8. Personal Protective Equipment (PPE)

Contents

Introduction 8-1
Developing a PPE Program 8-1
Program Review and Evaluation 8-1
Selection of Respiratory Equipment 8-2
Protection Factor 8-4
Self-Contained Breathing Apparatus (SCBA) 8-5
Supplied-Air Respirators (SARs) 8-6
Combination SCBA/SAR 8-6
Air-Purifying Respirators 8-7
Selection of Protective Clothing and Accessories 8-8
Selection of Chemical-Protective Clothing (CPC) 8-8
Permeation and Degradation 8-8
Heat Transfer Characteristics 8-13
Other Considerations 8-13
Special Conditions 8-13
Selection of Ensembles 8-13
Level of Protection 8-13
PPE Use 8-14
Training 8-15
Work Mission Duration 8-16
Personal Use Factors 8-16
Donning an Ensemble 8-17
Respirator Fit Testing 8-18
In-Use Monitoring 8-18
Doffing an Ensemble 8-18
Clothing Reuse 8-18
Inspection 8-19
Storage 8-19
Maintenance 8-20
Heat Stress and Other Physiological Factors 8-20
Monitoring 8-20
Prevention 8-21
Other Factors 8-21
References 8-23

Introduction

Anyone entering a hazardous waste site must be protected against potential hazards. The purpose of personal protective clothing and equipment (PPE) is to shield or isolate individuals from the chemical, physical, and biological hazards that may be encountered at a hazardous waste site. Careful selection and use of adequate PPE should protect the respiratory system, skin, eyes, face, hands, feet, head, body, and hearing. This chapter describes the various types of PPE that are appropriate for use at hazardous waste sites, and provides guidance in their selection and use. The final section discusses heat stress and other key physiological factors that must be considered in connection with PPE use.

Use of PPE is required by Occupational Safety and Health Administration (OSHA) regulations in 29 CFR Part 1910 (see Table 8-1) and reinforced by U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 300 which include requirements for all private contractors working on Superfund sites to conform to applicable OSHA provisions and any other federal or state safety requirements deemed necessary by the lead agency overseeing the activities.

No single combination of protective equipment and clothing is capable of protecting against all hazards. Thus PPE should be used in conjunction with other protective methods. The use of PPE can itself create significant worker hazards, such as heat stress, physical and psychological stress, and impaired vision, mobility, and communication. In general, the greater the level of PPE protection, the greater are the associated risks. For any given situation, equipment and clothing should be selected that provide an adequate level of protection. Over-protection as well as under-protection can be hazardous and should be avoided.

Developing a PPE Program

A written PPE program should be established for work at all hazardous waste sites. (OSHA requires a written program for selection and use of respirators [29 CFR Part 1910.134].) Some of the relevant regulations, listed in Table 8-1, are cited throughout the text. The word "shall" is used only when the procedure is mandated by law.

The two basic objectives of any PPE program should be to protect the wearer from safety and health hazards, and to prevent injury to the wearer from incorrect use and/or malfunction of the PPE. To accomplish these goals, a comprehensive PPE program should include hazard identification; medical monitoring; environmental surveillance; selection, use, maintenance, and decontamination of PPE; and training. These subjects are discussed in this chapter and in Chapters 2, 4, 5, 6, 7, and 10.

The written PPE program should include policy statements, procedures, and guidelines. Copies should be made available to all employees, and a reference copy should be available at each work site. Technical data on equipment, maintenance manuals, relevant regulations, and other essential information should also be made available.

Program Review and Evaluation

The PPE program should be reviewed at least annually. Elements which should be considered in the review include:

- A survey of each site to ensure compliance with regulations applicable to the specific site involved.
- The number of person-hours that workers wear various protective ensembles.
- Accident and illness experience.
- Levels of exposure.
- Adequacy of equipment selection.
- Adequacy of the operational guidelines.

The term PPE is used in this manual to refer to both personal protective clothing and equipment.
Table 8-1. OSHA Standards for Use of PPE

<table>
<thead>
<tr>
<th>TYPE OF PROTECTION</th>
<th>REGULATION</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29 CFR Part 1910.1000</td>
<td>41 CFR Part 50-204.50, except for Table Z-2, the source of which is American National Standards Institute, Z37 series*.</td>
</tr>
</tbody>
</table>

*American National Standards Institute (ANSI), 1430 Broadway, New York, NY 10018. ANSI regularly updates its standards. The ANSI standards in this table are those that OSHA adopted in 1971. Since the ANSI standards which were then adopted had been set in 1967-1969, those standards, now required under OSHA, may be less stringent than the most recent ANSI standards.

- Adequacy of decontamination, cleaning, inspection, maintenance, and storage programs.
- Adequacy and effectiveness of training and fitting programs.
- Coordination with overall safety and health program elements.
- The degree of fulfillment of program objectives.
- The adequacy of program records.
- Recommendations for program improvement and modification.
- Program costs.

The results of the program evaluation should be made available to employees and presented to top management so that program adaptations may be implemented.

Selection of Respiratory Equipment

Respiratory protection is of primary importance since inhalation is one of the major routes of exposure to chemical toxicants. Respiratory protective devices (respirators) consist of a facepiece connected to either an air source or an air-purifying device. Respirators with an air source are called atmosphere-supplying respirators (Figure 8-1) and consist of two types:

- **Self-contained breathing apparatus (SCBAs)** which supply air from a source carried by the user.
- **Supplied-air respirators (SARs)** which supply air from a source located some distance away and connected to the user by an air-line hose. Supplied-air respirators are sometimes referred to as air-line respirators.

Air-purifying respirators (Figure 8-2), on the other hand, do not have a separate air source. Instead, they utilize ambient air which is "purified" through a filtering element prior to inhalation.

SCBAs, SARs, and air-purifying respirators are further differentiated by the type of air flow supplied to the facepiece:

- **Positive-pressure respirators** maintain a positive pressure in the facepiece during both inhalation and exhalation. The two main types of positive-pressure respirators are pressure-demand and continuous flow. In pressure-demand respirators, a pressure regulator and an exhalation valve on the mask maintain the mask's positive pressure except during high breathing rates. If a leak develops in a pressure-demand respirator, the regulator sends a continuous flow of clean air into the facepiece, preventing penetration by contaminated ambient air. Continuous-flow respirators (including some SARs and all powered air-purifying respirators [PAPRs]) send a continuous stream of air into the facepiece at all times. With SARs, the continuous flow of air prevents infiltration by ambient air, but uses the air supply much more rapidly than with pressure-demand respirators. Powered air-purifying respirators (PAPRs) are operated in a positive-pressure continuous-flow mode utilizing filtered ambient air. (However, at maximal breathing rates, a negative pressure may be created in the facepiece of a PAPR.)

- **Negative-pressure respirators** draw air into the facepiece via the negative pressure created by user inhalation. The main disadvantage of negative-pressure respirators is that if any leaks develop in the system (i.e., a crack in the hose or an ill-fitting mask or facepiece), the user draws contaminated air into the facepiece during inhalation.

