROUPS	7	3547.2286	506.7469	6.031	.000
WITHIN GREUPS	97	8149-8205	84.0188		
TCTAL	104	11697.0491			

			STANDARD	STANDARD					
GRCUP	CCUNT	MEAN	DEVIATION	ERROR	PINIPUM	HUMIXAN	95 PCT	CONF	INT FOR MEAN
GRP 0	14	29.9643	15.1109	4.0386	12.0000	56.0000	21.2395	ro	38.6891
GRP 1	8	17.1375	10.0739	3.5616	6.2000	33.0000	8.7156	10	25.5594
GRP 2	9	17.4556	8.5055	2.8352	10.1000	37.8000	10.9177	ra	23.9934
GAP 3	10	13.2800	6.0157	1.9023	1.5000	20.3000	8.9766	TO	17.5834
GRP 4	6	12.7333	2.3572	.9787	10.0000	16.7000	10.2176	TO	15.2490
GRP 5	8	16.9875	11.0206	3.8964	2.7000	31.0000	7.7741	TO	26.2009
GRP 6	31	13.4839	8.1480	1.4634	2.9000	37-4000	10.4952	ro	16.4726
GRP 7	19	11.1526	6.2183	1.4266	5.0000	28.2000	8.1555	ro	14-1497
TCTAL	105	16-C829			1.5000	56.0000			
	UNGI	RCUPEC CATA	10.6053	1.0350			14+0305	10	18.1352
	FIXED EF	FECTS PCDEL	9.1662	. 8945			14.3075	ra	17.8582
	RANDEM EF	FECTS PCDEL	16.0294	5.6673			2.6820	10	29.4838

TESTS FOR HOMOGENEITY OF VARIANCES

GROUP 0 = AZOOSPERMIAGROUP $1 = 1 - 9 \times 10^{6}/m1$ GROUP $12 = 110 - 119 \times 10^{6}/m1$ GROUP $13 = >119 \times 10^{6}/m1$

ANALYSIS OF VARIANCE FOR TESTOSTERONE WITH SPERM COUNT GROUPS FOR 105 EXPOSED EMPLOYEES

VARIABLE TEST SPERM ٤٧ ANALYSIS OF VARIANCE SOURCE O.F. SUM OF SQUARES MEAN SQUARES F RATIO F P808. BETWEEN GROUPS . 7 233905.9947 33415.1421 1.120 .357 WITHIN GROUPS 97 2892717.5672 29821.8306 TOTAL 104 3126623.5619 STANDARD STANDARD GROUP COUNT PEAN DEVIATION ERROR PINIMUM MAXIMUM 95 PCT CONF INT FOR MEAN GRP 0 14 472.3571 125.6850 33.5907 264.0000 175.0000 399.7888 10 544.9255 597.25CC 618.EE89 159.6252 201.4215 56.4360 67.1405 GAP 1 8 353.0000 801.0000 463.8003 то 730.6997 GRP 2 Q 386.0000 857.0000 464.0628 10 773.7150 GAP 551.5000 3 10 206.6157 65.3376 219.0000 821.0000 403.6961 TO 699.3039 GRP 4 ъ 600.1667 103.9469 42.4362 476.0000 750.0000 491.0827 10 709.2506 513.2500 \$9.5888 200.0172 35.2100 35.9242 GRP 5 8 0000.09E 707.0000 429.9919 τo 596.5081 GAP 6 31 125.0000 998.0000 436.5363 тα 583.2701 GRP 19 488.6316 162.7142 217.0000 806.0000 7 37.3292 410.2058 567.0573 то TOTAL 105 526.4190 125.0000 998.0000 UNGROUPED CATA 173.3888 16.9210 559.9741 492.8640 TO FIXED EFFECTS MCDEL 172.6900 16.8528 492.9709 TO 559.8672 RANDCH EFFECTS MCCEL 490.9371 173.5725 115.9863 TO 936.8518

TESTS FOR HOPOGENEITY OF VARIANCES

GROUP 0 = AZOOSPERMIA GROUP 1 = $1-9 \times 10^{6}/m1$ GROUP 6 = $50-99 \times 10^{6}/m1$ GROUP 7 = $>99 \times 10^{6}/m1$

ANALYSIS OF VARIANCE FOR TESTOSTERONE WITH SPERM COUNT GROUPS FOR 35 NON-EXPOSED EMPLOYEES

VARLABLE TEST By Sperm

ANALYSIS OF VARIANCE

SCURCE	C.F.	SUM CF SQUARES	MEAN SQUARES	FRATIO	F PROB.
BETWEEN GROUPS	10	149278.5881	14927.8588	. 961	
WITHIN GROUPS	24	372641.9833	15526.7493	0,01	-500
TOTAL	34	521920.5714			

GRCUP	CCUNT	#EAN	STANDARD DEVIATION	STANDARD ERROR	MINIMUM	bi i vi f saran.			
GRP C	1	717.000				MUMIXAN	95 PCT	CONF	INT FOR MEAN
GRP 3 GRP 4 GRP 5	2 1 5	502.CCC0 906.CCCO	63.6396	45.0000	457.0000	547.0000	-69.7790	ra	1073.7790
GRP & GRP 7 GRP 8 GRP 10 GRP 11 GRP 12 GRP 13	2 3 4 2 3 2 2 2 2 0	551-2000 607-5000 579-6667 564-2500 584-5000 576-3223 535-0000 568-3000	36.7927 317.4909 101.9035 126.0010 21.9203 42.8525 178.1909 132.5284	16.4542 224.5000 58.8340 63.0005 15.5000 24.7409 126.0000 41.9092	501.0000 383.0000 462.0000 466.0000 569.0000 537.0000 409.0000 345.0000	599.0000 832.0000 639.0000 694.0000 600.0000 622.0000 661.0000 760.0000	505-5166 -2245.0419 326.5214 363-7572 387.5539 469.8808 -1065.9812 473.4949	10 10 10 10 10 10 10	596.8834 3460.0419 832.8119 764.7428 781.4461 682.7859 2135.9812
TCTAL	35	578.4286			345.0000		41314349	ro	663.1051
	UNG	RCUPED CATA	123.8976	20.9425	31310000	906.0000			
	FIXED EF	FECTS PCCEL	124.6064	21.0623			535.8683	TO	620.9889
	RANDCM EF	FECTS PCCEL	337.6247	101.7977			534.9581	ro	621.8991
							351.6093	10	805.2479

