This Health Hazard Evaluation (HHE) report and any recommendations made herein are for the specific facility evaluated and may not be universally applicable. Any recommendations made are not to be considered as final statements of NIOSH policy or of any agency or individual involved. Additional HHE reports are available at http://www.cdc.gov/niosh/hhe/reports

NIOSH HEALTH HAZARD EVALUATION REPORT:

HETA #2000-0065-2899
United States Air Force
Little Rock Air Force Base
Jacksonville, Arkansas

April 2003
The Hazard Evaluations and Technical Assistance Branch (HETAB) of the National Institute for Occupational Safety and Health (NIOSH) conducts field investigations of possible health hazards in the workplace. These investigations are conducted under the authority of Section 20(a)(6) of the Occupational Safety and Health (OSHA) Act of 1970, 29 U.S.C. 669(a)(6) which authorizes the Secretary of Health and Human Services, following a written request from any employer or authorized representative of employees, to determine whether any substance normally found in the place of employment has potentially toxic effects in such concentrations as used or found.

HETAB also provides, upon request, technical and consultative assistance to federal, state, and local agencies; labor; industry; and other groups or individuals to control occupational health hazards and to prevent related trauma and disease. Mention of company names or products does not constitute endorsement by NIOSH.

This report was prepared by Ann Krake, Brad King, and Joel McCullough of HETAB, Division of Surveillance, Hazard Evaluations and Field Studies (DSHEFS). Field assistance was provided by Sergeant Douglas Fritts and Sergeant Joyce Foster. Pre- and post-activity body weight data were provided by Dr. Amit Bhattacharya, Edward Auyang, Jessica Gordan, Dr. Laurel Kincel, Ming Lun Lu, and Terry Mitchell, University of Cincinnati, Department of Environmental Health, College of Medicine, Cincinnati, OH. Dr. Paul Jensen, Stephen Martin, Earnest Moyer, and Stephen Berardinelli, NIOSH, Division of Respiratory Disease Studies (DRDS), Morgantown, West Virginia, provided field assistance and field notes essential to this report. Dr. Thomas E. Bernard, University of South Florida, College of Public Health, Tampa, FL, provided essential guidance on the report’s content for which the authors are very grateful. Desktop publishing was performed by David Butler. Review and preparation for printing were performed by Penny Arthur.

The authors would like to thank the USAF for the loan of the core body temperature monitors and Ms. Lindy McCollum-Brounley, formerly of HQ, Incorporated, Palmetto, Florida, for her support and guidance in the use of the CorTemp™ monitoring system, as well as HQ, Incorporated’s generous equipment loans. The authors are especially thankful for the help provided by many of the JP-8 jet fuel study investigators including principal investigator Major Leslie B. Smith (Ret.), and co-investigators Major Donald Christianson, and Lieutenant Colonel Roger Gibson, USAF. Technical support and guidance were provided by Mr. Allen Meyers, Sergeant David Villareal, Major Brian Blazicko, Sergeant Sally Perez, Sergeant Michael Lasenby, and Major Shawn Moore, USAF.

Copies of this report have been sent to employee and management representatives at Little Rock AFB. This report is not copyrighted and may be freely reproduced. Single copies of this report will be available for three years from the date of this report. To expedite your request, send a self-addressed mailing label with your written request to:

NIOSH Publications Office
4676 Columbia Parkway
Cincinnati, Ohio 45226
800-356-4674

After this time, copies may be purchased from the National Technical Information Service (NTIS) at 5825 Port Royal Road, Springfield, Virginia 22161. Information regarding the NTIS stock number may be obtained from the NIOSH Publications Office at the Cincinnati address.

For the purpose of informing affected employees, copies of this report shall be posted by the employer in a prominent place accessible to the employees for a period of 30 calendar days.
During August 21–25, 2000, NIOSH representatives conducted a health hazard evaluation at Little Rock Air Force Base (LRAFB), Jacksonville, Arkansas. We looked into management concerns about personnel exposures to high temperatures while conducting fuel systems maintenance (FSM) activities.

What NIOSH Did
- We measured the temperatures outside and inside the hangar. We also measured how much work (work load) the employees did.
- About half of the participants were weighed before and after their work and were tested for dehydration (not having enough water in their bodies).
- We measured the heart rates and internal body temperatures of the participants while they did their work.
- We talked to the participants about their jobs and asked them to tell us their health concerns.

What NIOSH Found
- The FSM participants were exposed to excess heat stress and some felt tired and dizzy from the heat.
- Nine of twenty-one FSM participants had high heart rates and/or body temperatures during their shift which put them at greater risk of getting sick from the heat.
- Five of nine FSM participants became at least mildly dehydrated during their shift, and one lost over 1.5% of body weight. Personnel who lose weight during their shift are more likely to get sick from the heat.
- Some of those affected did not know they had heat strain and/or dehydration and did not know they were in danger of getting sick from the heat.
- LRAFB has a heat stress instruction, but it does not teach employees how to monitor themselves for heat strain.

What LRAFB Managers Can Do
- Add a heat strain (physiological) monitoring program to the base instruction for heat stress that will do the following:
 - Teach personnel the reasons for and benefits of listening to their bodies when they are heat stressed;
 - Train personnel in personal monitoring techniques;
 - Encourage employees to use the buddy system to monitor themselves and others’ heat stress and strain signs.
- Conduct heat strain monitoring when air- and vapor-impermeable encapsulating suits are required and/or when dry bulb temperatures exceed 68°F.
- Take WBGT measurements as close to the work area as possible, and take readings hourly during the hottest part of the shift and hottest months of the year.

What the LRAFB Personnel Can Do
- Learn to monitor yourself and your co-workers for heat stress and strain, and take breaks when needed before you feel sick.
- Some of the first signs of heat strain, lack of good judgement and inability to think critically, usually are not noticed by the person who is getting sick from the heat. Therefore, make sure you are well-hydrated, have eaten enough, and have slept well before you work in the heat.
- Drink enough water and eat enough during your shift to keep your weight the same. For example, eat three meals a day, and eat snacks with the water you drink between meals to maintain healthy electrolyte levels.
- Report any heat-related illnesses and other concerns to your crew leader or commanding officer.

What To Do For More Information:
We encourage you to read the full report. If you would like a copy, either ask your health and safety representative to make you a copy or call 1-513-841-4252 and ask for HETA Report #2000-0065-2899.
SUMMARY

The National Institute for Occupational Safety and Health (NIOSH) received a health hazard evaluation (HHE) request from the management of the United States Air Force Institute for Environmental, Safety, and Occupational Risk Analysis (AFIERA), Brooks Air Force Base (AFB), San Antonio, Texas. The request indicated that Air Force personnel working as aircraft fuel systems inspection and repair workers at Little Rock AFB, Jacksonville, Arkansas, were exposed to heat stress, jet fuel, and jet fuel vapors in confined spaces (aircraft fuel tanks). The employees reported experiencing dizziness, lethargy, skin irritation, and a ‘jet-fuel taste’ during and long after exposure to jet fuel. The requesters asked NIOSH to evaluate the heat stress aspects of the employee complaints and make recommendations to prevent heat illness among the employees. The evaluation was part of an on-going collaborative study of Air Force employees’ acute exposure to jet fuel (JP-8), and the other concerns were addressed by this larger study.

Data were collected August 21–25, 2000. Individual and task-specific metabolic rates were estimated, and wet bulb globe temperatures (WBGTs) were measured. Heat strain monitoring included core body temperature (CBT) and heart rate (HR) measurements on 21 participants and pre- and post-shift body weight measurements on 9 participants.

The sampling results were compared to the NIOSH recommended action limits and recommended exposure limits (RALs/RELS) and the American Conference of Governmental Industrial Hygienists (ACGIH®) Threshold Limit Values (TLVs®). NIOSH and ACGIH assess heat stress using sliding scale limits based on environmental (WBGTs) and metabolic heat loads. In addition, ACGIH provides physiological heat strain limits useful for those wearing impermeable personal protective equipment (PPE) and in situations of excess heat stress. For individuals with normal cardiac performance, ACGIH recommends that sustained (over several minutes) heart rate should remain below 180 beats per minute (bpm) minus age (in years), maximum CBT should remain below 100.4°F for unselected, unacclimatized personnel (101.3°F for medically selected, acclimatized personnel), recovery heart rate at one minute after a peak work effort should be below 110 bpm, and there should be no symptoms of sudden and severe fatigue, nausea, dizziness, or lightheadedness.

The results of the evaluation indicated that participants were exposed to heat stress conditions in excess of the NIOSH and ACGIH screening criteria for acclimatized individuals. Nine of twenty-one participants (43%) experienced heat strain signs (HR and/or CBT in excess of the ACGIH criteria). In addition, one of nine participants weighed before and after work activities was dehydrated (lost enough weight to exceed the ACGIH recommendation that body weight loss over a shift not exceed 1.5%) and another five participants developed mild dehydration (body weight change of -1.5% or less).
The evaluation results combined with the potential for heat strain to increase as temperatures rise during the summer indicate that FSM personnel should continue to be included in a heat stress management program. In addition, affected participants were not aware of having developed heat strain, indicating a need for a physiological self-monitoring program to be added to the heat stress program.

During the NIOSH evaluation, health hazards from environmental conditions and overwork existed for fuel cell maintenance and other workers, and 9 of 21 participants developed heat strain as indicated by the physiological monitoring results (CBTs and/or heart rate levels were in excess of occupational criteria). Of the nine participants who were weighed pre- and post-shift, 5 developed mild dehydration and one exceeded the ACGIH recommendation that body weight loss over a shift not exceed 1.5%, indicating a greater risk for developing heat-related illnesses. Little Rock AFB has a heat stress instruction, however the instruction does not include a system for physiological monitoring. Recommendations are made to implement physiological (heat strain) monitoring and to take WBGT measurements in or around immediate work areas at least hourly during the hottest parts of the shift and the hottest months of the year.