When atmosphere-supplying respirators are used, only those operated in the positive-pressure mode are recommended for work at hazardous waste sites. Table 8-2 lists the relative advantages and disadvantages of SCBAs, SARs, and air-purifying respirators.

Different types of facepieces are available for use with the various types of respirators. The types generally used at hazardous waste sites are full facepieces and half masks:

- **Full-facepiece masks** cover the face from the hairline to below the chin. They provide eye protection.
- **Half masks** cover the face from below the chin to over the nose and do not provide eye protection.

Federal regulations require the use of respirators that have been tested and approved by the Mine Safety and Health Administration (MSHA) and NIOSH. Testing procedures are described in 30 CFR Part 11. Approval numbers are
Figure 8-1. Types of Atmosphere-Supplying Respirators.

Figure 8-2. Types of Air-Purifying Respirators.
Table 8-2. Relative Advantages and Disadvantages of Respiratory Protective Equipment

<table>
<thead>
<tr>
<th>TYPE OF RESPIRATOR</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
</table>
| ATMOSPHERE-SUPPLYING | • Provides the highest available level of protection against airborne contaminants and oxygen deficiency.
• Provides the highest available level of protection under adverse work conditions.
• Enables longer work periods than an SCBA.
• Less bulky and heavy than a SCBA.
SAR equipment weighs less than 5 pounds (or around 15 pounds if escape SCBA protection is included).
• Protects against most airborne contaminants. | • Bulky, heavy (up to 35 pounds).
• Finite air supply limits work duration.
• May impair movement in confined spaces.
• Not approved for use in atmospheres immediately dangerous to life or health (IDLH) or in oxygen-deficient atmospheres unless equipped with an emergency egress unit such as an escape-only SCBA that can provide immediate emergency respiratory protection in case of air-line failure.
• Impairs mobility.
• MSHA/NIOSH certification limits hose length to 300 feet (90 meters).
• As the length of the hose is increased, the minimum approved air flow may not be delivered at the facepiece.
• Air line is vulnerable to damage, chemical contamination, and degradation. Decontamination of hoses may be difficult.
• Worker must retrace steps to leave work area.
• Requires supervision/monitoring of the air supply line. |
| AIR-PURIFYING | • Enhanced mobility.
• Lighter in weight than an SCBA. Generally weighs 2 pounds (1 kg) or less (except for PAPRs). | • Cannot be used in IDLH or oxygen-deficient atmospheres (less than 19.5 percent oxygen at sea level).
• Limited duration of protection. May be hard to gauge safe operating time in field conditions.
• Only protects against specific chemicals and up to specific concentrations.
• Use requires monitoring of contaminant and oxygen levels.
• Can only be used (1) against gas and vapor contaminants with adequate warning properties, or (2) for specific gases or vapors provided that the service is known and a safety factor is applied or if the unit has an ESLI (end-of-service-life indicator). |

Clearly written on all approved respiratory equipment; however, not all respiratory equipment that is marketed is approved. Periodically, NIOSH publishes a list, entitled NIOSH Certified Equipment List of all approved respirators and respiratory components [1].

Protection Factor

The level of protection that can be provided by a respirator is indicated by the respirator’s protection factor. This number, which is determined experimentally by measuring facepiece seal and exhalation valve leakage, indicates the relative difference in concentrations of substances outside and inside the facepiece that can be maintained by the respirator. For example, the protection factor for full-facepiece air-purifying respirators is 50. This means, theoretically, that workers wearing these respirators should be protected in atmospheres containing chemicals at concentrations that are up to 50 times higher than the appropriate limits. One source of protection factors for various types of atmosphere-supplying (SCBA and SAR) and air-purifying respirators can be found in American National Standards Institute (ANSI) standard ANSI Z88.2-1980.

At sites where the identity and concentration of chemicals in air are known, a respirator should be selected with a protection factor that is sufficiently high to ensure that the wearer will not be exposed to the chemicals above the applicable limits. These limits include the American Conference of Governmental Industrial Hygienists’ Threshold Limit Values (TLVs), OSHA’s Permissible Exposure Limits (PELS), and the NIOSH Recommended Exposure Limits (RELs) (see Table 6-4 in Chapter 6). These limits are designed to protect most workers who may be exposed to chemicals day after day throughout their working life. The OSHA PELs are legally enforceable exposure limits, and are the minimum limits of protection that must be met.
It should be remembered that the protection provided by a respirator can be compromised in several situations, most notably, (1) if the wearer has a high breathing rate, (2) if the ambient temperature is high or low, or (3) if the wearer has a poor facepiece-to-face seal. At high breathing rates, positive-pressure SCBAs and SARs may not maintain positive pressure for brief periods during peak inhalation. Also, at high work rates, exhalation valves may leak. Consequently, positive-pressure respirators working at high flow rates may offer less protection than when working at normal rates.

A similar reduction in protection may result from high or low ambient temperatures. For example, at high temperatures excessive sweat may cause a break in the face-to-facepiece seal. At very low temperatures, the exhalation valve and regulator may become ice-clogged due to moisture in the breath and air. Likewise, a poor facepiece seal due to such factors as facial hair, missing teeth, scars, lack of or improper fit testing, etc.—can result in the penetration of air contaminants.

Self-Contained Breathing Apparatus (SCBA)

A self-contained breathing apparatus (SCBA) usually consists of a facepiece connected by a hose and a regulator to an air source (compressed air, compressed oxygen, or an oxygen-generating chemical) carried by the wearer (see Figure 8-1). Only positive-pressure SCBAs are recommended for entry into atmospheres that are immediately dangerous to life and health (IDLH). SCBAs offer protection against most types and levels of airborne contaminants. However, the duration of the air supply is an important planning factor in SCBA use (see PPE Use later in this chapter). This is limited by the amount of air carried and its rate of consumption. Also, SCBAs are bulky and heavy, thus they increase the likelihood of heat stress and may impair movement in confined spaces. Generally, only workers handling hazardous materials or operating in contaminated zones require SCBAs. Under MSHA regulations in 30 CFR Part 11.70(a), SCBAs may be approved (1) for escape only, or (2) for both entry into and escape from a hazardous atmosphere. The types of SCBAs and their relative advantages and disadvantages are described in Table 8-3.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY-AND-ESCAPE SCBA</td>
<td>Supplies clean air to the wearer from a cylinder. Wearer exhales air directly to the atmosphere.</td>
<td>Operated in a positive-pressure mode, open-circuit SCBAs provide the highest respiratory protection currently available. A warning alarm signals when only 20 to 25 percent of the air supply remains.</td>
<td>Shorter operating time (30 to 60 minutes) and heavier weight (up to 35 lbs [13.6 kg]) than a closed-circuit SCBA.</td>
<td>The 30- to 60-minute operating time may vary depending on the size of the air tank and the work rate of the individual.</td>
</tr>
<tr>
<td>Open-Circuit SCBA</td>
<td>These devices recycle exhaled gases (CO₂, O₂, and nitrogen) by removing CO₂ with an alkaline scrubber and replenishing the consumed oxygen with oxygen from a liquid or gaseous source.</td>
<td>Longer operating time (up to 4 hours), and lighter weight (21 to 30 lbs [9.5 to 13.6 kg]) than open-circuit apparatus. A warning alarm signals when only 20 to 25 percent of the oxygen supply remains. Oxygen supply is depleted before the CO₂ sorbent scrubber supply, thereby protecting the wearer from CO₂ breakthrough.</td>
<td>At very cold temperatures, scrubber efficiency may be reduced and CO₂ breakthrough may occur. Units retain the heat normally exchanged in exhalation and generate heat in the CO₂ scrubbing operations, adding to the danger of heat stress. Auxiliary cooling devices may be required. When worn outside an encapsulating suit, the breathing bag may be permeated by chemicals, contaminating the breathing apparatus and the respirable air. Decontamination of the breathing bag may be difficult.</td>
<td>Positive-pressure closed-circuit SCBAs offer substantially more protection than negative-pressure units, which are not recommended on hazardous waste sites. While these devices may be certified as closed-circuit SCBAs, NIOSH cannot certify closed-circuit SCBAs as positive-pressure devices due to limitations in certification procedures currently defined in 30 CFR Part 11.</td>
</tr>
<tr>
<td>Closed-Circuit SCBA (Rebreather)</td>
<td>Supplies clean air to the wearer from either an air cylinder or from an oxygen-generating chemical. Approved for escape purposes only.</td>
<td>Lightweight (10 pounds [4.5 kg] or less), low bulk, easy to carry. Available in pressure-demand and continuous-flow modes.</td>
<td>Cannot be used for entry.</td>
<td>Provides only 5 to 15 minutes of respiratory protection, depending on the model and wearer breathing rate.</td>
</tr>
</tbody>
</table>