TESTS FOR HONOGENEITY OF VARIANCES

CCCHRANS C = MAX. VARIANCE/SUM(VARIANCES) = .5475. P = .014 (APPROX.) BARILETT-BCX F = 1.705, P = .014 (APPROX.) PAXIMUM VARIANCE / PINIMUM VARIANCE = 209.783

GROUP 0 = AZOOSPERMIA GROUP 3 = 20- 29 x 10^{6} /ML GROUP 12 = 110-119 x 10^{6} /ML GROUP 13 = >119 x 10^{6} /ML

ŝ

ANALYSIS OF VARIANCE FOR TESTOSTERONE WITH SPERM COUNT GROUPS FOR 35 NON-EXPOSED EMPLOYEES

VARLABLE TEST BV SPERM

ANALYSIS OF VARIANCE

D.F.	SLM OF SQUARES	MEAN SCUARES	F RATIO	F PRO8.
3	8722.8381	2907.6127	.176	.912
31	513197.7333	16554.7656		
34	521920.5714			
	3	3 8722.8381 31 513197.7333	3 8722.8381 2907.6127 31 513197.7333 16554.7656	3 8722.8381 2907.6127 .176 31 513197.7333 16554.7656

GROUP	COUNT	FEAN	STANDARD DEVIATION	STANDARD ERROR	PINIPUM	MAXIMUM	95 PCT	CONF	INT FOR MEAN
GRP 1	3	573.6667	132.0353	76.2306	457.0000	717.0000	245.6691	ro	901.6643
GRP 2	6	610.3333	148.5378	60.6403	501.0000	906.0000	454.4549	10	766.2118
GRP 3	11	580.0000	131.2341	39.5686	383.0000	832.0000	491.8357	TO	668.1643
GRP 4	15	565.4667	118.2581	30.5341	345.0000	760.0000	499.9775	10	630.9558
TCTAL	35	578.4286			345.0000	906.0000			
	UNG	RCUPED CATA	123.8976	20.9425			535.8683	ro	620.9889
	FIXED EF	FECTS MCCEL	128.6653	21.7484			534.0724	TO	622-7847
	RANDCH EF	FECTS PCCEL	1056.2524	528.1262			-1102.2802	10	2259.1373

TESTS FOR HOMOGENEITY OF VARIANCES

GROUP 1 = $0-29 \times 10^{6}/m1$ GROUP 2 = $30-49 \times 10^{6}/m1$ Group 3 = $50-99 \times 10^{6}/m1$ Group 4 = $>99 \times 10^{6}/m1$

ANALYSIS OF VARIANCE FOR TESTOSTERONE WITH SPERM COUNT GROUPS

FOR 105 EXPOSED EMPLOYEES

VARIABLE TEST 87 SPERP

ANALYSIS OF VARIANCE

SOURCE	C.F.	SUM OF SQUARES	FEAN SQUARES	F RALIO	F PROB.
BETWEEN GROUPS	13	329053.8468	25311.8344	.823	.634
WITHIN GROUPS	91	2797569.7151	30742.5243		
TCTAL	104	3126623.5619			

GRCUP GRP 0	COUNT	PEAN	STANDARD DEVIATION	STANDARD ERROR	#INIMUM	MAXIMUM	95 PCT	CONF	INT FOR MEAN
GRP 1 GRP 2 GRP 3 GRP 4 GRP 4 GRP 6 GRP 6 GRP 6 GRP 7 GRP 8 GRP 10 GRP 11 GRP 12 GRP 13 TCTAL	8 9 10 6 8 7 6 2 8 2 15 105	472.3571 597.2500 618.6839 551.5000 600.1667 513.2500 546.1250 438.2857 515.0000 479.5000 540.12500 542.0000 540.12500 542.0000 540.12500 540.12500 540.41500	125.6850 159.6252 201.4215 206.6157 103.9469 99.5888 303.6396 105.6830 157.3150 92.6310 206.9447 67.8823 48.0633 175.2576	33.5907 56.4360 67.1405 65.3376 42.4362 35.2100 107.3528 39.9444 64.2236 65.5000 73.1660 48.0000 34.6000 45.2617	264.0000 353.0000 366.0000 219.0000 476.0000 380.0000 125.0000 275.0000 298.0000 414.0000 312.0000 564.0000 489.0000 277.0000 125.0000	775.0000 601.0000 857.0000 750.0000 707.0000 998.0000 6702.0000 6702.0000 545.0000 924.0000 557.0000 806.0000 998.0000	399,7888 463,8003 464,0628 403,6961 491,0827 429,9919 292,2765 340,5457 349,9106 -352,7561 367,1153 2,1024 90,9892 370,5234	TO TO TO TO TO TO TO TO TO TO	544.9255 730.6997 773.7150 699.3039 709.2506 596.5081 799.9735 536.0257 680.0894 1311.7561 713.1347 1221.8976 955.0108 564.6766
		RCUPEC CATA	173.3288	16.9210			492.8640	τα	559.9741
		FECTS MODEL	175.3355 58.3112	17.1110			492.4302	Ta	560.4079
							492.7512	10	560.0869

TESTS FOR HONOGENEITY OF VARIANCES

CCCHRANS C = MAX. VARIANCE/SUM(VARIANCES) = .2544, P = .004 (APPROX.) BARTLETT-BCX F = .1.446, P = .132 PAXIMUM VARIANCE / MINIMUM VARIANCE = .39.878

GROUP 0 - AZOOSPERMIA GROUP 1 - 1-9 x 10⁶/m1 GROUP 12 - 110-119 x 10⁶/m1

GROUP 13 - >119 x 10⁶/m1

CORRELATION COEFFICIENTS FOR AGE, SPERM COUNT, KNOWN EXPOSURE, FSH, LH AND TESTOSTERONE IN 90 EXPOSED INDIVIDUALS

Sperm Count	.09	address and any and a	anas kana mark	4500 1000 minut	NUME ALLER DELEN
LH	.18	36*	anna baile airge	· · · · · · · · · · · · · · · · · · ·	
Testosterone	20	22	04		
FSH	.18	35*	.63*	02	Admin again anna
Exposure	.23	38*	.52*	02	.60*
	Age	Sperm Count	LH	Testosterone	FSH

*Significant at 0.01

2

CORRELATION COEFFICIENTS FOR AGE, SPERM COUNT, FSH, LH AND TESTOSTERONE FOR 35 NONEXPOSED INDIVIDUALS

Sperm Count	.17	643 quip ave	inter taky app,	, Mala kaya aya,
LH	.10	.16		Man daar yaar
Testosterone	23	16	.51*	
FSH	.40*	33**	.25	.10
	Age	Sperm Count	LH	Testosterone

*Significant correlation at 0.01

**Significant at 0.05

ŵ.