Keywords: SIC 9711 (National Security) Heat stress, heat strain, heat-related illness, core body temperature, metabolic rates, WBGT, wet-bulb globe temperatures, Air Force aircraft fuel cells, aircraft fuel cell maintenance, fuel systems maintenance, FSM.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgments and Availability of Report</td>
<td>ii</td>
</tr>
<tr>
<td>Highlights of the HHE Report</td>
<td>iii</td>
</tr>
<tr>
<td>Summary</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Methods</td>
<td>2</td>
</tr>
<tr>
<td>Evaluation Criteria</td>
<td>4</td>
</tr>
<tr>
<td>Heat Stress</td>
<td>4</td>
</tr>
<tr>
<td>Heat Strain</td>
<td>4</td>
</tr>
<tr>
<td>Health Effects of Exposure to Hot Environments</td>
<td>5</td>
</tr>
<tr>
<td>Acclimatization</td>
<td>6</td>
</tr>
<tr>
<td>Dehydration and Fluid Replacement</td>
<td>7</td>
</tr>
<tr>
<td>Hyponatremia (Water Toxicity)</td>
<td>8</td>
</tr>
<tr>
<td>Results</td>
<td>9</td>
</tr>
<tr>
<td>Workload and Task Assessments (Heat Stress)</td>
<td>9</td>
</tr>
<tr>
<td>Physiological Monitoring (Heat Strain)</td>
<td>9</td>
</tr>
<tr>
<td>Heat Stress Management at LRAFB</td>
<td>9</td>
</tr>
<tr>
<td>Discussion</td>
<td>11</td>
</tr>
<tr>
<td>Conclusions</td>
<td>12</td>
</tr>
<tr>
<td>Recommendations</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>14</td>
</tr>
</tbody>
</table>
INTRODUCTION

The National Institute for Occupational Safety and Health (NIOSH) received a health hazard evaluation (HHE) request from the management of the United States Air Force (USAF) Institute for Environmental, Safety, and Occupational Risk Analysis (AFIERA), Brooks Air Force Base (AFB), San Antonio, Texas. The request indicated that Air Force personnel working as aircraft fuel systems maintenance inspection and repair (FSM) workers, at Little Rock AFB (LRAFB), Jacksonville, Arkansas, were exposed to heat, jet fuel, and jet fuel vapors in confined spaces (aircraft fuel tanks). The employees reported experiencing dizziness, lethargy, skin irritation, and a ‘jet-fuel taste’ in their mouths during and long after exposure to jet fuel.

During the week of August 21–25, 2000, two NIOSH officers and other JP-8 study collaborators visited the aircraft fuel tank maintenance shop at LRAFB. The work environment was assessed with wet bulb globe temperature (WBGT) monitors and by calculating the estimated metabolic heat load of each work task. The heat strain evaluation included personal monitoring of core body temperature (CBT), ear temperature, skin temperature, heart rate (HR), activity levels, and pre- and post-activity body weights.

BACKGROUND

LRAFB, located in Jacksonville, Arkansas, is home to the 314th and 189th Airlift Wings, the 463rd Airlift Group, and the Air Mobility Warfare Center Combat Aerial Delivery School. The 314th Airlift Wing trains C-130 aircrew members from all branches of the U.S. armed services and houses and maintains C-130 passenger and cargo airlift jets. The 314th Airlift Wing is comprised of operations, logistics, mission support and medical groups. FSM personnel are part of the 314th maintenance group. Approximately 50 personnel rotate among two or three shifts depending upon the amount of work to be completed. FSM activities mostly take place inside metal non-air-conditioned hangars large enough for one to three planes, but can also occur outside on the flight line. One or two FSM crews work on a plane at one time, and their duties include removing any remaining jet fuel from the fuel cell, opening the entrance to the cell (usually a small port underneath the wing or on the fuselage), de-puddling the cell (removing the last of the fuel from the floor of the cell), and conducting maintenance activities. Breaks and lunch are taken in an air-conditioned room adjoining the hangar or outdoors.

Each crew consists of an entrant, attendant, runner, and shop supervisor. The entrant is responsible for going into the fuel cell, finishing the de-puddling, locating the area to be repaired or maintained, and removing large foam “sponges” to gain access to that area. (The foam sponges fill each fuel cell in specific order and are used for spark arrest in the event the plane’s fuel tanks are damaged by gunfire.)
attendant is an assistant and backup for the entrant and usually stands just outside the porthole catching the foam removed by the entrant. The runner takes the foam from the attendant and arranges it in order on the floor of the hangar on absorbent material. The runner is also responsible for supplying parts, tools, and other necessities to the attendant, who then passes them on to the entrant. Crew members are cross trained and were observed to rotate their activities frequently during the study period. The shop supervisor, usually the highest in military rank, oversees the operation and can act in any of the other three job categories if necessary. The crew members dress in thick 100% cotton coveralls and may wear pants and/or a T-shirt underneath. Some entrants and attendants also wear gloves and impermeable aprons over their coveralls, but most wore neither, and all of them entered the tank wearing only cotton socks on their feet. The entrants and some of the attendants were supplied-air respirators. The respirator and confined space programs were evaluated by other members of the jet fuel study team.

Others exposed to JP-8 work in the fuels and fuels-transportation shops, commonly called petroleum, oils, and lubricants shops, or POLs, and as aircraft maintenance (avionics) specialists. POL responsibilities include refueling aircraft and filling and maintaining bulk fuel storage tanks, while maintenance specialists work with the planes’ guidance and electrical systems. Work is mostly outdoors, but much time is spent in air-conditioned trucks driving from site to site. The uniform is the same thick 100% cotton coveralls, and T-shirts and pants are usually worn underneath.

The average high temperature for the Jacksonville, Arkansas, area is 72°F, with an average low of 52°F. The average number of days equal to or hotter than 90°F is 64, and the average number of days equal to or colder than 32°F is 56. Average rainfall is 52 inches.¹

METHODS

WBGT measurements were collected using two RSS-214 WiBGeT® instruments (Imaging & Sensing Technology, Horseheads, New York). These monitors are capable of measuring temperatures of 32°F–150°F and are accurate to within ±0.5°F. The WBGT index accounts for air velocity, temperature, humidity, and radiant heat and is a useful index of the environmental contribution to heat stress. It is a function of dry bulb temperature (a standard measure of air temperature taken with a thermometer), natural wet bulb temperature (simulates the effects of evaporative cooling), and black globe temperature (estimates radiant [infrared] heat load). One WBGT monitor was placed outdoors while the other was placed in the hangar on a work table near the work area. The monitors collected temperature data only during the hours worked by the study participants and therefore may not include the true high and low temperatures of each day. Also, because no data are available for conditions inside the fuel cell, environmental temperatures to which the entrant was exposed may be underestimated. Because the crew members dress in thick 100% cotton coveralls and may wear pants and/or T-shirt underneath, a clothing adjustment factor of 2°F was used to adjust the measured WBGTs during the data analysis.²

Metabolic rates for five different activities, including entrant, attendant, runner, POL/avionics specialist, and ‘other,’ were estimated. The ‘other’ category includes scheduled and unscheduled breaks and all other non-working activities, such as time spent waiting for planes or parts to arrive, that are part of the work shift. Metabolic rates were estimated using the NIOSH table, “Estimated metabolic heat production rates by task analysis” (Appendix A). This method allows for specificity in rate estimation because it breaks the job down into categories that account for body position and movement, type of work, and basal metabolism.

Individual metabolic rates were estimated for the participants whose weights were available. The same NIOSH estimation method as for the activities was used (Appendix A). The NIOSH values are based upon a standard weight of 154 pounds (lbs),
so a weight correction factor must be applied when workers weigh other than 154 lbs. The resulting estimates are also weighted to reflect the time the participants spent conducting each activity. Also, participants worked an 8-hour shift, but spent about 2 hours before and 2 hours after their FSM activities completing other components of the jet fuel study. No heat exposure monitoring occurred during these times. Therefore, the resulting estimates are not “full-shift” time-weighted averages and may underestimate participants’ heat stress and strain levels. Individual results will vary depending on age, sex, fitness level, current health status, and body weight, and partly because of observer variability, errors in estimating metabolic rates may vary by ±10–15%.3

Heat strain was assessed using the CorTemp™ Wireless Core Body Temperature Monitoring System (HQ, Incorporated, Palmetto, Florida). The CorTemp Temperature Sensor, a 0.9 x 0.4 inch silicon-coated electronic device, is swallowed and provides continuous monitoring of CBT to within ±0.2°F. The sensor is passed through the gastrointestinal tract and exits the body at participants’ normal transit time, an average of approximately 72 hours. The sensor, intended for one-time use only, runs on a non-rechargeable silver-oxide battery and utilizes a temperature sensitive crystal which vibrates in direct proportion to the temperature of the substance surrounding it. This vibration creates an electromagnetic flux (frequency = 262.144 kilohertz) which continuously transmits through the surrounding substance. A recorder, the CT2000, receives this signal and translates it into digital temperature information, which is then displayed on the unit and stored to memory. The CT2000 Recorder monitors temperatures of 50°F–122°F. The recorder operates on one standard 9-volt alkaline battery, weighs about 7 ounces, and attaches to the user’s belt. The participants’ CBTs were recorded at 1-minute intervals.

Heat strain was also assessed using a Mini-Mitter Mini-Logger® Series 2000 (Mini-Mitter Company, Inc., Bend, Oregon). Heart rate, gross motor activity, skin temperature, and ear temperature, all of which directly impact or are a function of the body’s metabolic rate, were monitored at 1-minute intervals.a The participants were asked to wear an aural (ear) temperature probe, a skin temperature probe, Polar® chest band heart rate monitor, and an activity sensor on the dominant wrist. The Mini-Logger’s ear and skin temperature readings are accurate to within ±0.18°F and have a range of 86°F–108°F. The Polar chest band heart rate monitor counts up to 250 beats per minute (bpm) and is accurate to within ±1 heart beat. The activity monitor, which works by counting the number of movements per collection interval, is accurate to within ±1 millisecond and counts up to 65,353 movements per interval. The recorder weighs about 4 ounces and is worn on the user’s belt.