| ESCAPE-ONLY SCBA | Supplies clean air to the wearer from either an air cylinder or from an oxygen-generating chemical. Approved for escape purposes only. | Lightweight (10 pounds [4.5 kg] or less), low bulk, easy to carry. Available in pressure-demand and continuous-flow modes. | Cannot be used for entry. | Provides only 5 to 15 minutes of respiratory protection, depending on the model and wearer breathing rate. |
Escape-only SCBAs are frequently continuous-flow devices with hoods that can be donned to provide immediate emergency protection. Employers should provide and ensure that employees carry an escape SCBA where such emergency protection may be necessary.

Entry-and-escape SCBA respirators give workers unattended access to nearly all portions of the worksite, but decrease worker mobility, particularly in confined areas, due to both the bulk and weight of the units. Their use is particularly advisable when dealing with unidentified and unquantified airborne contaminants. There are two types of entry-and-escape SCBAs: (1) open-circuit and (2) closed-circuit. In an open-circuit SCBA, air is exhaled directly into the ambient atmosphere. In a closed-circuit SCBA, exhaled air is recycled by removing the carbon dioxide with an alkaline scrubber and by replenishing the consumed oxygen with oxygen from a solid, liquid, or gaseous source.

As required by MSHA/NIOSH 30 CFR Part 11.80, all compressed breathing gas cylinders must meet minimum U.S. Department of Transportation requirements for interstate shipment. (For further information, see 49 CFR Parts 173 and 178.) All compressed air, compressed oxygen, liquid air, and liquid oxygen used for respiration shall be of high purity and must meet all requirements of OSHA 29 CFR Part 1910.134(d). In addition, breathing air must meet or exceed the requirements of Grade D breathing air as specified in the Compressed Gas Association pamphlet G-7.1 and ANSI Z86.1-1973.

Key questions to ask when considering whether an SCBA is appropriate are:

- Is the atmosphere IDLH or is it likely to become IDLH? If yes, a positive-pressure SCBA should be used. A positive-pressure SAR with an escape SCBA can also be used.
- Is the duration of air supply sufficient for accomplishing the necessary tasks? If no, a larger cylinder should be used, a different respirator should be chosen, and/or the Work Plan should be modified.
- Will the bulk and weight of the SCBA interfere with task performance or cause unnecessary stress? If yes, use of an SAR may be more appropriate if conditions permit.
- Will temperature effects compromise respirator effectiveness or cause added stress in the worker? If yes, the work period should be shortened or the mission postponed until the temperature changes.

Supplied-Air Respirators (SARs)

Supplied-air respirators (also known as air-line respirators) supply air, never oxygen, to a facepiece via a supply line from a stationary source (see Figure 8-1). SARs are available in positive-pressure and negative-pressure modes. Pressure-demand SARs with escape provisions provide the highest level of protection (among SARs) and are the only SARs recommended for use at hazardous waste sites. SARs are not recommended for entry into IDLH atmospheres (MSHA/NIOSH 30 CFR Part 11) unless the apparatus is equipped with an escape SCBA.

The air source for supplied-air respirators may be compressed air cylinders or a compressor that purifies and delivers ambient air to the facepiece. SARs suitable for use with compressed air are classified as "Type C" supplied-air respirators as defined in MSHA/NIOSH 30 CFR Part 11. All SAR couplings must be incompatible with the outlets of other gas systems used on site to prevent a worker from connecting to an inappropriate compressed gas source (OSHA 29 CFR 1910.134(d)).

SARs enable longer work periods than do SCBAs and are less bulky. However, the air line impairs worker mobility and requires workers to retrace their steps when leaving the area. Also, the air line is vulnerable to puncture from rough or sharp surfaces, chemical permeation, damage from contact with heavy equipment, and obstruction from failing drums, etc. To the extent possible, all such hazards should be removed prior to use. When in use, air lines should be kept as short as possible (300 feet [91 meters] is the longest approved hose length for SARs), and other workers and vehicles should be kept away from the air line.

The use of air compressors as the air source for an SAR at a hazardous waste site is severely limited by the same concern that requires workers to wear respirators: that is, the questionable quality of the ambient air. Onsite compressor use is limited by OSHA standards (29 CFR Part 1910.134(d)).

Key questions to ask when considering SAR use are:

- Is the atmosphere IDLH or likely to become IDLH? If yes, an SAR/SCBA combination or SCBA should be used.
- Will the hose significantly impair worker mobility? If yes, the work task should be modified or other respiratory protection should be used.
- Is there a danger of the air line being damaged or obstructed (e.g., by heavy equipment, falling drums, rough terrain, or sharp objects) or permeated and/or degraded by chemicals (e.g., by pools of chemicals)? If yes, either the hazard should be removed or another form of respiratory protection should be used.
- Is a compressor the air source, is it possible for airborne contaminants to enter the air system? If yes, have the contaminants been identified and are efficient filters and/or sorbents available that are capable of removing those contaminants? If no, neither cylinders should be used as the air source or another form of respiratory protection should be used.
- Can other workers and vehicles that might interfere with the air line be kept away from the area? If no, another form of respiratory protection should be used.