PREDICTION RESULTS OF SPERM COUNTS BY DISCRIMINANT ANALYSIS

OF FSH, LH AND TESTOSTERONE LEVELS FOR 140 MEN

		Predicted (roup Membership
Group	<u>N</u>	Group 1	Group 2
1	32	17 (53.1)	15 (46.9)
2	108	6 (5.6)	102 (94.4)

Group 1: Sperm counts 0 -19 x $10^6/m1$ Group 2: Sperm counts > 19 x $10^6/m1$ Percentage in parentheses

PREDICTION RESULTS OF SPERM COUNTS BY DISCRIMINANT ANALYSIS

OF FSH, LH AND TESTOSTERONE LEVELS FOR 140 MEN

		Predicted Gr	oup Membership
Group	<u>N</u>	Group 1	Group 2
1	17	8 (47.1)	9 (52.9)
2	108	27 (25.0)	81 (75.0)
3	15	14 (93.3)	1 (6.7)

Group 1: Sperm counts 1 -19 x $10^6/m1$ Group 2: Sperm counts > 19 x $10^6/m1$ Group 3: Azoospermia

Percentage in parentheses

à.

ł

PREDICTION RESULTS OF SPERM COUNTS BY DISCRIMINANT ANALYSIS

OF	FSH,	LH	AND	
			F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

9

TESTOSTERONE LEVELS FOR 140 MEN

		Predicted Gro	oup Membership
Group	<u>N</u>	Group 1	Group 2
1	64	31 (48.4)	33 (51.6)
2	76	11 (14.5)	65 (85.5)

Group 1: Sperm count $0 -49 \times 10^6/m1$ Group 2: Sperm count >49 x $10^6/m1$ Percentage in parentheses

PREDICTION RESULTS OF SPERM COUNTS BY DISCRIMINANT ANALYSIS

OF FSH, LH AND TESTOSTERONE LEVELS FOR 140 MEN

		Predicted Gro	Predicted Group Membership	
Group	N	Group 1	Group 2	
1	49	25 (51.0)	24 (49.0)	
2	76	20	56	

(26.3)

15

(100)

(73.7)

0

Group 1:	Sperm counts 1 -49 x $10^6/m1$
Group 2:	Sperm count $> 49 \times 10^6/m1$
Group 3:	Azoospermia

Percentages are in parentheses

15

3

....

PREDICTION RESULTS OF SPERM COUNTS BY DISCRIMINANT ANALYSIS OF FSH, LH AND TESTOSTERONE LEVELS FOR 140 MEN

		Predicted Group Membership	
Group	<u>N</u>	Group 1	Group 2
1	34	19 (55.9)	15 (44.1)
2	77	23 (29.9)	54 (70.1)
3	29	(72.4)	(27.6)

Group 1: Sperm counts 20 -49 x $10^6/m1$ Group 2: Sperm counts >49 x $10^6/m1$ Group 3: Sperm counts 0 -19 x $10^6/m1$ Percentages are in parentheses

Table 36

PREDICTION RESULTS FOR SPERM COUNTS BY DISCRIMINANT

ANALYSIS OF FSH FOR 140 MEN

		Predicted Gro	up Membership
Group	<u>N</u>	Group 1	Group 2
1	32	16 (50.0)	16 (50.0)
2	108	3 (2.8)	105 (97.2)

Group 1: Sperm counts $0-19 \times 10^6/ml$ Group 2: Sperm counts >19 x $10^6/ml$ Percentages in Parentheses

Table 37

Prediction Results for Sperm Counts by Discriminant Analysis of LH for 140 Men

		Predicted Group Membership				
Group	N	Group 1	Group 2			
- <u></u> -	32	17 (53.1)	15 (46.9)			
2	108	20 (18.5)	88 (81.5)			

Group	1:	Sperm	counts	0-19	х	10 ⁶ /ml
Group	2:	Sperm	counts	>19	x	10 ⁶ /ml
Percei	ntaq	es in p	barenthe	eses		

PREDICTION RESULTS FOR SPERM COUNTS BY DISCRIMINANT ANALYSIS OF FSH FOR 140 MEN

		Predicted Group	Membership
Group	<u>N</u>	Group 1	Group 2
1	64	23 (35.9)	41 (64.1)
2	76	3 (3.9)	73 (96.1)
Group 1:	Sperm counts	0-49 x 10 ⁶ /ml	
Group 2:	Sperm counts	} 49 x 10 ⁶ /ml	

Percentages in Parentheses

PREDICTION RESULTS FOR SPERM COUNTS BY DISCRIMINANT ANALYSIS OF LH FOR 140 MEN

		Predicted Gro	up Membership
Group	N	Group 1	Group 2
1	64	26 (40.6)	38 (59.4)
2		20 (26.3)	56 (73.7)

Group	1:	Sperm	counts	0-49	х	10 ⁶ /ml
Group	2 :	Sperm	counts	≥49	x	10 ⁶ /ml
Percer	ntag	: es in F	arenthe	200		