Pre- and post-shift body weights were measured on 9 of 21 participants as part of the performance and balance measurements aspect of the jet fuel study and were used to determine the participants’ degree of dehydration. Participants were weighed without socks and shoes using a self-calibrating Health o meter®, Inc., electronic digital strain-gauge scale, Model 842, accurate to within 0.25 lbs with a capacity of 300 lbs.

EVALUATION CRITERIA

As a guide to the evaluation of the hazards posed by workplace exposures, NIOSH field staff employ environmental evaluation criteria for the assessment a The ear and skin temperature and activity measurements are not included in this report. No evaluation criteria exist for any of these measurements, and ear and skin temperatures are influenced by environmental conditions thereby decreasing their accuracy in heat stress assessments. Rather, these measurements will be compared to the CBT, heart rate, and WBGT measurements, which do have established criteria. Air Force personnel and management representatives will be provided with any future analyses of these measurements.
of a number of chemical and physical agents. These criteria are intended to suggest levels of exposure to which most workers may be exposed up to 10 hours per day, 40 hours per week for a working lifetime without experiencing adverse health effects. It is, however, important to note that not all workers will be protected from adverse health effects even though their exposures are maintained below these levels. A small percentage may experience adverse health effects because of individual susceptibility, a pre-existing medical condition, and/or a hypersensitivity (allergy). In addition, some hazardous substances may act in combination with other workplace exposures, the general environment, or with medications or personal habits of the worker to produce health effects even if the occupational exposures are controlled at the level set by the criteria. These combined effects are often not considered in the evaluation criteria. Also, some substances are absorbed by direct contact with the skin and mucous membranes, which potentially increases the overall exposure. Finally, evaluation criteria may change over the years as new information on the toxic effects of an agent become available.

The primary sources of environmental evaluation criteria for the workplace are: (1) NIOSH Recommended Exposure Limits (RELS),4 (2) the American Conference of Governmental Industrial Hygienists’ (ACGIH®) Threshold Limit Values (TLVs®),5 and (3) the U.S. Department of Labor, Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs).6 Employers are encouraged to follow the OSHA limits, the NIOSH RELs, and the ACGIH TLVs, whichever are the more protective criterion.

OSHA requires an employer to furnish employees a place of employment that is free from recognized hazards that are causing or are likely to cause death or serious physical harm (Occupational Safety and Health Act of 1970, Public Law 91–596, sec. 5(a)(1)). Employers should understand that not all hazardous agents, including heat stress, have specific OSHA exposure limits such as PELs or short-term exposure limits (STELs); however, even in the absence of a PEL or STEL, an employer is still required by OSHA to protect their employees from these hazards.

A time-weighted average (TWA) exposure refers to the average airborne concentration of a substance during a normal 8- to 10-hour workday. Some substances have recommended STEL or ceiling values which are intended to supplement the TWA where there are recognized toxic effects from higher exposures over the short-term.

Heat Stress

NIOSH defines heat stress exposure as the sum of the heat generated in the body (metabolic heat) plus the heat gained from the environment (environmental heat) minus the heat lost from the body to the environment, which is primarily through evaporation. Many bodily responses to heat stress are desirable and beneficial because they help regulate internal temperature and, in situations of appropriate repeated exposure, help the body adapt (acclimate) to the work environment. However, at some stage of heat stress, the body’s compensatory measures cannot maintain internal body temperature at the level required for normal functioning. As a result, the risk of heat-induced illnesses, disorders, and accidents substantially increases. Increases in unsafe behavior are also seen as the level of physical work of the job increases.3

Many heat stress guidelines have been developed to protect people against heat-related illnesses. The objective of any heat stress index is to prevent a person's CBT from rising excessively. The World Health Organization concluded that “it is inadvisable for CBT to exceed 38°C (100.4°F) or for oral temperature to exceed 37.5°C (99.5°F) in prolonged daily exposure to heavy work and/or heat.”7 According to NIOSH, a deep body temperature of 39°C (102.2°F) should be considered reason to terminate exposure even when deep body temperature is being monitored.3 This does not mean that a worker with a CBT exceeding those levels will necessarily experience adverse health effects; however, the number of unsafe acts increases as does the risk of developing heat stress illnesses.3
NIOSH recommends that total heat exposure be controlled so that unprotected healthy workers who are medically and physically fit for their required level of activity and are wearing, at most, long-sleeved work shirts and trousers or equivalent, are not exposed to metabolic and environmental heat combinations exceeding the applicable NIOSH criteria, as follows: Almost all healthy employees, working in hot environments and exposed to combinations of environmental and metabolic heat less than the NIOSH Recommended Action Limits (RALs) for non-acclimatized workers (Appendix B, Figure 1) or the NIOSH RELs for acclimatized workers (Appendix B, Figure 2), should be able to tolerate total heat stress without substantially increasing their risk of incurring acute adverse health effects. Also, no employee should be exposed to metabolic and environmental heat combinations exceeding the applicable Ceiling Limits (C) of Appendix B (Figures 1 and 2) without being provided with and properly using appropriate and adequate heat-protective clothing and equipment.

ACGIH guidelines require the use of a decision-making process which provides step-by-step situation-dependent instructions that factor in clothing insulation values and physiological evaluation of heat strain (see Evaluation Scheme for Heat Stress, Appendix C). ACGIH WBGT screening criteria (Appendix D) factor in the ability of the body to cool itself (clothing insulation value, humidity, wind), and, like the NIOSH criteria, can be used to develop work/rest regimens for acclimatized and unacclimatized employees. The ACGIH WBGT-based heat exposure assessment was developed for a traditional work uniform of long-sleeved shirt and pants, and represents conditions under which it is believed that nearly all adequately hydrated, unmedicated, healthy workers, may be repeatedly exposed without adverse health effects. Clothing insulation values and the appropriate WBGT adjustments, as well as descriptors of the other decision-making process components can be found in ACGIH’s Threshold Limit Values (TLVs) for Chemical Substances and Physical Agents and Biological Exposure Indices. The ACGIH TLV for heat stress attempts to provide a framework for the control of heat-related illnesses only. Although accidents and injuries can increase with increasing levels of heat stress, it’s important to note that the TLVs are not directed toward controlling these.

NIOSH and ACGIH criteria can only be used when WBGT data for the immediate work area are available and must not be used when wearing encapsulating suits or garments that are impermeable or highly resistant to water vapor or air movement. Further assumptions regarding work demands include an 8-hour work day, 5-day work week, two 15-minute breaks, and a 30-minute lunch break, with rest area temperatures the same as, or less than, those in work areas, and “at least some air movement.” It must be stressed that NIOSH and ACGIH guidelines do not establish a fine line between safe and dangerous levels but require professional judgement and a heat stress management program to ensure protection in each situation.

OSHA does not have a specific heat stress standard, however, acceptable exposure to heat stress is enforced by the Secretary of Labor under the General Duty Clause [section 5(a)(1)]. The OSHA technical manual, Section III, Chapter 4, provides investigation guidelines that approximate those found in ACGIH’s 1992-1993 Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices.

Heat Strain

The body’s response to heat stress is called heat strain. Operations involving high air temperatures, radiant heat sources, high humidity, direct physical contact with hot objects, and strenuous physical activities have a high potential for inducing heat strain in employees. Heat strain is highly individual and cannot be predicted based upon environmental heat stress measurements alone. Physiological monitoring for heat strain becomes necessary when impermeable clothing is worn, when heat stress screening criteria are exceeded, or when data from a detailed analysis (such as the International Standards Organization [ISO] required sweat rate [SRreq]) shows excess heat stress.
One indicator of physiological strain, sustained peak heart rate, is considered by ACGIH to be the best sign of acute, high-level exposure to heat stress. Sustained peak heart rate, defined by ACGIH as 180 beats per minute (bpm) minus an individual’s age, is a leading indicator that thermal regulatory control may not be adequate and that increases in CBTs have, or will soon, occur. Sustained peak heart rate represents an equivalent cardiovascular demand of about 75% of maximum aerobic capacity. During an 8-hour work shift, although sustained peak demands may not occur, there may still be excessive demand placed on the cardiovascular system. These ‘chronic’ demands can be measured by calculating the average heart rate over the shift. Decreases in physical job performance have been observed when the average heart rate exceeds 115 bpm over the entire shift. This level is equivalent to working at roughly 35% of maximum aerobic capacity, a level sustainable for 8 hours.8

According to ACGIH, an individual’s heat stress exposure should be discontinued when any of the following excessive heat strain indicators occur:

- Sustained (over several minutes) heart rate is in excess of 180 bpm minus the individual’s age in years (180 bpm – age) for those with normal cardiac performance;
- Core body temperature is greater than 38.0°C (100.4°F) for unselected, unacclimatized personnel and greater than 38.5°C (101.3°F) for medically fit, heat-acclimatized personnel;
- Recovery heart rate at 1 minute after a peak work effort exceeds 110 bpm; or
- There are symptoms of sudden and severe fatigue, nausea, dizziness, or lightheadedness.

An individual may be at greater risk of heat strain if:

- Profuse sweating is sustained over several hours;
- Weight loss over a shift is greater than 1.5% of body weight; or
- 24-hour urinary sodium excretion is less than 55 millimoles.