Combination SCBA/SAR

A relatively new type of respiratory protection is available that uses a regulator to combine the features of an SCBA with an SAR. The user can operate the respirator in the SCBA or SAR mode, through either the manual or automatic switching of air sources. This type of respirator allows entry into and exit from an area using the self-contained air supply, as well as extended work periods within a contaminated area while connected to the air
line. It is particularly appropriate for sites where workers must travel an extended distance to a work area within a hot zone and remain within that area for relatively long work periods (e.g., drum sampling). In such situations, workers would enter the site using the SCBA mode, connect to the air line during the work period, and shift back to the SCBA mode to leave the site.

The combination SCBA/SAR should not be confused with an SAR with escape provisions. The primary difference is the length of air time provided by the SCBA; the combination system provides up to 60 minutes of self-contained air, whereas the escape SCBA contains much less air, generally enough for only 5 minutes. NIOSH certification of the combination unit allows up to 20 percent of the available air time to be used during entry, while the SAR with escape provision is certified for escape only.

Air-Purifying Respirators

Air-purifying respirators consist of a facepiece and an air-purifying device, which is either a removable component of the facepiece or an air-purifying apparatus worn on the body harness and attached to the facepiece by a corrugated breathing hose (see Figure 8-2). Air-purifying respirators selectively remove specific airborne contaminants (particulates, gases, vapors, fumes) from ambient air by filtration, absorption, adsorption, or chemical reactions. They are approved for use in atmospheres containing specific chemicals up to designated concentrations, and not for IDLH atmospheres. Air-purifying respirators have limited use at hazardous waste sites and can be used only when the ambient atmosphere contains sufficient oxygen (19.5 percent) (30 CFR Part 11.90(a)). Table 8-4 lists conditions that may exclude the use of air-purifying respirators.

Table 8-4. Conditions That Exclude or May Exclude Use of Air-Purifying Respirators

- Oxygen deficiency.
- IDLH concentrations of specific substances.
- Entry into an unventilated or confined area where the exposure conditions have not been characterized.
- Presence or potential presence of unidentified contaminants.
- Contaminant concentrations are unknown or exceed designated maximum use concentration(s).
- Identified gases or vapors have inadequate warning properties and the sorbent service life is not known and the unit has no end-of-service-life (ESU) indicator.
- High relative humidity (may reduce the protection offered by the sorbent).

Air-purifying respirators usually operate only in the negative-pressure mode except for powered air-purifying respirators (PAPRs) which maintain a positive facepiece pressure (except at maximal breathing rates). There are three types of air-purifying devices: (1) particulate filters; (2) cartridges and canisters, which contain sorbents for specific gases and vapors; and (3) combination devices. Their efficiencies vary considerably even for closely related materials (2).

Cartridges usually attach directly to the respirator facepiece. The larger-volume canisters attach to the chin of the facepiece or are carried with a harness and attached to the facepiece by a breathing tube. Combination canisters and cartridges contain layers of different sorbent materials and remove multiple chemicals or multiple classes of chemicals from the ambient air. Though approved against more than one substance, these canisters and cartridges are tested independently against single substances. Thus, the effectiveness of these canisters against two or more substances has not been demonstrated. Filters may also be combined with cartridges to provide additional protection against particulates. A number of standard cartridges and canisters are commercially available. They are color-coded to indicate the general chemicals or classes of chemicals against which they are effective (29 CFR Part 1910.134(a)).

MSHA and NIOSH have granted approvals for manufacturers' specific assemblies of air-purifying respirators for a limited number of specific chemicals. Respirators should be used only for those substances for which they have been approved. Use of a sorbent shall not be allowed when there is reason to suspect that it does not provide adequate sorption efficiency against a specific contaminant. In addition, it is noted that approval testing is performed at a given temperature and over a narrow range of flow rates and relative humidities; thus protection may be compromised in nonstandard conditions. The assembly that has been approved by MSHA and NIOSH to protect against organic vapors is tested against only a single challenge substance, carbon tetrachloride; its effectiveness for protecting against other vapors has not been demonstrated.

Most chemical sorbent canisters are imprinted with an expiration date. They may be used up to that date as long as they were not opened previously. Once opened, they begin to sorb humidity and air contaminants whether or not they are in use. Their efficiency and service life decreases and therefore they should be used immediately. Cartridges should be discarded after use but should not be used for longer than one shift or when breakthrough occurs, whichever comes first.

Where a canister or cartridge is being used against gases or vapors, the appropriate device shall be used only if the chemical(s) have "adequate warning properties" (30 CFR Part 11.150). NIOSH considers a substance to have adequate warning properties when its odor, taste, or irritant effects are detectable and persistent at concentrations below the recommended exposure limit (REL) (see Chapter 6). A substance is considered to have poor warning properties when its odor or irritation threshold is above the applicable exposure limit. Warning properties are essential to safe use of air-purifying respirators since they allow detection of contaminant breakthrough, should it occur. While warning properties are not foolproof, because they rely on human senses which vary widely among individuals and in the same individual under varying conditions (e.g., olfactory fatigue), they do provide some indication of possible sorbent exhaustion, poor facepiece fit, or other malfunctions. OSHA permits the use of air-purifying respirators for protection against specific chemicals with poor warning properties provided that (1) the service life of the sorbent is known and a safety factor has been applied or (2) the respirator has an approved end-of-service-life indicator.
Selection of Protective Clothing and Accessories

In this manual, personal protective clothing is considered to be any article offering skin and/or body protection. It includes:

- Fully-encapsulating suits.
- Non-encapsulating suits.
- Aprons, leggings, and sleeve protectors.
- Gloves.
- Firefighters' protective clothing.
- Proximity, or approach, garments.
- Blast and fragmentation suits.
- Cooling garments.
- Radiation-protective suits.

Each type of protective clothing has a specific purpose; many, but not all, are designed to protect against chemical exposure. Examples of protective clothing are shown in Figure 8-3. Table 8-5 describes various types of protective clothing available, details the type of protection they offer, and lists the factors to consider in their selection and use. This table also describes a number of accessories that might be used in conjunction with a PPE ensemble, namely:

- Knife.
- Flashlight or lantern.
- Personal locator beacon.
- Personal dosimeters.
- Two-way radio.
- Safety belts and lines.

Selection of Chemical-Protective Clothing (CPC)

Chemical-protective clothing (CPC) is available in a variety of materials that offer a range of protection against different chemicals. The most appropriate clothing material will depend on the chemicals present and the task to be accomplished. Ideally, the chosen material resists permeation, degradation, and penetration. Permeation is the process by which a chemical dissolves in and/or moves through a protective clothing material on a molecular level. Degradation is the loss of or change in the fabric's chemical resistance or physical properties due to exposure to chemicals, use, or ambient conditions (e.g., sunlight). Penetration is the movement of chemicals through zippers, stitched seams or imperfections (e.g., pinholes) in a protective clothing material.

Selection of chemical-protective clothing is a complex task and should be performed by personnel with training and experience. Under all conditions, clothing is selected by evaluating the performance characteristics of the clothing against the requirements and limitations of the site- and task-specific conditions. If possible, representative garments should be inspected before purchase and then used and performance discussed with someone who has experience with the clothing under consideration. In all cases, the employer is responsible for ensuring that the personal protective clothing (and all PPE) necessary to

protect employees from injury or illness that may result from exposure to hazards at the work site is adequate and of safe design and construction for the work to be performed (see OSHA standard 29 CFR Part 1910.132-1910.137).