Percentages in Parentheses

42

CORRELATION COEFFICIENTS OF SMA-12 DATA FROM 46 SELECTED OCCID. CHEM. CO. EMPLOYEES - 1977

AGE	14.80		10.0716	46								
SPERM	ວິບຈຳວ		61.3666	45								
1 P	7.11		.3/83	46								
AL DU CALC	4.5) 0.53		•221E •3714	46								
112405	2.34		. 3454	46								
CHOL	190.52		65,2951	46								
GLU	97.54		39.9142	46								
U-IC	6.14		1.2644	46								
CHEAT	1.02		.1381	40								
BILI	. 77		.4083	46								
ALPHOS	77.13	94	19.8266	46								
L D /	193.34		40,0273	4 F.								
SGOT	20.04	15	15.8029	46								
A VALUE OF	N CEFFFICIE 99.00000 I 1 <u>CIENT CANN</u>	S PRINTED	UTFD.			**		2014 - 1924 - 2024 - 201				
A VALUE OF JE A CUEFF SPER4	99.00000 I ICIENT_CANN 23025	S PRINTED OT BE COMP	UTFD.	<u></u> ,								
A VALUE OF IF A CUEFF	99.00000 1 1 <u>CIENT CANN</u> 23025 .23737	S PRINTED DT BE COMP +05060										·····
A VALUE OF IF A CUEFF SPICHA TO ALJU	99.00000 1 <u>ICIENT CANN</u> 23625 <u>.23737</u> 14733	5 PRINTED DT 3E CEMP -05960 -1324	.23257	66712								
A VALUE OF IF A CUEFF SPEP 4 TP ALJU CALC	99.00000 1 <u>ICIENT_CANN</u> 23(25 .20737 14233 23399	5 PRINIED DT 3E CEME .05960 .13524 .30518	.23257 .34480	-65712	.07754							
A VALUE OF JE A CUEFF SPERA TP AUJU CALC INPHOS	99.00000 I <u>ICIENT_CANN</u> 22625 .2.3737 14733 23399 07236		.23257 .34480 .19424	00139	• 077£4 • 07332	.18549						
A VALUE OF IF A CUEFF SPEP 4 TP ALJU CALC	99.00000 1 <u>ICIENT_CANN</u> 23(25 .20737 14233 23399	5 PRINIED DT 3E CEME .05960 .13524 .30518	.23257 .34480		.07754 .07332 11377	•18639 •26490	• 64719					
A VALUE OF IF.A CUEFF SOCIAL TO AUSU CALC INDHES CHOL GLU VALC	99.00000 I <u>1CIENT</u> CAN 23625 23757 14733 2388 07246 2423	5 PRINTED 05960 05960 05960 05960 05960 05960 06963	-23257 -34420 -13424 -57202 -41227 -623	00139 03126 20286 0305	11387 11387 11411	01592	02300	16130				
A VALUE OF JE.A. CUSEF SPILLA T.P. A.JU CALC INDHOS CHOL GLU UVIC CENT	99.00000 I <u>1CIENT</u> CANN - 227 25 -2.3757 -14723 -23898 -07245 -07245 -07245 -07245 -04269 -14231	5 PRINICD UT 3F COMF .10024 .1004	- 23257 - 34420 - 13424 - 57702 - 41237 - 6639 - 67456	00139 001000 00139 000100 00139 00	11387 11387 11311 16596	•26490 -•01592 -•22208	02300 13457	31794	.4.2445			
A VALUE OF IF A CUEFF SDEPA TO ALJU CALC INDHCS CHU CHU CHU CHU CHU CHU CHU CHU	99.00000 I <u>1CIENT CANN</u> 23(25 .20757 14757 2303 2303 .2423 .2433 .24	5 PRINIED 05960 10024 30518 -02380 060470 02127 -23244 -06043	-23257 -34420 -15424 -57902 -41237 -6040 -67650 -10070	00139 3126 20266 .)0305 .21942 01778	.07332 11387 .11311 .16596 .06750	•26490 -•01592 -•22208 -•06191	02300 13457 30539	26420	.23163	.297.03		
A VALUE OF IF.A CUEFF SDEPA TP AUJU CALC INDHES CHEL GLU WAIC CFAT HILI AU, PHES	99.00000 I <u>1CIENT</u> CANN 23625 2.3737 14733 23338 07236 .23233 .03260 13251 13053 .03260	5 PRINICD UT 3E CCMF - 05960 - 10524 - 30518 - 0350 - 050727 - 050727 - 23244 - 06043 - 07615	- 23257 - 34420 - 15424 - 57902 - 41237 - 5039 - 67650 - 10370 - 33428	00139 .03126 20286 .00305 .21942 01778 13043	.07332 11387 .11387 .11311 .16596 .06750 01727	•26490 -•01592 -•22208 -•06191 •01623	02300 13457 30539 .35623	31794 26420 .32439	-23163-	12361		······································
A VALUE OF JE.A. CUSEF SDIDA T.P. ALJU CALC INDHES CHU GLU UNIC CIFAT HTLL ALDHES LOH	99.00000 I <u>1CIENT</u> CANN - 227 25 -237 57 - 147 33 - 23839 - 072 45 - 072 45 - 072 45 - 072 6 - 130 13 - 130 13 - 02 54 3 - 02 51 21	5 PRINICD UT 3F COMF .10024	- 23257 - 34420 - 13424 - 57°02 - 41237 - 60.20 - 67656 - 10370 - 33428 - 45421	00139 0139 20280 .0005 -21942 01778 13043 16652	.07332 113£7 .113£7 .11311 .16596 .067£0 01727 14543	-26490 -01592 -22208 -06191 -01623 -16832	02300 15457 30539 .35623 .55185	31794 26420 .32439 .43733		123(1) 15898	23332	• 41 375
A VALUE OF JE.A. CUSEF SDIDA T.P. ALJU CALC INDHES CHU GLU UNIC CIFAT HTLL ALDHES LOH	99.00000 I <u>1CIENT</u> CANN 23625 2.3737 14733 23338 07236 .23233 .03260 13251 13053 .03260	5 PRINICD UT 3E CCMF - 05960 - 10524 - 30518 - 0350 - 050727 - 050727 - 23244 - 06043 - 07615	- 23257 - 34420 - 15424 - 57902 - 41237 - 5039 - 67650 - 10370 - 33428	00139 .03126 20286 .00305 .21942 01778 13043	.07332 11387 .11387 .11311 .16596 .06750 01727	•26490 -•01592 -•22208 -•06191 •01623	02300 13457 30539 .35623	31794 26420 .32439	-23163-	12361		• 41 375 • 39 I 49
A VALUE OF IF.A CUEFF SDEPA TP AUJU CALC INDHES CHEL GLU WAIC CFAT HILI AUPHES	99.00000 I <u>1CIENT</u> CANN - 227 25 -237 57 - 147 33 - 23839 - 072 45 - 072 45 - 072 45 - 072 6 - 130 13 - 130 13 - 02 54 3 - 02 51 21	5 PRINICD UT 3F COMF .10024	- 23257 - 34420 - 13424 - 57°02 - 41237 - 60.20 - 67656 - 10370 - 33428 - 45421	00139 0139 20280 .0005 -21942 01778 13043 16652	.07332 113£7 .113£7 .11311 .16596 .067£0 01727 14543	-26490 -01592 -22208 -06191 -01623 -16832	02300 15457 30539 .35623 .55185	31794 26420 .32439 .43733		123(1) 15898	23332	