Health Effects of Exposure to Hot Environments

Heat disorders and health effects of individuals exposed to hot working environments include (in increasing order of severity) skin disorders (heat rash, hives, etc.), heat syncope (fainting), heat cramps, heat exhaustion, and heat stroke. Heat syncope (fainting) results from blood flow being directed to the skin for cooling, resulting in decreased supply to the brain, and most often strikes workers who stand in place for extended periods in hot environments. Heat cramps, caused by sodium depletion due to sweating, typically occur in the muscles employed in strenuous work. Heat cramps and syncope often accompany heat exhaustion, or weakness, fatigue, confusion, nausea, and other symptoms that generally prevent a return to work for at least 24 hours. The dehydration, sodium loss, and elevated CBT (above 100.4°F) of heat exhaustion are usually due to individuals performing strenuous work in hot conditions with inadequate water and electrolyte intake. Heat exhaustion may lead to heat stroke if the patient is not quickly cooled and rehydrated.

While heat exhaustion victims continue to sweat as their bodies struggle to stay cool, heat stroke victims cease to sweat as their bodies fail to maintain an appropriate core temperature. Heat stroke occurs when hard work, hot environment, and dehydration overload the body’s capacity to cool itself. This thermal regulatory failure (heat stroke) is a life-threatening emergency requiring immediate medical attention. Signs and symptoms include irritability, confusion, nausea, convulsions or unconsciousness, hot dry skin, and a CBT above 106°F. Death can result from damage to the brain, heart, liver, or kidneys.11

Prolonged increases in CBT and chronic exposures to high levels of heat stress are associated with disorders such as temporary infertility (male and female), elevated heart rate, sleep disturbance,
fatigue, and irritability. During the first trimester of pregnancy, a sustained CBT greater than 102.2°F may endanger the fetus.\(^5\) In addition, one or more occurrences of heat-induced illness in a person predisposes him/her to subsequent injuries and can result in temporary or permanent loss of that person’s ability to tolerate heat stress.\(^3,10\)

The level of heat stress at which excessive heat strain will result is highly individual and depends upon the heat tolerance capabilities of each individual. Age, weight, degree of physical fitness, degree of acclimatization, metabolism, use of alcohol or drugs, and a variety of medical conditions, such as hypertension and diabetes, all affect a person’s sensitivity to heat. At greatest risk are unacclimatized workers, people performing physically strenuous work, those with previous heat illnesses, the elderly, people with cardiovascular or circulatory disorders (diabetes, atherosclerotic vascular disease), those taking medications that impair the body’s cooling mechanisms,\(^b\) people who use alcohol or are recovering from recent use, people in poor physical condition, and those recovering from illness. A core body temperature increase of only 1.8°F above normal encroaches on the brain’s ability to function.\(^8\)

Acclimatization

When workers are first exposed to a hot environment, they show signs of distress and discomfort, experience increased CBTs and heart rates, and may have headaches and/or nausea. On repeated exposure there is marked adaptation to the hot environment known as acclimatization. Acclimatization is the process that allows the body to begin sweating sooner and more efficiently, reduces

\(^b\) \(\beta\)-adrenergic receptor blockers and calcium-channel blockers, used to treat hypertension, limit maximal cardiac output and alter normal vascular distribution of blood flow in response to heat exposure. Diuretics, such as caffeine, can limit cardiac output and affect heat tolerance and sweating, and antihistamines, phenothiazines, and cyclic antidepressants impair sweating.\(^3\)

electrolyte concentrations in the sweat, and allows the circulation to stabilize so that the worker can withstand greater amounts of heat stress while experiencing reduced heat strain symptoms.

Acclimatization begins with consecutive exposures to working conditions for 2 hours at a time, with a requisite rise in metabolic rate. This will cause the body to reach 33% of optimum acclimatization by the fourth day of exposure. Cardiovascular stability and surface and internal body temperatures will be lower by day 8 when the body has reached 44% of optimum acclimatization. A decrease in sweat and urine electrolyte concentrations are seen at 65% of optimum (day 10); 93% of optimum is reached by day 18 and 99% by day 21.\(^8\)

The loss of acclimatization begins when the activity under those heat stress conditions is discontinued, and a noticeable loss occurs after four days. This loss is usually made up rapidly so that by Tuesday workers who were off on the weekend are as well acclimatized as they were on the preceding Friday. Chronic illness, the use or misuse of pharmacologic agents, a sleep deficit, a suboptimal nutritional state, or a disturbed water and electrolyte balance may reduce the worker’s capacity to acclimatize.\(^8\)

Dehydration and Fluid Replacement

When working in hot environments it is often difficult to completely replace lost fluids as the day’s work proceeds. High sweat rates with excessive loss of body fluids may result in dehydration and electrolyte imbalances.\(^12\) Some studies have shown that even small deficits have adverse effects on performance.\(^13\) Dehydration also negates the advantage granted by high levels of aerobic fitness and heat acclimatization.\(^14\)

Several studies have shown that dehydration increases CBT during exercise in temperate and hot environments; a deficit of only 1% of body weight increases CBT during exercise. As the magnitude of the water deficit increases, there is an accompanying elevation in CBT when exercising in the heat. The
magnitude of this elevation ranges from 0.2°F to 0.4°F (0.1°C–0.23°C) for every 1% body weight loss. A 2% loss of body weight is generally accepted as the threshold for thirst stimulation. A 3% decrease in body weight causes an increase in heart rate, depressed sweating sensitivity, and a substantial decrease in physical work capacity. Some investigators have reported that a 4% to 6% water deficit has been associated with anorexia, impatience, and headache, while a 6% to 10% deficit is associated with vertigo, shortness of breath, cyanosis, and spasticity. With a 12% water deficit, an individual will be unable to swallow and will need assistance with rehydration. Lethal dehydration levels are estimated to occur at 15% to 25% lost body weight.

Palatability of any fluid replacement solution is important to ensure adequate rehydration. There is evidence that adding sweeteners to drinks leads to increased consumption. Glucose-electrolyte solutions have been shown to facilitate sodium and water absorption. Also, the glucose in these solutions provides energy for muscular activity in endurance events that require vigorous exercise. The temperature of the drink will also influence consumption of fluids. Ideally, fluids should be ingested at 50°F–60°F in small quantities (5–7 ounces) and at frequent intervals (every 15–20 minutes).

Hyponatremia (Water Toxicity)

Most individuals with acute exercise-induced heat illness are dehydrated with normal to mildly increased serum sodium and serum osmolality (hypernatremia). Hyponatremia develops when serum sodium levels drop below 135 milliequivalents per liter (mEq/L) and is a life-threatening condition that has been recognized as a potential health consequence of endurance activities conducted in hot environments. Increased water intake prior to and during activities in hot environments is highly emphasized to prevent dehydration and heat illness.

However, drinking too much water can lead to decreased serum sodium concentrations (water toxicity or hyponatremia), and has been recognized as an increasing problem among U.S. military recruits. Hyponatremia may occur with hypo-, hyper-, or normal hydration status. Symptomatic hyponatremia can occur when blood sodium concentrations decrease to less than 130 mEq/L and is generally caused by hypervolemia (water overload) secondary to extensive over-drinking. Many people with hyponatremia have increased their total body water by about 1 gallon to achieve such low serum sodium values.

Most cases of hyponatremia result from the inability of the kidneys to excrete an appropriately dilute urine. The most significant clinical signs of hyponatremia involve the central nervous system, and symptoms vary from subtle changes in one’s ability to think, to decreases in energy levels, to severe alterations, such as coma or seizure. Symptoms generally parallel the rate of development and degree of hyponatremia.

RESULTS

Workload and Task Assessments (Heat Stress)

Table 1 lists the WBGTs measured during the study. During the week of the study, indoor WBGTs ranged from approximately 67°F to 85°F, and outdoor WBGTs ranged from 77°F to 93°F. Table 2 lists the estimated metabolic rates for the five job categories which range from 138 kilocalories per hour (kcal/hr) for ‘other’ activities to 288 kcal/hr for entrant activities and are therefore considered...
light to moderate workloads (see Appendix A for calculations and Appendix D for a description of the workload categories). Estimated individual metabolic rates, calculated for those participants whose weight was available, ranged from 174 kcal/hr to 295 kcal/hr (Tables 3–6). According to the criteria, all of the participants were acclimatized to the work environment. The results were compared to the NIOSH and ACGIH screening criteria for acclimatized individuals and indicate that as temperatures rose throughout the day, some of the study participants were exposed to combinations of metabolic work rates and environmental temperatures where the risk of heat-induced illnesses, disorders, and accidents substantially increases.

Physiological Monitoring (Heat Strain)

Twenty-one participants were monitored for heat strain, including thirteen assigned to FSM activities, four conducting POL activities, two mobile command center personnel, one aerospace ground equipment technician, and one non-destructive inspection journeyman. Tables 3–7 list the results by study day. Sampling times ranged from 231 minutes to 447 minutes because some participants had to wait for parts or for a plane and some worked longer hours conducting non-FSM activities. Generally, participants spent about 2 hours before and 2 hours after their FSM activities completing other parts of the study and were not monitored for heat strain during these times. Nine participants (43%), seven conducting FSM activities, one POL participant, and one aerospace equipment technician, experienced varying degrees of heat strain. One participant exceeded both the HR criterion (for 2% of the work shift) and CBT criterion (for 3.6% of the work shift). Three participants exceeded only the CBT criterion (from 2.8%–8.1% of their work activities), and five participants exceeded only the HR criterion (from at least 3.1%–10% of their work activities). All the FSM participants who exceeded one or both criteria did so during and immediately following entry activities most likely because this activity requires the most metabolic energy. The POL and aerospace participants reported that they spent most of their shift outside in direct sunlight, thus experiencing a radiant heat load, which contributed to their development of heat strain. Most participants reported being hot while working. In addition, those who developed heat strain also reported heat strain symptoms such as weakness, excessive fatigue, and dizziness.