Permeation and Degradation

The selection of chemical-protective clothing depends greatly upon the type and physical state of the contaminants. This information is determined during site characterization (Chapter 6). Once the chemicals have been identified, available information sources should be consulted to identify materials that are resistant to permeation and degradation by the known chemicals. One excellent reference, *Guidelines for the Selection of*
Table 8-5. Protective Clothing and Accessories

<table>
<thead>
<tr>
<th>BODY PART PROTECTED</th>
<th>TYPE OF CLOTHING OR ACCESSORY</th>
<th>DESCRIPTION</th>
<th>TYPE OF PROTECTION</th>
<th>USE CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Body</td>
<td>Fully-encapsulating suit</td>
<td>One-piece garment. Boots and gloves may be integral, attached and replaceable, or separate.</td>
<td>Protects against splashes, dust, gases, and vapors.</td>
<td>Does not allow body heat to escape. May contribute to heat stress in wearer, particularly if worn in conjunction with a closed-circuit SCBA; a cooling garment may be needed. Impairs worker mobility, vision, and communication.</td>
</tr>
<tr>
<td></td>
<td>Non-encapsulating suit</td>
<td>Jacket, hood, pants, or bib overalls, and one-piece coveralls.</td>
<td>Protects against splashes, dust, and other materials but not against gases and vapors. Does not protect parts of head or neck.</td>
<td>Do not use where gas-tight or pervasive splashing protection is required. May contribute to heat stress in wearer. Tape-seal connections between pant cuffs and boots and between gloves and sleeves.</td>
</tr>
<tr>
<td>Aprons, leggings, and sleeve protectors</td>
<td>Fully sleeved and gloved apron. Separate coverings for arms and legs. Commonly worn over non-encapsulating suit.</td>
<td>Provides additional splash protection of chest, forearms, and legs.</td>
<td>Whenever possible, should be used over a non-encapsulating suit (instead of using a fully-encapsulating suit) to minimize potential for heat stress. Useful for sampling, labeling, and analysis operations. Should be used only when there is a low probability of total body contact with contaminants.</td>
<td></td>
</tr>
<tr>
<td>Firefighters’ protective clothing</td>
<td>Gloves, helmet, running or bunker coat, running or bunker pants (NFPA No. 1971, 1972, 1973), and boots.</td>
<td>Protects against heat, hot water, and some particles. Does not protect against gases and vapors, or chemical permeation or degradation. NFPA Standard No. 1971 specifies that a garment consist of an outer shell, an inner liner, and a vapor barrier with a minimum water penetration of 25 lbs/in² (1.8 kg/cm²) to prevent the passage of hot water.</td>
<td>Decontamination is difficult. Should not be worn in areas where protection against gases, vapors, chemical splashes, or permeation is required.</td>
<td></td>
</tr>
<tr>
<td>Proximity garment (approach suit)</td>
<td>One- or two-piece overgarment with boot covers, gloves, and hood of aluminized nylon or cotton fabric. Normally worn over other protective clothing, such as chemical-protective clothing, firefighters’ bunker gear, or flame-retardant coveralls.</td>
<td>Protects against brief exposure to radiant heat. Does not protect against chemical permeation or degradation. Can be custom-manufactured to protect against some chemical contaminants.</td>
<td>Auxiliary cooling and an SCBA should be used if the wearer may be exposed to a toxic atmosphere or needs more than 2 or 3 minutes of protection.</td>
<td></td>
</tr>
<tr>
<td>Blast and fragmentation suit</td>
<td>Blast and fragmentation vests and clothing, bomb blankets, and bomb carriers.</td>
<td>Provides some protection against very small detonations. Bomb blankets and blasters can help redirect a blast.</td>
<td>Does not provide hearing protection.</td>
<td></td>
</tr>
<tr>
<td>BODY PART PROTECTED</td>
<td>TYPE OF CLOTHING OR ACCESSORY</td>
<td>DESCRIPTION</td>
<td>TYPE OF PROTECTION</td>
<td>USE CONSIDERATIONS</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Full Body (cont.)</td>
<td>Radiation-contamination protective suit</td>
<td>Various types of protective clothing designed to prevent contamination of the body by radioactive particles.</td>
<td>Protects against alpha and beta particles. Does NOT protect against gamma radiation.</td>
<td>Designed to prevent skin contamination. If radiation is detected on site, consult an experienced radiation expert and evacuate personnel until the radiation hazard has been evaluated.</td>
</tr>
<tr>
<td>Flame/fire retardant coveralls</td>
<td>Normally worn as an undergarment.</td>
<td>Provides protection from flash fires.</td>
<td>Adds bulk and may exacerbate heat stress problems and impair mobility.</td>
<td></td>
</tr>
<tr>
<td>Flotation gear</td>
<td>Life jackets or work vests. (Commonly worn underneath chemical protective clothing to prevent flotation gear degradation by chemicals.)</td>
<td>Adds 15.5 to 25 lbs (7 to 11.3 kg) of buoyancy to personnel working in or around water.</td>
<td>Adds bulk and restricts mobility. Must meet USCG standards (46 CFR Part 160).</td>
<td></td>
</tr>
<tr>
<td>Cooling garment</td>
<td>One of three methods: (1) A pump circulates cool dry air throughout the suit or portions of it via an air line. Cooling may be enhanced by use of a vortex cooler, refrigeration coils, or a heat exchanger. (2) A jacket or vest having pockets into which packets of ice are inserted. (3) A pump circulates chilled water from a water/ice reservoir and through circulating tubes, which cover part of the body (generally the upper torso only).</td>
<td>Removes excess heat generated by worker activity, the equipment, or the environment.</td>
<td>(1) Pumps circulating cool air require 10 to 20 ft³ (0.3 to 0.6 m³) of respirable air per minute, so they are often uneconomical for use at a waste site. (2) Jackets or vests pose ice storage and recharge problems. (3) Pumps circulating chilled water pose ice storage problems. The pump and battery add bulk and weight.</td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>Safety helmet (hard hat)</td>
<td>For example, a hard plastic or rubber helmet.</td>
<td>Protects the head from blows.</td>
<td>Helmet shall meet OSHA standard 29 CFR Part 1910.135.</td>
</tr>
<tr>
<td>Helmet liner</td>
<td>Insulates against cold. Does not protect against chemical splashes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hood</td>
<td>Commonly worn with a helmet.</td>
<td>Protects against chemical splashes, particulates, and rain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protective hair covering</td>
<td>Protects against chemical contamination of hair. Prevents the entanglement of hair in machinery or equipment. Prevents hair from interfering with vision and with the functioning of respiratory protective devices.</td>
<td>Particularly important for workers with long hair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyes and Face*</td>
<td>Face shield</td>
<td>Full-face coverage, eight-inch minimum.</td>
<td>Protects against chemical splashes. Does not protect adequately against projectiles.</td>
<td>Face shields and splash hoods must be suitably supported to prevent them from shifting and exposing portions of the face or obscuring vision. Provides limited eye protection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BODY PART PROTECTED OR ACCESSORY</th>
<th>DESCRIPTION</th>
<th>TYPE OF PROTECTION</th>
<th>USE CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes and Face (cont.)</td>
<td>Splash hood</td>
<td>Protects against chemical splashes. Does not protect adequately against projectiles.</td>
<td>If lasers are used to survey a site, workers should wear special protective lenses.</td>
</tr>
<tr>
<td>Safety glasses</td>
<td>Protect eyes against large particles and projectiles.</td>
<td>Must comply with OSHA regulation 29 CFR Part 1910.95. Can interfere with communication. Use of ear plugs should be carefully reviewed by a health and safety professional because chemical contaminants could be introduced into the ear.</td>
<td></td>
</tr>
<tr>
<td>Goggles</td>
<td>Depending on their construction, goggles can protect against vaporized chemicals, splashes, large particles, and projectiles if constructed with impact-resistant lenses.</td>
<td>Highly desirable, particularly if emergency conditions arise.</td>
<td></td>
</tr>
<tr>
<td>Sweat bands</td>
<td>Prevents sweat-induced eye irritation and vision impairment.</td>
<td>Wear jacket cuffs over glove cuffs to prevent liquid from entering the glove. Tape-seal gloves to sleeves to provide additional protection.</td>
<td></td>
</tr>
<tr>
<td>Ears</td>
<td>Ear plugs and muffs</td>
<td>Protect against physiological damage and psychological disturbance.</td>
<td></td>
</tr>
<tr>
<td>Headphones</td>
<td>Radio headset with throat microphone.</td>
<td>Provide some hearing protection while enabling communication.</td>
<td></td>
</tr>
<tr>
<td>Hands and Arms</td>
<td>Gloves and sleeves</td>
<td>May be integral, attached, or separate from other protective clothing.</td>
<td>Wear jacket cuffs over glove cuffs to prevent liquid from entering the glove. Tape-seal gloves to sleeves to provide additional protection.</td>
</tr>
<tr>
<td>Overgloves.</td>
<td>Provide supplemental protection to the wearer and protect more expensive undergarments from abrasions, tears, and contamination.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disposable gloves.</td>
<td>Should be used whenever possible to reduce decontamination needs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feet</td>
<td>Safety boots</td>
<td>Boots constructed of chemical-resistant material. Protect feet from contact with chemicals.</td>
<td>All boots must at least meet the specifications required under OSHA 29 CFR Part 1910.136 and should provide good traction.</td>
</tr>
<tr>
<td></td>
<td>Boots constructed with some steel materials (e.g., toes, shanks, insoles). Protect feet from compression, crushing, or puncture by falling, moving, or sharp objects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boots constructed from nonconductive, spark-resistant materials or coatings. Protect the wearer against electrical hazards and prevent ignition of combustible gases or vapors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BODY PART PROTECTED</td>
<td>TYPE OF CLOTHING OR ACCESSORY</td>
<td>DESCRIPTION</td>
<td>TYPE OF PROTECTION</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Foot (cont.)</td>
<td>Disposable shoe or boot covers</td>
<td>Made of a variety of materials. Slip over the shoe or boot.</td>
<td>Protect safety boots from contamination. Protect feet from contact with chemicals.</td>
</tr>
<tr>
<td>General</td>
<td>Knife</td>
<td>Allows a person in a fully-encapsulating suit to cut his or her way out of the suit in the event of emergency or equipment failure.</td>
<td>Should be carried and used with caution to avoid puncturing the suit.</td>
</tr>
<tr>
<td>Flashlight or lantern</td>
<td></td>
<td>Enhances visibility in buildings, enclosed spaces, and the dark.</td>
<td>Must be intrinsically safe or explosion-proof for use in combustible atmospheres. Sealing the flashlight in a plastic bag facilitates decontamination. Only electrical equipment approved as intrinsically safe, or approved for the class and group of hazard as defined in Article 500 of the National Electrical Code, may be used.</td>
</tr>
<tr>
<td>Personal dosimeter</td>
<td></td>
<td>Measures worker exposure to ionizing radiation and to certain chemicals.</td>
<td>To estimate actual body exposure, the dosimeter should be placed inside the fully-encapsulating suit.</td>
</tr>
<tr>
<td>Personal locator beacon</td>
<td>Operated by sound, radio, or light.</td>
<td>Enables emergency personnel to locate victim.</td>
<td></td>
</tr>
<tr>
<td>Two-way radio</td>
<td></td>
<td>Enables field workers of communicate with personnel in the Support Zone.</td>
<td></td>
</tr>
<tr>
<td>Safety belts, harnesses, and lifelines</td>
<td></td>
<td>Enable personnel to work in elevated areas or enter confined areas and prevent falls. Belts may be used to carry tools and equipment.</td>
<td>Must be constructed of spark-free hardware and chemical-resistant materials to provide proper protection. Must meet OSHA standards in 29 CFR Part 1926.104.</td>
</tr>
</tbody>
</table>