LCH

SUMMARY OF SMA-12 MULTIPLE REGRESSION ANALYSIS

ON 46 SELECTED OCCID. CHEMICAL CO. EMPLOYEES - 1977

THE VARIABLE. SPERM

SUMMARY TABLE

,

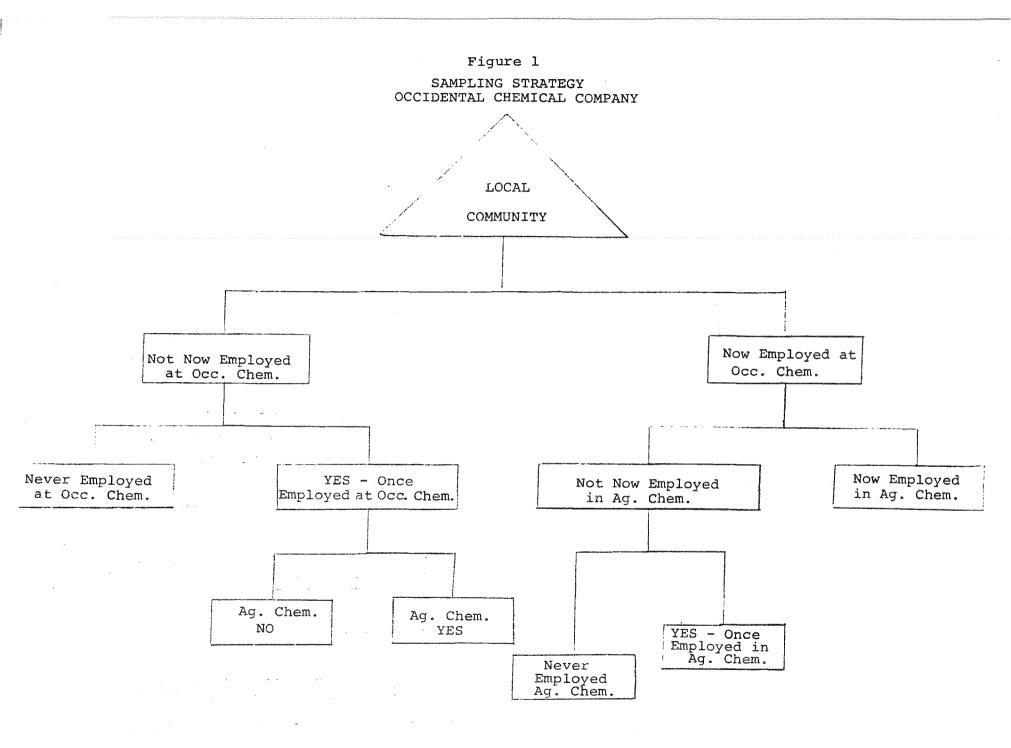
STEP	VARIABLE ENTERED REMOVED	E TU ENTER OR REMOVE	SIGNIFICANCE	MULTIPLE R	R SQUARE	R SQUARE CHANGE	SIMPLE P	OVERALL F	SIGNIFICANCE
1 	CALC LDH CALC ADF CALL ADF CALL ADF CALC ALT ALPHUD TO UPIC GLU SUUT	4.44906 2.31201 1.96179 2.17772 1.55236 1.82143 1.47124 .46530 .12417 .12417 .1259 .03095	. 041 . 135 . 167 . 220 . 147 . 220 . 185 . 233 . 500 . 670 . 727 . 686	• 30618 • 37569 • 42469 • 42469 • 50243 • 50243 • 505028 • 56028 • 56028 • 56028 • 56028 • 56028 • 57613 • 57619 • 57619	.00375 .14115 .18036 .22268 .25244 .28663 .31391 .32264 .32264 .32264 .33200 .33264	.09375 .04740 .03922 .04232 .02776 .02778 .00972 .00972 .00355 .00245 .00336 .00065	• 30518 - 23993 • 06053 - 23625 • 23244 • 10324 - 06043 • 07515 • 05960 • 02127 - 055994	4.44906 3.45120 3.00742 2.6476 2.54476 2.14340 1.83259 1.66435 1.392920	• C41 • 041 • 041 • 035 • 038 • 036 • 933 • 057 • 028 • 130 • 182 • 251

MEAN SMA 12 MEASURES DATA BY AREA OF PLANT WORKED AMONG 64 DBCP EXPOSED MALE EMPLOYEES

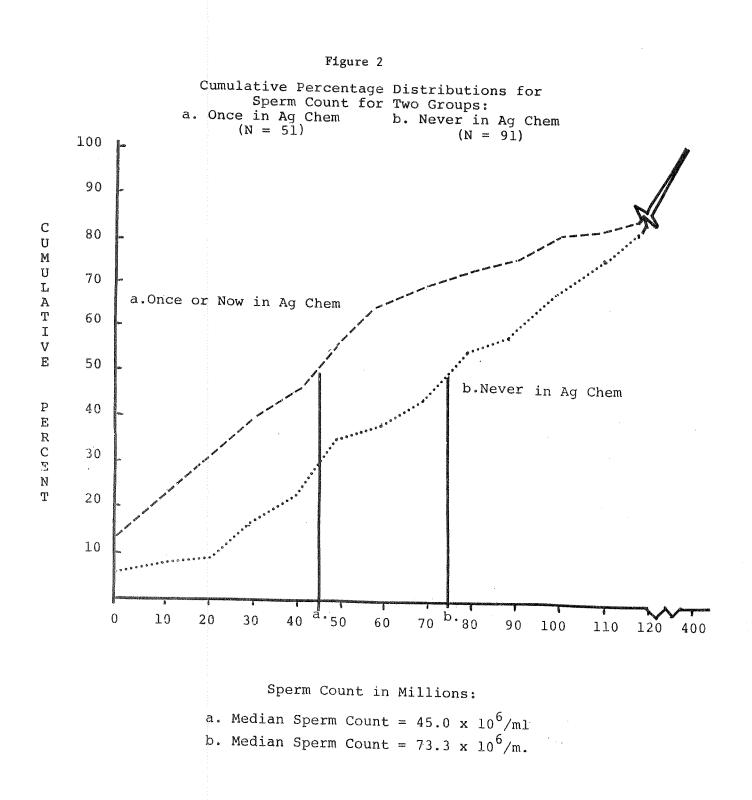
						Va	r i	a b	l e				
Area	Age	TP	ALBU	CALC	INPHOS	CHOL	GLU	URIC	CREAT	BILI	ALPHOS	LDH	SGOT
Ag. Chem. N = 38	32.82	7.18	4.62	9.60	2.92	183.64	92.51	5.92	1.00	.82	78.64	178.85	26.97
	36.89	7.32	4.59	9.51	2.78	198.32	87.89	6.10	1.09	.71	79.67	202.78	27.67
Applicator N = 14	42.50	7.61	4.50	9.36	2.88	239.70	120.30	6.51	.96	.64	88.00	233.50	31.10