Body weight changes among the nine weighed participants ranged from -2.6% to +2.3%, with a median percent body weight change of -0.6%. One participant had greater than 1.5% body weight loss over the shift indicating a greater risk of developing a heat-related illness. This participant did not exceed the HR criteria during work activities (no CBT data were available for this participant). An additional five participants, including two who exceeded the HR criterion and one who exceeded the CBT criterion, developed mild dehydration (body weight change of -1.5% or less) during their activities.

Heat Stress Management at LRAFB

The heat stress instruction at LRAFB is supplemental to the U.S. Air Force Air Education and Training Command (AETC) Instruction 48-101, *Prevention of Heat Stress Disorders*. The AETC instruction, dated October 2000, applies to all military and civilian personnel, except contractor personnel, conducting ground activities and assigned to bases that are AETC installations. The WBGT index is used as the basis for the instruction, which includes two work/rest regimens. The first regimen is based on U.S. Army policy, has lower exposure times (up to four hours), and is for personnel in training. The second regimen is based on ACGIH guidelines and is for occupationally exposed personnel, such as FSM personnel, working a normal, 8-hour shift. The AETC instruction includes signs and symptoms of heat stress and water intoxication (hyponatremia), specific descriptions of work load categories, and clothing insulation values. If using the work/rest regimen designated for personnel in training, 10°F is to be added to the WBGT when wearing ground crew ensemble,
firefighting gear, or other restrictive or impermeable clothing, and 15°F should be added if also wearing body armor. The work/rest regimen for occupationally exposed personnel states that 3.5°F is to be added for personnel wearing cloth coveralls and 7°F for personnel in double cloth coveralls. The instruction also covers specific responsibilities for the medical units for education and training, preventive measures (modifying work schedules to perform harder work during cooler weather, etc.), acclimatization instructions, first aid treatment, and investigation and surveillance of heat stress incidents. The AETC instruction mandates that each AETC installation develop its own site-specific supplement.

The LRAFB supplemental instruction (LRAFB Instruction 48-100, dated June 1999) specifically applies to all personnel who are assigned to or attending training at LRAFB, except contractor personnel, and establishes responsibilities and describes procedures to protect personnel from the adverse health effects of heat stress. The WBGT index is the basis for the instruction which outlines WBGT monitoring and notification procedures. The WBGT work/rest regimens listed in the supplement are those provided for personnel in training in the AETC instruction. They are divided into light, moderate, and heavy work loads performed during five heat ‘stages’ which range from 78°F to 81.9°F WBGT (stage 1) to ≥90°F WBGT (stage 5). The supplement states that stage 5 exposures should only be allowed with caution when performing mission-essential duties and with a 25% work/75% rest regimen in effect. Each stage has a colored flag associated with it that, according to the LRAFB instruction, should be posted by commanders and supervisors in accordance with the AETC instruction.

Per the instruction, LRAFB Bioenvironmental Engineering Flight (BEF) personnel are responsible for measuring the WBGT at least four evenly-spaced times during the hottest part of the day when outside temperatures are predicted to reach 85°F and hourly when WBGTs reach and exceed 85°F. BEF personnel are also responsible for reporting the heat stress stage and WBGT to base weather and the command post. The command post announces the heat stage over the base loudspeaker and notifies each base organization of the WBGT and the heat stress stage. The organizational and unit commanders are responsible for preventing heat injuries in assigned personnel by disseminating the WBGT and heat stress stage to the affected subordinate units; annually briefing supervisors and workers on the health hazards of heat stress, the WBGT index, notification procedures, and appropriate preventive measures; and, during training exercises when personnel must wear personal protective equipment (PPE), ensuring that supervisors and workers are trained in detecting early signs of heat stress and methods to minimize the effects of heat stress. Supervisors are responsible for training their personnel on the meaning of the WBGT index, the heat stress stages, and prevention measures, developing their work/rest regimens, disseminating the heat stress stages and WBGTs to them, and ensuring adequate fluid intake. BEF personnel are in the process of updating the LRAFB instruction to include guidelines on fluid consumption, surveillance and notification/reporting of heat stress incidents, pre-screening of personnel predisposed to heat illness, and specific training requirements.

DISCUSSION

The study results indicate that some of those conducting FSM and other activities were exposed to heat stress conditions in excess of the screening criteria, where the risk of heat-induced illnesses, disorders, and unintentional injuries substantially increases. These conditions warranted either reducing the workload or placing personnel on work/rest regimens as temperatures outdoors and in the hangar climbed during the late mornings and early afternoons of the study. No regimen was implemented, even as required by the LRAFB heat stress instruction 48-100; however, study participants were observed taking breaks as needed when they reportedly felt overheated. One participant who was weighed before and after work activities exceeded the ACGIH recommendation that body weight loss over a shift is not to exceed
1.5% and another five participants became mildly dehydrated. In addition, 9 of the 21 participants (43%) developed heat strain during their activities as measured by HR and CBT levels that exceeded ACGIH heat strain criteria.

There were several limitations to this study. Some of the heat strain monitors failed and some employees were not able to keep the heart rate sensors in place during the entire monitoring period; these incidences are identified in Tables 3–7. Therefore, some study results may have been over- or underestimated. Several aspects of the collaborative (JP-8) study may also have influenced the physiological monitoring results of the heat stress evaluation. Participants did not work a ‘normal’ shift because their FSM activities constituted 50% or less of their time during the study. The remainder of the shift involved completing other components of the jet fuel study for about 2 hours before and 2 hours after FSM work, in an air-conditioned building, usually seated, and with lower metabolic rates than those estimated for FSM activities. Participants were not monitored during these times. Therefore, the results are not “full-shift” TWAs and may underestimate the heat stress and strain that participants would have experienced had they conducted FSM activities for a full 8 hours. Also, some FSM employees, such as those taking certain medications, and those who were ill, pregnant, or had a history of strokes or seizures, were excluded from participating in the JP-8 study. All of these conditions, however, increase the risk of developing heat strain and heat-related illnesses, and the incidence of heat strain during the study may have been greater if individuals with these conditions had participated.

Finally, as temperatures at LRAFB increase during the summer, WBGTs will likely exceed NIOSH and ACGIH screening criteria thereby raising the potential for heat strain and illness among personnel. The development of heat strain is highly individual and cannot be predicted based upon environmental heat stress measurements alone. Some of the first symptoms of heat strain are hampered judgement and inability to think critically, symptoms which usually go unnoticed by the affected person. Study participants who developed heat strain reported feeling hot and sweaty and only one reported feeling fatigue, nausea, weakness, and confusion, which may indicate an individual’s inability to cope with that amount of heat stress or their lack of awareness of their heat strain.

The AETC and LRAFB heat stress instructions provide some recommendations for the prevention of heat-related incidents. Hydration schedules that prevent dehydration and hyponatremia are included with the AETC instruction, as is a good description of an acclimatization program. Frequent breaks are encouraged during the hot parts of the day and supervisors are encouraged to modify work schedules so that harder work is performed during the cooler parts of the shift. Self-limitation of exposure to the heat is vital, and during the study we noticed that the participants did take unscheduled breaks when needed. Allowing personnel to take unscheduled breaks during work in hot weather is an extremely important part of heat strain and illness prevention efforts, and it should be emphasized at every hot weather briefing and continue to be encouraged by all crew leaders.

Both instructions list clothing adjustment factors for different types of protective clothing that are to be added to the measured WBGT. Clothing adjustment factors are used to lower the WBGT screening criteria to account for the wearer’s increased heat stress load. The cloth coveralls worn by those conducting FSM activities have a clothing adjustment factor of +7°F according to the AETC instruction, and ‘body armor’ (presumably impermeable, is given a value of +15°F). However, where water vapor- and air-impermeable encapsulating ensembles are worn the WBGT is not the appropriate measurement of environmental heat stress, and therefore, using a clothing adjustment factor is not appropriate. The NIOSH criteria document states that the adjusted air temperature (t_{ad}) should be measured and used instead of the WBGT (t_{ad} is ambient dry bulb temperature adjusted for significant solar and long wave radiant heat loads). When t_{ad} exceeds 68°F, physiological monitoring in the form of, for example, oral temperature and/or pulse rate is required. The ACGIH TLV for heat stress states that physiological monitoring must be
performed when encapsulating suits or garments that are impermeable or highly resistant to water vapor or air movement or multiple layers of clothing are worn.1 Neither heat stress instruction includes physiological monitoring techniques.

CONCLUSIONS

Environmental temperature measurements and work load assessments showed that during the study period, some personnel conducting fuel cell maintenance and other activities were exposed to heat stress in excess of the occupational screening criteria. Many participants reported feeling hot and sweaty, and almost half developed heat strain signs, including dehydration. Instances of heat stress and strain may have been even greater if participants had conducted FSM activities for their full 8-hour shift and if medically excluded workers had participated. Most of the study participants were not aware of having developed heat strain, indicating a need for further education and training and for a physiological self-monitoring program.

RECOMMENDATIONS

The following recommendations are provided to enhance the AETC and/or LRAFB heat stress instructions in order to prevent and reduce future incidences of heat stress and strain among personnel.

- Add personal monitoring (heat strain) education to the AETC and LRAFB heat stress instructions. Those conducting FSM and other activities may be required to wear impermeable clothing and/or may be exposed to temperatures or physically demanding work rates which exceed recommended levels. Therefore, all personnel should be instructed on monitoring themselves and others for heat strain signs and symptoms. Personal monitoring is used in addition to environmental and metabolic monitoring, and involves checking the heart rate, oral temperature, extent of body weight loss, and/or recovery heart rate (see Appendix E). Measurements should be taken at appropriate intervals covering a full 2-hour period during the hottest parts of the day, and again at the end of the workday to ensure a return to baseline.3 Use of any of these techniques should always include the determination of baseline values for deciding whether individuals are fit to continue work that day.