Chemical-Protective Clothing [4], provides a matrix of clothing material recommendations for approximately 300 chemicals based on an evaluation of permeation and degradation data from independent tests, vendor literature, and raw material suppliers. Charts indicating the resistance of various clothing materials to permeation and degradation are also available from manufacturers and other sources. It is important to note, however, that no material protects against all chemicals and combinations of chemicals, and that no currently available material is an effective barrier to any prolonged chemical exposure.

In reviewing vendor literature, it is important to be aware that the data provided are of limited value. For example, the quality of vendor test methods is inconsistent; vendors often rely on the raw material manufacturers for data rather than conducting their own tests; and the data may not be updated. In addition, vendor data cannot address the wide variety of uses and challenges to which CPC may be subjected. Most vendors strongly emphasize this point in the descriptive text that accompanies their data.

Another factor to bear in mind when selecting CPC is that the rate of permeation is a function of several factors, including clothing material type and thickness, manufacturing method, the concentration(s) of the hazardous substance(s), temperature, pressure, humidity, the solubility of the chemical in the clothing material, and the diffusion coefficient of the permeating chemical in the clothing material. Thus permeation rates and breakthrough time (the time from initial exposure until hazardous material is detectable on the inside of the CPC) may vary depending on these conditions.

Most hazardous wastes are mixtures, for which specific data with which to make a good CPC selection are not available. Due to a lack of testing, only limited permeation data for multicomponent liquids are currently available.
Mixtures of chemicals can be significantly more aggressive towards CPC materials than can any single component alone. Even small amounts of a rapidly permeating chemical may provide a pathway that accelerates the permeation of other chemicals [4]. Formal research is being conducted on these effects. NIOSH is currently developing methods for evaluating CPC materials against mixtures of chemicals and unknowns in the field. For hazardous waste site operations, CPC should be selected that offers the widest range of protection against the chemicals expected on site. Vendors are now providing CPC material—composed of two or even three different materials laminated together—that is capable of providing the best features of each material.