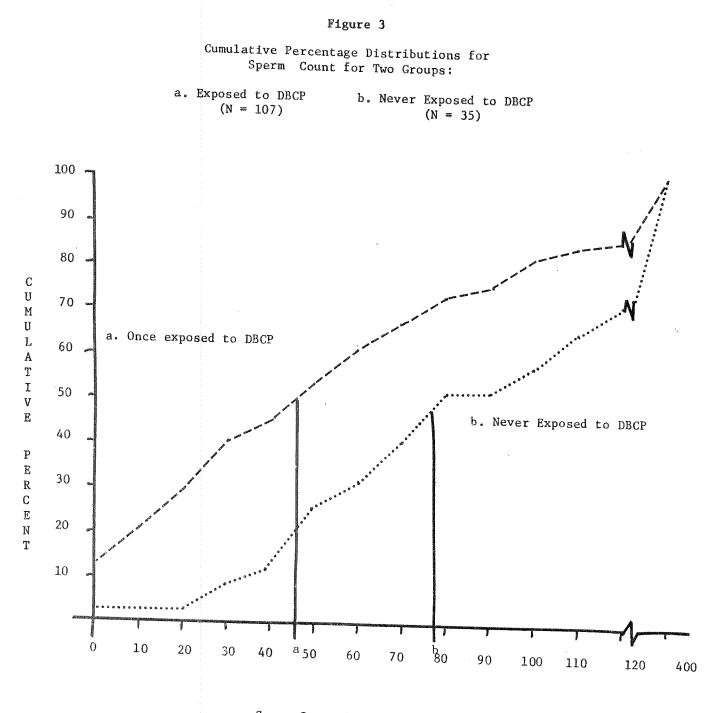
17 10 A. 19 10 A. 19

REASON FOR NONPARTICIPATION IN MEDICAL EXAMINATION ASPECT OF STUDY BY 63 WORKERS, BUT WHO ANSWERED QUESTIONNAIRE


Reason	Number
Sterile (Employee) [vasectomized]	20
Sterile (Wife)	6
Did not wish to give specimen	3
"Not interested"	23
Religious	1
Other	10
TOTAL	63

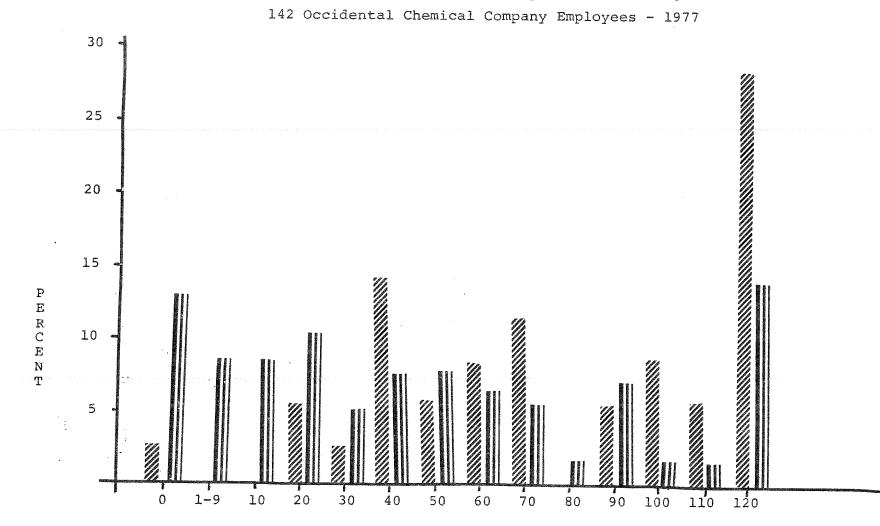
WORK EXPERIENCE IN THE AG CHEM PLANT OF 63 NONPARTICIPANTS IN THE MEDICAL EXAMINATION, BUT WHO ANSWERED QUESTIONNAIRE


Work Experience in Ag Chem		Number
None		37
l year or less		19
More than 1 year		5
Not stated		2
	TOTAL	63


PERCENTAGE USE OF VARIOUS BIRTH CONTROL METHODS

Type of Method	<u>% Used</u>
None	26.9
Vas ectomy	22.8
Wife Sterile (surgical or menopause)	19.3
Pill	13.2
Condom/Diaphragm	3.6
IUD	2.5
Wife Pregnant	2.0
Other	9.6

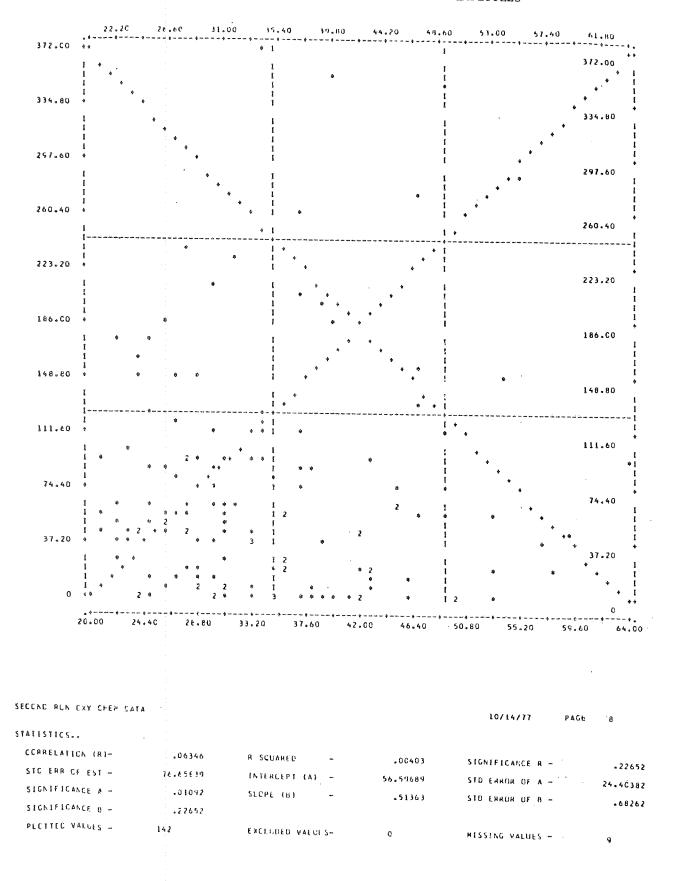
Note: To be considered "Employed," 3+ months required.