- Institute pre-placement and periodic medical examinations specifically for persons applying for and working in hot and/or physically demanding environments. Because aerobic capacities (VO$_2$ max values) in the working population vary greatly, persons being considered for jobs requiring high metabolic demands should be specifically tested. The examination should be performed by a health care provider with knowledge of the health effects associated with work in hot and physically strenuous environments. The examinations should be performed to assess the physical, mental, and medical qualifications of the individuals and to exclude those with low heat tolerance and/or physical fitness. The health care provider should also update the information periodically for people working in these environments.

- Monitor environmental heat exposures using a WBGT at or as close as possible to the area where the worker is exposed. WBGTs in break areas and other areas the employee may be working that differ in temperature should also be measured and used to calculate hourly TWA WBGTs.

- Make at least hourly WBGT measurements during the hottest part of each shift, during the hottest months of the year and when heat waves occur or are predicted to occur. If two sequential measurements exceed the applicable criteria (RAL or REL or ACGIH TLV), then work conditions should be modified until two more sequential WBGT measurements are within the exposure limits.

- Whenever personnel are required to wear air- and vapor-impermeable protective clothing, monitor the dry bulb or adjusted dry bulb temperatures, not the WBGT, and conduct physiological monitoring (Appendix E).

- Establish and maintain accurate records of any heat-related illness events and note the
environmental and work conditions at the time of the illness. Such events may include repeated accidents, episodes of heat-related disorders, or frequent health-related absences. Job-specific clustering of specific events or illnesses should be followed up by industrial hygiene and medical evaluations.

✔ Encourage personnel to take unscheduled breaks if they report feeling weak, nauseated, confused, irritable, and/or excessively fatigued. These heat strain symptoms warrant immediate removal to a cooler location, recumbent rest, and administration of fluids. These and any other signs of overexposure to the heat should then be reported to the BEF office for follow-up investigation.

✔ Hampered judgement and the inability to think critically, although some of the first symptoms of heat strain, usually go unnoticed by the person inflicted. Ensuring that crew members are well-hydrated, nourished, prepared, and not sleep-deprived or working too hard are some of the best ways to avoid heat strain, unsafe behavior, and poor job performance.

✔ Personnel should drink enough water to stay hydrated and ideally should not lose any body weight during their shift. Always provide cool (50°F–60°F) water or any cool liquid (except alcohol and caffeinated beverages) and encourage them to drink small amounts frequently, e.g., one cup every 20 minutes. Drinking from individual containers improves water intake over the use of drinking fountains. Although some commercial drinks contain salt, this is not necessary because most people add enough salt to their diets.

✔ Encourage workers to eat meals during their breaks. Minerals and electrolytes lost in sweat are most readily replaced with a normal diet.

✔ Workers should be able to monitor their weight so that they do not become dehydrated during the shift. Provide scales in the break rooms so that workers can monitor their weight during the shift and drink more fluids if they begin to loose weight. Pre-shift and post-shift weights should be approximately the same.

✔ Create a ‘buddy’ system so that crew members can monitor each other for signs of heat illness. A buddy system will help to ensure that each has had enough water and food and is feeling ok to continue. If a co-worker appears to be disoriented or confused, or suffers inexplicable irritability, malaise, or flu-like symptoms, the worker should be removed for rest in a cool location with rapidly circulating air and kept under skilled observation. Immediate emergency care may be necessary. If sweating stops and the skin becomes hot and dry, immediate emergency care with hospitalization is essential.5

REFERENCES

2. Bernard T (tbernard@hsc.usf.edu) [2002]. Clothing adjustment factor for fuel cell maintenance crew coveralls. Private e-mail message to Ann Krake (amk3@cdc.gov), April 15.

5. ACGIH [2002]. 2002 TLVs® and BEIs®: threshold limit values for chemical substances and
physical agents & biological exposure indices.
Cincinnati, OH: American Conference of
Governmental Industrial Hygienists.

Government Printing Office, Office of the Federal
Register.

7. WHO [1969]. Health factors involved in
working under conditions of heat stress. Geneva,
Switzerland: World Health Organization.

8. ACGIH [2001]. Heat stress and strain:
documentation of TLVs and BEIs, 7th ed.
Cincinnati, OH: American Conference of
Governmental Industrial Hygienists.

Occupational Safety and Health Review
Commission and Administrative Law Judge
Decisions. World Wide Web
[URL=http://www.osha-slc.gov/REVIEWS_data/

10. OSHA [1999]. Technical manual, Section III:
chapter 4, heat stress. World Wide Web
[URL=http://www.osha-slc.gov/REVIEWS_data/
D19920421.html], November 2001.

11. Cohen R [1990]. Injuries due to physical
East Norwalk, CT: Appleton & Lange.

affecting heat illness when working in conditions

13. Sawka MN, Neufer PD [1993]. Interaction of
water bioavailability, thermoregulation, and
exercise performance. In: Marriott BM, ed. Fluid
replacement and heat stress. Washington DC:
National Academy Press, pp. 85–95.

14. Ekblom B, Greenleaf JE, Hermansen L
[1970]. Temperature regulation during exercise
dehydration in man. Acta Physiol Scand
79:475–483.

15. Sawka MN, Knowlton RG, Critz JB [1979].
The thermal and circulatory responses to repeated
bouts of prolonged running. Med Sci Sports

Variability in intake and dehydration in young
men during a simulated desert walk. Aviat Space

17. Candas V, Libert JP, Brandenberger G
[1985]. Hydration during exercise: Effects on
thermal and cardiovascular adjustments. Eur J

of drinks sweetened with sucrose or aspartame on
hunger, thirst and food intake in men. Physiol

Fluid replacement recommendations for training in

23. Devita MV, Michelis MF [1993].
Perturbations in sodium balance, hyponatremia
and hypernatremia. Clinics in Lab Med
Table 1: WBGT Environmental Temperature Data
Little Rock AFB, HETA 2000-0065

<table>
<thead>
<tr>
<th>Date</th>
<th>WBGT Range Inside hangar</th>
<th>Sampling Times (Time of Highest Temp.)</th>
<th>WBGT Range Outside hangar</th>
<th>Sampling Times (Time of Highest Temp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/21/00</td>
<td>66.9–84.6°F</td>
<td>09:31–17:22 (17:22)</td>
<td>77.0–92.7°F</td>
<td>09:31–16:21 (14:14)</td>
</tr>
<tr>
<td>8/22/00</td>
<td>78.3–84.2°F</td>
<td>10:38–16:00 (15:49)</td>
<td>80.0–91.4°F</td>
<td>09:02–16:00 (14:59)</td>
</tr>
<tr>
<td>8/23/00</td>
<td>75.7–82.8°F</td>
<td>09:23–13:47 (13:47)</td>
<td>81.9–91.6°F</td>
<td>09:23–13:47 (12:19)</td>
</tr>
<tr>
<td>8/24/00</td>
<td>78.4–83.8°F</td>
<td>10:21–16:32 (16:22)</td>
<td>80.7–91.1°F</td>
<td>09:16–16:32 (15:26)</td>
</tr>
<tr>
<td>8/25/00</td>
<td>No indoor subjects</td>
<td></td>
<td>83.9–92.5°F</td>
<td>09:46–14:11 (12:37)</td>
</tr>
</tbody>
</table>

For heat stress exposure analysis, 2°F was added to the WBGT temperatures recorded inside the hangar to account for the insulation value of the coveralls worn by participants.2

Table 2: Estimated Metabolic Rates for Fuel Cell Maintenance Activities
Little Rock AFB, HETA 2000-0065

<table>
<thead>
<tr>
<th>Activity</th>
<th>Estimated Metabolic Rate (kcal/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrant</td>
<td>288</td>
</tr>
<tr>
<td>Attendant</td>
<td>246</td>
</tr>
<tr>
<td>Runner</td>
<td>240</td>
</tr>
<tr>
<td>POL/Avionics specialist</td>
<td>210</td>
</tr>
<tr>
<td>Other</td>
<td>138</td>
</tr>
</tbody>
</table>
Table 3: Physiological Measurement Results for 8-21-00
Little Rock AFB, HETA 2000-0065

<table>
<thead>
<tr>
<th>Study ID (LIT)</th>
<th>Sampling period (total activity minutes)</th>
<th>Estimated metabolic rate (kcal/hour)</th>
<th>Heart rate in excess of 180 bpm minus age (percent of activity)</th>
<th>Average heart rate (beats per minute)</th>
<th>CBT in excess of 101.3°F (percent of activity)</th>
<th>Average CBT</th>
<th>Change in body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1283†</td>
<td>10:39–14:41 (243 min.)</td>
<td>204</td>
<td>Did not exceed a</td>
<td>86 bpm a</td>
<td>Did not exceed</td>
<td>100.0°F</td>
<td>-1.3%</td>
</tr>
<tr>
<td>1326</td>
<td>09:31–14:18 (288 min.)</td>
<td>176</td>
<td>Did not exceed</td>
<td>97 bpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2980</td>
<td>09:57–17:19 (443 min.)</td>
<td>a</td>
<td>14:57–15:05 (2.0%) a</td>
<td>86 bpm a</td>
<td>15:43–15:58 (3.6%) a</td>
<td>99.4°F</td>
<td>a</td>
</tr>
<tr>
<td>3299</td>
<td>09:55–17:21 (447 min.)</td>
<td>174</td>
<td>15:07–15:20 (3.1%) a</td>
<td>111 bpm a</td>
<td>Did not exceed</td>
<td>99.8°F</td>
<td>-0.6%</td>
</tr>
<tr>
<td>5198</td>
<td>10:06–17:17 (433 min.)</td>
<td>a</td>
<td>15:51–16:06 (3.7%) a</td>
<td>126 bpm a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a These are the main criteria used to determine heat strain. CBT is core body temperature.
† Non-destructive inspection journeyman.
Δ Not all data available because of equipment failure or heart rate sensor slippage.
a No body weight was available for this participant, so these values could not be obtained.