Heat Transfer Characteristics

The heat transfer characteristics of CPC may be an important factor in selection. Since most chemical-protective clothing is virtually impermeable to moisture, evaporative cooling is limited. The "clo" value (thermal insulation value) of chemical-protective clothing is a measure of the capacity of CPC to dissipate heat through means other than evaporation. The larger the clo value, the greater the insulating properties of the garment and, consequently, the lower the heat transfer [5]. Given other equivalent protective properties, clothing with the lowest clo value should be selected in hot environments or for high work rates. Unfortunately, clo values for clothing are rarely available at present.

Other Considerations

In addition to permeation, degradation, penetration, and heat transfer, several other factors must be considered during clothing selection. These affect not only chemical resistance, but also the worker’s ability to perform the required task. The following checklist summarizes these considerations.

- **Durability:**
 - Does the material have sufficient strength to withstand the physical stress of the task(s) at hand?
 - Will the material resist tears, punctures, and abrasions?
 - Will the material withstand repeated use after contamination/decontamination?

- **Flexibility:**
 - Will the CPC interfere with the workers' ability to perform their assigned tasks (this is particularly important to consider for gloves)?

- **Temperature effects:**
 - Will the material maintain its protective integrity and flexibility under hot and cold extremes?

- **Ease of decontamination:**
 - Are decontamination procedures available on site?
 - Will the material pose any decontamination problems?
 - Should disposable clothing be used?

- **Compatibility with other equipment:**
 - Does the clothing preclude the use of another, necessary piece of protective equipment (e.g., suits that preclude hardhat use in hardhat area)?

- **Duration of use:**
 - Can the required task be accomplished before contaminant breakthrough occurs, or degradation of the CPC becomes significant?

Special Conditions

Fire, explosion, heat, and radiation are considered special conditions that require special protective equipment. Unique problems are associated with radiation and it is beyond the scope of this manual to discuss them properly. A qualified health physicist should be consulted if a radiation hazard exists. Special-protective equipment is described in Table 8-5 (see *Full Body* section of the table). When using special-protective equipment, it is important to also provide protection against chemicals, since the specialized equipment may provide little or no protection against chemicals which may also be present.

Selection of Ensembles

Level of Protection

The individual components of clothing and equipment must be assembled into a full protective ensemble that both protects the worker from the site-specific hazards and minimizes the hazards and drawbacks of the PPE ensemble itself.

Table 8-6 lists ensemble components based on the widely used EPA Levels of Protection: Levels A, B, C, and D. These lists can be used as a starting point for ensemble creation; however, each ensemble must be tailored to the specific situation in order to provide the most appropriate level of protection. For example, if work is being conducted at a highly contaminated site or if the potential for contamination is high, it may be advisable to wear a disposable covering, such as Tyvek coveralls or PVC splash suits, over the protective ensemble. It may be necessary to slit the back of these disposable suits to fit around the bulge of an encapsulating suit and SCBA [6].

The type of equipment used and the overall level of protection should be reevaluated periodically as the amount of information about the site increases, and as workers are required to perform different tasks. Personnel should be able to upgrade or downgrade their level of protection with concurrence of the Site Safety Officer and approval of the Field Team Leader.

Reasons to upgrade:

- Known or suspected presence of dermal hazards.
- Occurrence or likely occurrence of gas or vapor emission.
- Change in work task that will increase contact or potential contact with hazardous materials.
- Request of the individual performing the task.

Reasons to downgrade:

- New information indicating that the situation is less hazardous than was originally thought.
- Change in site conditions that decreases the hazard.
- Change in work task that will reduce contact with hazardous materials.
Table 8-6. Sample Protective Ensembles

<table>
<thead>
<tr>
<th>LEVEL OF PROTECTION</th>
<th>EQUIPMENT</th>
<th>PROTECTION PROVIDED</th>
<th>SHOULD BE USED WHEN</th>
<th>LIMITING CRITERIA</th>
</tr>
</thead>
</table>
| A | RECOMMENDED: | • Pressure-demand, full-facepiece SCBA or pressure-demand supplied-air respirator with escape SCBA.
• Fully-encapsulating, chemical-resistant suit.
• Inner chemical-resistant gloves.
• Chemical-resistant safety boots/shoes.
• Two-way radio communications. | • The highest available level of respiratory, skin, and eye protection.
• The chemical substance has been identified and requires the highest level of protection for skin, eyes, and the respiratory system based on either:
 — measured (or potential for) high concentration of atmospheric vapors, gases, or particulates
 or
 — site operations and work functions involving a high potential for splash, immersion, or exposure to unexpected vapors, gases, or particulates of materials that are harmful to skin or capable of being absorbed through the intact skin.
• Substances with a high degree of hazard to the skin are known or suspected to be present, and skin contact is possible.
• Operations must be conducted in confined, poorly ventilated areas until the absence of conditions requiring Level A protection is determined. | • Fully-encapsulating suit material must be compatible with the substances involved. |
| | OPTIONAL: | • Cooling unit.
• Coveralls.
• Long cotton underwear.
• Hard hat.
• Disposable gloves and boot covers. | | |

| B | RECOMMENDED: | • Pressure-demand, full-facepiece SCBA or pressure-demand supplied-air respirator with escape SCBA.
• Chemical-resistant clothing overalls and long-sleeved jacket; hooded, one- or two-piece chemical splash suit; disposable chemical-resistant one-piece suit.
• Inner and outer chemical-resistant gloves.
• Chemical-resistant safety boots/shoes.
• Hard hat.
• Two-way radio communications. | • The same level of respiratory protection but less skin protection than Level A.
It is the minimum level recommended for initial site entries until the hazards have been further identified.
• The type and atmospheric concentration of substances have been identified and require a high level of respiratory protection, but less skin protection. This involves atmospheres:
 — with IDLH concentrations of specific substances that do not represent a severe skin hazard;
 or
 — that do not meet the criteria for use of air-purifying respirators.
• Atmosphere contains less than 19.5 percent oxygen.
• Presence of incompletely identified vapors or gases is indicated by direct-reading organic vapor detection instrument, but vapors and gases are not suspected of containing high levels of chemicals harmful to skin or capable of being absorbed through the intact skin.
• Use only when the vapor or gases present are not suspected of containing high concentrations of chemicals that are harmful to skin or capable of being absorbed through the intact skin.
• Use only when it is highly unlikely that the work being done will generate either high concentrations of vapors, gases, or particulates or splashes of material that will affect exposed skin. | |
| | OPTIONAL: | • Cooling unit.
• Coveralls.
• Disposable boot covers.
• Face shield.
• Long cotton underwear. | | |

*Based on EPA protective ensembles.

PPE Use

PPE can offer a high degree of protection only if it is used properly. This section covers the following aspects of PPE use:

- Training.
- Work mission duration.
- Personal use factors.
- Fit testing.
- Donning.

- In-use monitoring.
- Doffing.
- Inspection.
- Storage.
- Maintenance.

Decontamination is covered in Chapter 10. Inadequate attention to any of these areas could compromise the protection provided by the PPE.
Table 8-6. (cont.)