Sperm Count in Millions:

a. Median Sperm Count = $45.6 \times 10^6/m1$ b. Median Sperm Count = $78.7 \times 10^6/m1$

Figure 4

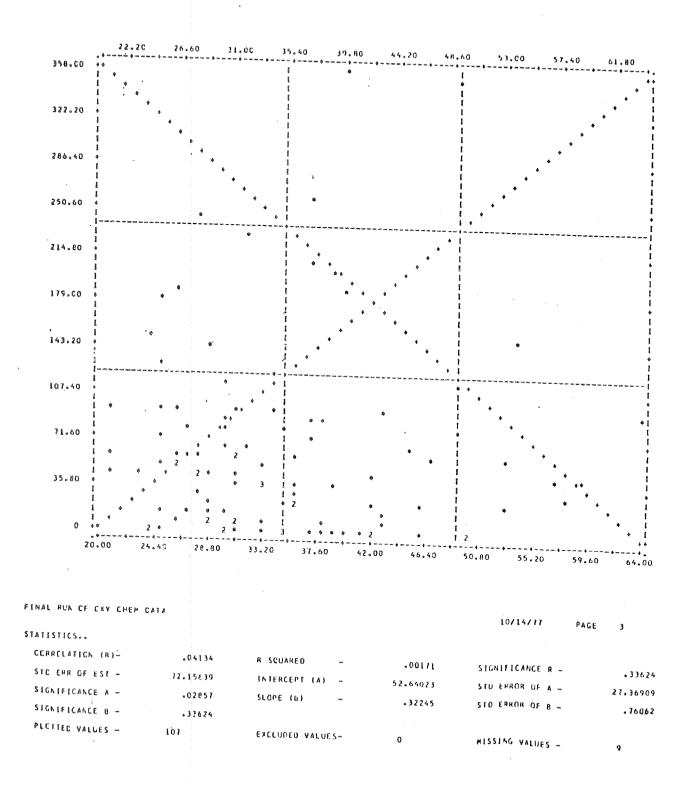


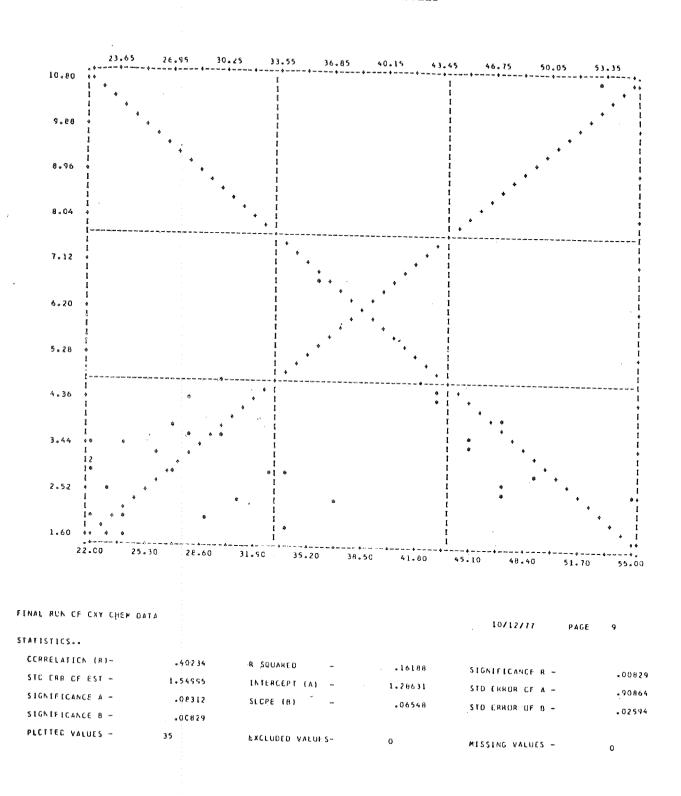
Percent Distribution of Sperm Counts Among

Sperm Count in Millions Per Milliliter

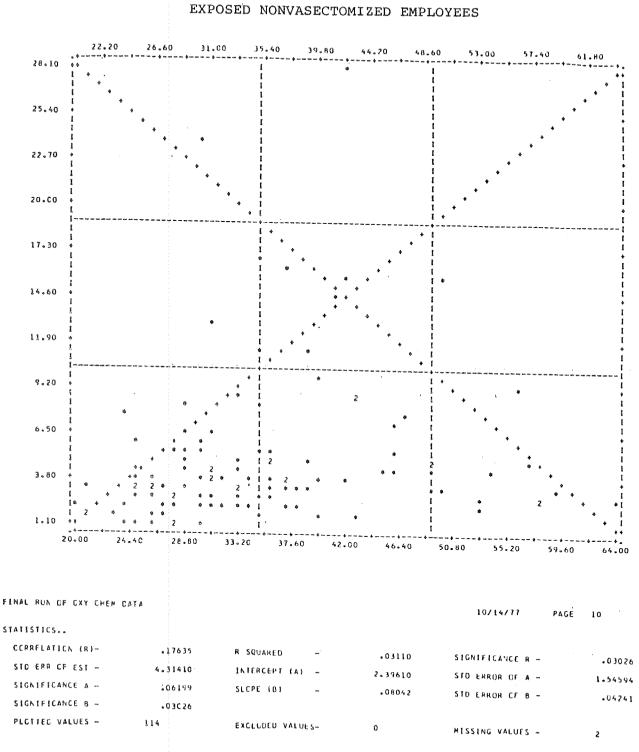
EXPOSED

SCATTERGRAM BY AGE AND SPERM COUNT OF 142 EMPLOYEES


23.65 26.95 30.25 33.55 40.15 43.45 36.85 46.75 50.05 53.35 372.00 334.80 257.60 260.40 223.20 166.00 148.80 111.60 74.40 37.20 0 22.00 25,30 28.60 31.90 35.20 38.50 41.80 45.10 48.40 51.70 55.00 FINAL RUN OF OXY CHEM DATA 10/12/77 PAGE З STATISTICS.. CORRELATION IN-. 17323 R SQUARED .03001 SIGNIFICANCE R -.15983 STO ERR OF EST -82.46270 INTERCEPT (A) -59.52[15 STO ERROR OF A -48.30735 SIGNIFICANCE A -•11330 SLOPE (B) 1.39332 -STO EAROR OF 8 -1.37900 SIGNIFICANCE 8 -.15983 PLCTIEC VALUES -35 EXCLUDED VALUES-0 MISSING VALUES -· 0