Table 4: Physiological Measurement Results for 8-22-00
Little Rock AFB, HETA 2000-0065

<table>
<thead>
<tr>
<th>Study ID (LIT)</th>
<th>Sampling period (total activity minutes)</th>
<th>Estimated metabolic rate (kcal/hour)</th>
<th>Heart rate in excess of 180 bpm minus age (percent of activity)</th>
<th>Average heart rate (beats per minute)</th>
<th>CBT in excess of 101.3°F (percent of activity)</th>
<th>Average CBT</th>
<th>Change in body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>10:00–15:58 (359 min.)</td>
<td>199</td>
<td>Did not exceed a</td>
<td>99 bpm a</td>
<td>Did not exceed</td>
<td>99.4°F</td>
<td>0%</td>
</tr>
<tr>
<td>2470</td>
<td>10:20–15:37 (318 min.)</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>Did not exceed a</td>
<td>98.4°F a</td>
<td>a</td>
</tr>
<tr>
<td>4995</td>
<td>09:03–15:52 (410 min.)</td>
<td>a</td>
<td>Did not exceed</td>
<td>94 bpm</td>
<td>Did not exceed</td>
<td>99.1°F a</td>
<td>a</td>
</tr>
<tr>
<td>5742</td>
<td>10:30–15:49 (320 min.)</td>
<td>206</td>
<td>Did not exceed</td>
<td>116 bpm</td>
<td>13:56–14:21 (8.1%)</td>
<td>100.1°F</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

a These are the main criteria used to determine heat strain. CBT is core body temperature.
Δ Not all data available because of equipment failure or heart rate sensor slippage.
α No body weight was available for this participant, so these values could not be obtained.
Table 5: Physiological Measurement Results for 8-23-00
Little Rock AFB, HETA 2000-0065

<table>
<thead>
<tr>
<th>Study ID (LOT)</th>
<th>Sampling period (total activity minutes)</th>
<th>Estimated metabolic rate (cal/week)</th>
<th>Heart rate in excess of 180 bpm minus age (percent of activity)</th>
<th>Average heart rate (beats per minute)</th>
<th>CBT in excess of 101.3°F (percent of activity)</th>
<th>Average CBT</th>
<th>Change in body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3009</td>
<td>10:01–15:33 (333 min.)</td>
<td>276</td>
<td>14:16–14:48 (9.9%)</td>
<td>125 bpm</td>
<td>Did not exceed†</td>
<td>99.8°F†</td>
<td>0.2%</td>
</tr>
<tr>
<td>3748†</td>
<td>09:31–13:41 (251 min.)</td>
<td>a</td>
<td>Did not exceed</td>
<td>99 bpm</td>
<td>11:57–12:03 (2.8%)</td>
<td>100.1°F†</td>
<td>a</td>
</tr>
<tr>
<td>3816†</td>
<td>09:36–13:45 (250 min.)</td>
<td>a</td>
<td>Did not exceed</td>
<td>82 bpm†</td>
<td>Did not exceed</td>
<td>99.9°F†</td>
<td>a</td>
</tr>
<tr>
<td>6257</td>
<td>09:23–15:31 (369 min.)</td>
<td>a</td>
<td>10:14–10:40 (7.3%)</td>
<td>132 bpm†</td>
<td>Did not exceed</td>
<td>99.5°F†</td>
<td>a</td>
</tr>
<tr>
<td>7641</td>
<td>09:43–15:32 (350 min.)</td>
<td>295</td>
<td>Did not exceed</td>
<td>100 bpm†</td>
<td>Did not exceed</td>
<td>99.6°F -0.8%</td>
<td></td>
</tr>
</tbody>
</table>

- These are the main criteria used to determine heat strain. CBT = core body temperature.
- Not all data available because of equipment failure or heart rate sensor slippage.
- Petroleum, lubricants, and oils personnel.
- No body weight was available for this participant, so these values could not be obtained.

Table 6: Physiological Measurement Results for 8-24-00
Little Rock AFB, HETA 2000-0065

<table>
<thead>
<tr>
<th>Study ID (LOT)</th>
<th>Sampling period (total activity minutes)</th>
<th>Estimated metabolic rate (cal/week)</th>
<th>Heart rate in excess of 180 bpm minus age (percent of activity)</th>
<th>Average heart rate (beats per minute)</th>
<th>CBT in excess of 101.3°F (percent of activity)</th>
<th>Average CBT</th>
<th>Change in body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1080</td>
<td>09:51–16:32 (402 min.)</td>
<td>241</td>
<td>Did not exceed</td>
<td>100 bpm</td>
<td>13:32–13:43 (3.0%)</td>
<td>100.2°F</td>
<td>-0.8%</td>
</tr>
<tr>
<td>3314†</td>
<td>09:16–13:46 (271 min.)</td>
<td>a</td>
<td>Did not exceed</td>
<td>117 bpm</td>
<td>Did not exceed</td>
<td>99.6°F</td>
<td>a</td>
</tr>
<tr>
<td>4097†</td>
<td>10:04–14:05 (242 min.)</td>
<td>a</td>
<td>Did not exceed</td>
<td>74 bpm</td>
<td>Did not exceed</td>
<td>98.0°F</td>
<td>a</td>
</tr>
<tr>
<td>6073</td>
<td>09:34–16:31 (418 min.)</td>
<td>181</td>
<td>a</td>
<td>a</td>
<td>Did not exceed</td>
<td>99.5°F</td>
<td>-0.4%</td>
</tr>
</tbody>
</table>

- These are the main criteria used to determine heat strain. CBT is core body temperature.
- Petroleum, oils and lubricants and mobile command control personnel, respectively.
- No body weight was available for this participant, so these values could not be obtained.
- Not all data available because of equipment failure or heart rate sensor slippage.
Table 7: Physiological Measurement Results for 8-25-00
Little Rock AFB, HETA 2000-0065

<table>
<thead>
<tr>
<th>Study ID (LIT)</th>
<th>Sampling period (total activity minutes)</th>
<th>Estimated metabolic rate (kcal/hour)</th>
<th>Heart rate in excess of 180 bpm minus age (percent of activity)</th>
<th>Average heart rate (beats per minute)</th>
<th>CBT in excess of 101.3°F (percent of activity)</th>
<th>Change in body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3934†</td>
<td>09:10–13:39 (270 min.)</td>
<td>*‡</td>
<td>Did not exceed</td>
<td>84 bpm</td>
<td>Did not exceed</td>
<td>99.0°F</td>
</tr>
<tr>
<td>7900†</td>
<td>09:12–13:27 (256 min.)</td>
<td>*‡</td>
<td>*‡</td>
<td>*‡</td>
<td>Did not exceed</td>
<td>99.3°F</td>
</tr>
<tr>
<td>7990†</td>
<td>10:19–14:09 (231 min.)</td>
<td>*‡</td>
<td>10:40–10:51; 13:27–13:36 (9.5%)‡</td>
<td>97 bpm‡</td>
<td>Did not exceed</td>
<td>100.2°F</td>
</tr>
</tbody>
</table>

*‡ These are the main criteria used to determine heat strain. CBT is core body temperature.
† Petroleum, oils, lubricants truck mechanic; mobile command control personnel; and aerospace ground equipment technician, respectively.
‡ No body weight was available for this participant, so these values could not be obtained.
‡ Not all data available because of equipment failure or heart rate sensor slippage.
Appendix A: Assessment of Work

Estimated Metabolic Heat Production Rates by Task Analysis

<table>
<thead>
<tr>
<th>A. Body Position and Movement</th>
<th>kcal/min*</th>
<th>(2.0–3.0 \text{ (add 0.8 kcal/meter rise in elevation)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Standing</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Walking (uphill)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Type of Work</th>
<th>Average (kcal/min)</th>
<th>Range (kcal/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand work:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td>0.4</td>
<td>0.2–1.2</td>
</tr>
<tr>
<td>Heavy</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Work, one arm:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td>1.0</td>
<td>0.7–2.5</td>
</tr>
<tr>
<td>Heavy</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Work, both arms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td>1.5</td>
<td>1.0–3.5</td>
</tr>
<tr>
<td>Heavy</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Work, whole body:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td>3.5</td>
<td>2.5–9.0</td>
</tr>
<tr>
<td>Moderate</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Very heavy</td>
<td>9.0</td>
<td></td>
</tr>
</tbody>
</table>

| C. Basal Metabolism | 1.0 | 1.0 |

Sum of A, B, and C equals estimated metabolic production per task

*For a standard male worker of 70 kg (154 lbs) body weight and 1.8 m\(^2\) (19.4 ft\(^2\)) body surface.

1. **Sample calculation for the job of ENTRANT:**

<table>
<thead>
<tr>
<th>Task</th>
<th>kcal/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Sitting</td>
<td>0.3 kcal/min</td>
</tr>
<tr>
<td>B. Light, whole body work</td>
<td>3.5 kcal/min</td>
</tr>
<tr>
<td>C. Basal metabolism</td>
<td>1.0 kcal/min</td>
</tr>
<tr>
<td>Metabolic Rate Total</td>
<td>4.8 kcal/min x 60 min/hour = 288 kcal/hour</td>
</tr>
</tbody>
</table>

D. Multiply by the weight correction factor

\[288 \text{ kcal/hour x 1.05} \]

Total estimated metabolic rate = 302 kcal/hour

\(^\dagger\) The weight correction factor is used when an employee, plus any load they may have to carry, weigh other than 154 lbs. Calculate the factor by dividing the sum of the employee’s current body weight (BW) and the load weight (LW) by 154 lbs or \([\text{BW} + \text{LW}] \div 154 \text{ lb} = \text{weight correction factor}\). A correction factor for a worker who weighs 162 lbs and who is not carrying a load is calculated as: \((162 \text{ lbs} + 0 \text{ lbs}) \div 154 \text{ lbs} = 1.05\).

\(^*\) Although not included in the following calculations, a correction factor specific to each employee would be applied under normal circumstances.
Appendix A: Assessment of Work (continued)
Estimated Metabolic Heat Production Rates by Task Analysis

2. Sample calculation for the job of ATTENDANT:

<table>
<thead>
<tr>
<th>Task</th>
<th>kcal/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Standing</td>
<td>0.6 kcal/min</td>
</tr>
<tr>
<td>B. ‘Type of Work’—heavy work, both arms</td>
<td>2.5 kcal/min</td>
</tr>
<tr>
<td>C. Basal metabolism</td>
<td>1.0 kcal/min</td>
</tr>
<tr>
<td>Metabolic Rate Total</td>
<td>4.1 kcal/min x 60 min/hour = 246 kcal/hour</td>
</tr>
</tbody>
</table>

D. Multiply by the weight correction factor

3. Sample calculation for the job of RUNNER:

<table>
<thead>
<tr>
<th>Task</th>
<th>kcal/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Walking—can involve some climbing</td>
<td>1.5 kcal/min</td>
</tr>
<tr>
<td>B. ‘Type of Work’—light work, both arms</td>
<td>1.5 kcal/min</td>
</tr>
<tr>
<td>C. Basal metabolism</td>
<td>1.0 kcal/min</td>
</tr>
<tr>
<td>Metabolic Rate Total</td>
<td>4.0 kcal/min x 60 min/hour = 240 kcal/hour</td>
</tr>
</tbody>
</table>

D. Multiply by the weight correction factor

4. Sample calculation for the job of POL:

<table>
<thead>
<tr>
<th>Task</th>
<th>kcal/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Sitting and standing</td>
<td>0.5 kcal/min</td>
</tr>
<tr>
<td>B. Light to medium work, both arms</td>
<td>2.0 kcal/min</td>
</tr>
<tr>
<td>C. Basal metabolism</td>
<td>1.0 kcal/min</td>
</tr>
<tr>
<td>Metabolic Rate Total</td>
<td>3.5 kcal/min x 60 min/hour = 210 kcal/hour</td>
</tr>
</tbody>
</table>

D. Multiply by the weight correction factor

5. Sample calculation for the job of ‘OTHER’:

<table>
<thead>
<tr>
<th>Task</th>
<th>kcal/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Sitting</td>
<td>0.3 kcal/min</td>
</tr>
<tr>
<td>B. Light arm movement</td>
<td>1.0 kcal/min</td>
</tr>
<tr>
<td>C. Basal metabolism</td>
<td>1.0 kcal/min</td>
</tr>
<tr>
<td>Metabolic Rate Total</td>
<td>2.3 kcal/min x 60 min/hour = 138 kcal/hour</td>
</tr>
</tbody>
</table>

D. Multiply by the weight correction factor
The figures’ curves indicate recommended work/rest regimens for a combination of external heat (measured as wet-bulb globe temperatures) and internal (metabolic) heat. The ‘C’ curve is the Ceiling Limit, indicating that workers should not be exposed to such conditions without adequate heat-protective clothing and equipment.1

Figure 1. Recommended Heat-Stress Alert Limits (Unacclimatized Workers)

Figure 2. Recommended Heat-Stress Exposure Limits (Acclimatized Workers)

1 The figures’ curves indicate recommended work/rest regimens for a combination of external heat (measured as wet-bulb globe temperatures) and internal (metabolic) heat. The ‘C’ curve is the Ceiling Limit, indicating that workers should not be exposed to such conditions without adequate heat-protective clothing and equipment.1
Appendix C: ACGIH Evaluation Scheme for Heat Stress

Heat Stress Expected

Does clothing allow air or water vapor movement? (See Section 1)

Are screening criteria in Table 2 exceeded? (See Section 2)

Are data available for detailed analysis? (See Section 3)

Perform heat-strain (physiological) monitoring (See Section 4)

Excessive heat strain based on detailed analysis? (See Section 4)

Implement job-specific controls (See Section 5)

Excessive heat stress based on detailed analysis? (See Section 3)

Implement general controls (See Section 5)

Low risk

Continue work, monitor conditions

Continue work, maintain controls, monitor conditions

NO

YES

NO

YES

NO

YES

YES

NO

NO

YES

NO

YES

b From American Conference of Governmental Industrial Hygienists (ACGIH®), Documentation of Threshold Limit Values and Biological Exposure Indices, 7th Edition. Copyright 2001. Reprinted with permission.
Appendix D: ACGIH Screening Criteria for Heat Stress Exposure

<table>
<thead>
<tr>
<th>Work Demands</th>
<th>Acclimatized (WBGT values in °F)</th>
<th>Unacclimatized (WBGT values in °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Light</td>
<td>Moderate</td>
</tr>
<tr>
<td>100% Work</td>
<td>85.1</td>
<td>81.5</td>
</tr>
<tr>
<td>75% Work; 25% Rest</td>
<td>86.9</td>
<td>83.3</td>
</tr>
<tr>
<td>50% Work; 50% Rest</td>
<td>88.7</td>
<td>85.1</td>
</tr>
<tr>
<td>25% Work; 75% Rest</td>
<td>90.5</td>
<td>87.8</td>
</tr>
</tbody>
</table>

Notes:
- See work demand categories table below.
- WBGT values represent thresholds near the upper limit of the metabolic rate category.
- If work and rest environments are different, hourly time-weighted average (TWA) should be calculated and used. TWAs for work rates should also be used when the work demands vary within the hour.
- Values in the table assume 8-hour workdays in a 5-day workweek with conventional breaks as discussed in the Evaluation Criteria section of this report.
- Because of the physiological strain associated with Very Heavy work among less fit workers regardless of WBGT, criteria values are not provided for continuous work and for up to 25% rest in an hour. The screening criteria are not recommended, and a detailed analysis and/or physiological monitoring should be used.

The following work load categories, descriptions of work, and estimated energy expenditures help to estimate a conservative WBGT heat exposure limit for workers conducting these or similar jobs:

<table>
<thead>
<tr>
<th>Work Categories</th>
<th>Example Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting</td>
<td>Sitting quietly; Sitting with moderate arm movements</td>
</tr>
<tr>
<td>Light (<200 kcal/hr)</td>
<td>Sitting with moderate arm and leg movements; Standing with light work at machine or bench while using mostly arms</td>
</tr>
<tr>
<td>Moderate (200-350 kcal/hr)</td>
<td>Scrubbing in a standing position; Walking about with moderate lifting or pushing; Walking on level at 3.7 mph while carrying a 6.6 pound load</td>
</tr>
<tr>
<td>Heavy (350-500 kcal/hr)</td>
<td>Carpenter sawing by hand; Shoveling dry sand; Heavy assembly work on a noncontinuous basis; Intermittent heavy lifting with pushing or pulling (e.g. pick-and-shovel work)</td>
</tr>
<tr>
<td>Very Heavy (>500 kcal/hr)</td>
<td>Shoveling wet sand</td>
</tr>
</tbody>
</table>

From American Conference of Governmental Industrial Hygienists (ACGIH®), *Documentation of Threshold Limit Values and Biological Exposure Indices, 7th Edition*. Copyright 2001. Reprinted with permission.
Periodic monitoring of the heart rate, oral temperature, extent of body weight loss, and/or recovery heart rate should always include the determination of baseline values for deciding whether individuals are fit to continue work that day.

✔️ Heart rate: Calculate your heart rate limit by subtracting your age from 180. Your heart rate at peak work effort should not exceed this number for more than 3 or 4 minutes. If it does, stop work immediately, find some shade, drink, and rest until your heart rate returns to a more normal pace. Repeat as necessary.

✔️ Oral Temperature: Use a clinical thermometer right after stopping work but before drinking anything. Try to avoid open-mouth breathing prior to inserting the thermometer, as well. If the oral temperature taken under the tongue exceeds 99.7°F, shorten the next work cycle by one-third and maintain the same rest period. An oral temperature of 100.4°F (deep body temperature of 102.2°F) should be considered reason to terminate exposure even when temperature is being monitored.

✔️ Body Weight: Monitor hydration status on a regular basis. Thirst is a poor indicator of hydration because significant dehydration has already taken place when the thirst sensation occurs. Workers should be familiar with their weight when they are fully hydrated and should strive to maintain this weight. Weight loss should not exceed 1.5% of total body weight in a work day. If it does, fluid and food intake should increase. (Alcohol and caffeinated beverages should always be avoided when working under heat stress conditions.) Workers should attempt to re-hydrate themselves until they achieve their baseline weight. For this purpose, accurate scales should be made available at every work station. Body water loss can be measured by weighing the worker at the beginning and end of each work day and by using this equation:

\[
\frac{\text{pre-activity weight} - \text{post-activity weight}}{\text{pre-activity weight}} \times 100 = \% \text{ body weight lost}
\]

✔️ Recovery Heart Rate: Following a normal work cycle, compare a pulse rate taken at 3 minutes of seated rest, \(P_3 \), with the pulse rate taken at 1 minute of rest, \(P_1 \). Interpret the results using the following table:

<table>
<thead>
<tr>
<th>Heart Rate Recovery Pattern</th>
<th>(P_3) (\geq 90 \text{ bpm}) and (P_1) minus (P_3) (\leq 10 \text{ bpm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat strain:</td>
<td>(\geq 90 \text{ bpm}) and (\leq 10 \text{ bpm})</td>
</tr>
<tr>
<td>Moderate strain:</td>
<td>(\geq 90 \text{ bpm}) and (\geq 10 \text{ bpm})</td>
</tr>
<tr>
<td>Sufficient recovery:</td>
<td>(<90 \text{ bpm}) and (>10 \text{ bpm})</td>
</tr>
</tbody>
</table>

REFERENCE