SCATTERGRAM BY AGE AND SPERM COUNT OF 35 NONEXPOSED EMPLOYEES

SCATTERGRAM BY AGE & SPERM COUNT OF 107 EXPOSED EMPLOYEES



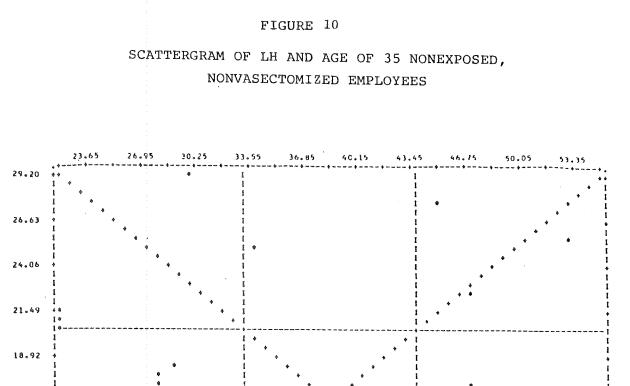

SCATTERGRAM OF FSH AND AGE OF 35 NON-EXPOSED, NON-VASECTOMIZED EMPLOYEES

FIGURE 8

FIGURE 9

SCATTERGRAM BY FSH AND AGE OF 114 EXPOSED NONVASECTOMIZED EMPLOYEES

25.30

28.60

31.90

35.20

10/12/77 PAGE 5

51.70

55.00

48.40

STATISTICS ...

16.35

13.78

11.21

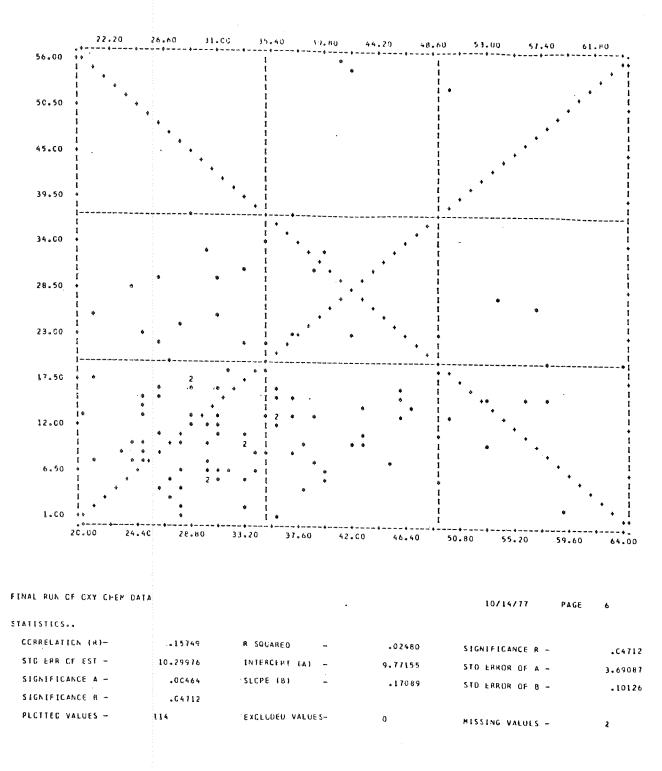
8.64

6.07

3.50

22.00

FINAL RUN OF CXY CHEP DATA


CCARELATION (R)-	.0\$\$10	R SQUARED -	.00782	SIGNIFICANCE R -	.28556
STC ERA CF EST -	2.32139	INTERCEPT (A) +	11.71729	STO LERGE OF A -	4.29205
SIGNIFICANCE A -	.00504	SLOPE (B) -	.07010	STO ERROR OF A -	.12252
SIGNIFICANCE H -	.28556				
PLCTTEC VALUES -	35	ENCLUDED VALUES-	0	MISSING VALUES -	٥

38,50

41.80

45.10

SCATTERGRAM OF LH AND AGE OF 114 EXPOSED, NONVASECTOMIZED EMPLOYEES

26.95 30.25 33.55 36.85 40.15 43.45 46.75 50.05 53.35 23.65 906.00 849.90 793.80 137.70 681.60 625.50 569.40 513.30 457.20 401.10 345.00 22.00 25.30 28.60 31.90 35,20 38.50 45.10 41.80 48.40 51.70 55.00 FINAL RUN OF OXY CHEM DATA 10/12/77 PAGE 7 STATISTICS..

18113116344					
CORRELATION (R)-	23223	R SQUARED -	.05393	SIGNIFICANCE R -	.08973
STC ERR OF EST -	122.32269	INTERCEPT (A) -	612.60430	STD ERROR UF A -	71.70984
SIGNIFICANCE A -	.0001	SLOPE (B) -	-2.80762	STD ERROR OF 8 -	2.04706
SIGNIFICANCE B -	.06973			;	
PLCTTED VALUES -	35	EXCLUDED VALUES-	0	MISSING VALUES -	э

FIGURE 12

SCATTERGRAM OF TESTOSTERONE AND AGE OF 35 NONEXPOSED NONVASECTOMIZED EMPLOYEES

SCATTERGRAM OF TESTOSTERONE AND AGE OF 114 EXPOSED, NONVASECTOMIZED EMPLOYEES

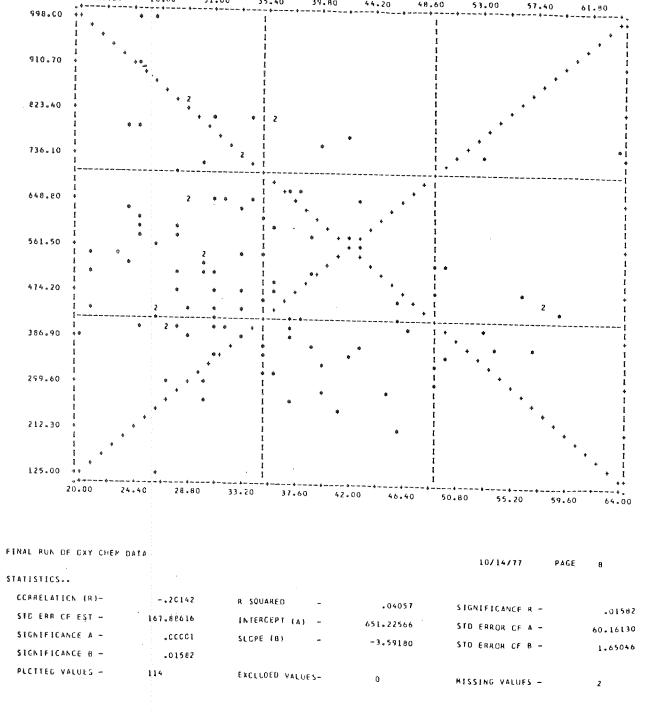


FIGURE 13