<table>
<thead>
<tr>
<th>LEVEL OF PROTECTION</th>
<th>EQUIPMENT</th>
<th>PROTECTION PROVIDED</th>
<th>SHOULD BE USED WHEN:</th>
<th>LIMITING CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>RECOMMENDED:</td>
<td>The same level of skin protection as Level B, but a lower level of respiratory protection.</td>
<td>• The atmospheric contaminants, liquid splashes, or other direct contact will not adversely affect any exposed skin.</td>
<td>• Atmospheric concentration of chemicals must not exceed IDLH levels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The types of air contaminants have been identified, concentrations measured, and a canister is available that can remove the contaminant.</td>
<td>• The atmosphere must contain at least 19.5 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• All criteria for the use of air-purifying respirators are met.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPTIONAL:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>RECOMMENDED:</td>
<td>No respiratory protection. Minimal skin protection.</td>
<td>• The atmosphere contains no known hazard.</td>
<td>• This level should not be worn in the Exclusion Zone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Work functions preclude splashes, immersion, or the potential for unexpected inhalation of or contact with hazardous levels of any chemicals.</td>
<td>• The atmosphere must contain at least 19.5 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>OPTIONAL:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Training

Training in PPE use is recommended and, for respirators, required by federal regulation in the OSHA standards in 29 CFR Part 1910 Subparts I and Z. This training:

- Allows the user to become familiar with the equipment in a nonhazardous situation.
- Instills confidence of the user in his/her equipment.
- Makes the user aware of the limitations and capabilities of the equipment.
- Increases the efficiency of operations performed by workers wearing PPE.
- May increase the protective efficiency of PPE use.
- Reduces the expense of PPE maintenance.

Training should be completed prior to actual PPE use in a hazardous environment and should be repeated at least annually. At a minimum, the training portion of the PPE program should delineate the user's responsibilities and explain the following, utilizing both classroom and field training when necessary:

- OSHA requirements as delineated in 29 CFR Part 1910 Subparts I and Z.
- The proper use and maintenance of the selected PPE, including capabilities and limitations.
- The nature of the hazards and the consequences of not using the PPE.
- The human factors influencing PPE performance.
- Instruction in inspecting, donning, checking, fitting, and using PPE.
- Individualized respirator fit testing to ensure proper fit.
- Use of PPE in normal air for a long familiarity period and, finally, wearing PPE in a test atmosphere to evaluate its effectiveness.
- The user's responsibility (if any) for decontamination, cleaning, maintenance, and repair of PPE.
- Emergency procedures and self-rescue in the event of PPE failure.
- The buddy system (see Chapter 9, Site Control).
- The Site Safety Plan and the individual's responsibilities and duties in an emergency.

The discomfort and inconvenience of wearing PPE can create a resistance to the conscientious use of PPE. One essential aspect of training is to make the user aware of the need for PPE and to instill motivation for the proper use and maintenance of PPE.
Work Mission Duration

Before the workers actually begin work in their PPE ensembles, the anticipated duration of the work mission should be established. Several factors limit mission length. These include:

- Air supply consumption.
- Suit/ensemble permeation and penetration by chemical contaminants.
- Ambient temperature.
- Coolant supply.

Air Supply Consumption

The duration of the air supply must be considered before planning any SCBA-assisted work activity. The anticipated operating time of an SCBA is clearly indicated on the breathing apparatus. This designated operating time is based on a moderate work rate, e.g., some lifting, carrying, and/or heavy equipment operation. In actual operation, however, several factors can reduce the rated operating time. When planning an SCBA-assisted work mission, the following variables should be considered and work actions and operating time adjusted accordingly:

- Work rate. The actual in-use duration of SCBAs may be reduced by one-third to one-half during strenuous work, e.g., drum handling, major lifting, or any task requiring repetitive speed of motion [7].
- Fitness. Well-conditioned individuals generally utilize oxygen more efficiently and can extract more oxygen from a given volume of air (particularly when performing strenuous tasks) than unfit individuals, thereby slightly increasing the SCBA operating time [8].
- Body size. Larger individuals generally consume air at a higher rate than smaller individuals [8], thereby decreasing the SCBA operating time.
- Breathing patterns. Quick, shallow or irregular breaths use air more rapidly than deep, regularly spaced breaths. Heat-induced anxiety and lack of acclimatization (see Heat Stress and Other Physiological Factors in this chapter) may induce hyperventilation, resulting in decreased SCBA operating time [8].

Suit/Ensemble Permeation and Penetration

The possibility of chemical permeation or penetration of CPC ensembles during the work mission is always a matter of concern and may limit mission duration. Possible causes of ensemble penetration are:

- Suit valve leakage, particularly under excessively hot or cold temperatures.
- Suit fastener leakage if the suit is not properly maintained or if the fasteners become brittle at cold temperatures.
- Exhalation valve leakage at excessively hot or cold temperatures.

Also, when considering mission duration, it should be remembered that no single clothing material is an effective barrier to all chemicals or all combinations of chemicals, and no material is an effective barrier to prolonged chemical exposure.

Ambient Temperature

The ambient temperature has a major influence on work mission duration as it affects both the worker and the protective integrity of the ensemble. Heat stress, which can occur even in relatively moderate temperatures, is the greatest immediate danger to an ensemble-encapsulated worker. Methods to monitor for and prevent heat stress are discussed in the final section of this chapter, Heat Stress and Other Physiological Factors. Hot and cold ambient temperatures also affect:

- Valve operation on suits and/or respirators.
- The durability and flexibility of suit materials.
- The integrity of suit fasteners.
- The breakthrough time and permeation rates of chemicals.
- The concentration of airborne contaminants.

All these factors may decrease the duration of protection provided by a given piece of clothing or respiratory equipment.

Coolant Supply

Under warm or strenuous work conditions, adequate coolant (ice or chilled air, see Table 8-5) should be provided to keep the wearer’s body at a comfortable temperature and to reduce the potential for heat stress (see Heat Stress and Other Physiological Factors at the end of this chapter). If coolant is necessary, the duration of the coolant supply will directly affect mission duration.

Personal Use Factors

As described below, certain personal features of workers may jeopardize safety during equipment use. Prohibitive or precautionary measures should be taken as necessary.

Facial hair and long hair interfere with respirator fit and wearer vision. Any facial hair that passes between the face and the sealing surface of the respirator should be prohibited. Even a few days’ growth of facial hair will allow excessive contaminant penetration. Long hair must be effectively contained within protective hair coverings.

Glasses with conventional temple pieces (earpiece bars) will interfere with the respirator-face seal of a full facepiece. A spectacle kit should be installed in the face masks of workers requiring vision correction.

When a worker must wear corrective lenses as part of the facepiece, the lenses shall be fitted by qualified individuals to provide good vision, comfort, and a gas-tight seal. Contact lenses may trap contaminants and/or particulates between the lens and the eye, causing irritation, damage, absorption, and an urge to remove the respirator. Wearing contact lenses with a respirator in a contaminated atmosphere is prohibited (29 CFR Part 1910.134(e)(1)(iii)).

Gum and tobacco chewing should be prohibited during respirator use since they may cause ingestion of contaminants and may compromise the respirator fit.
Donning an Ensemble

A routine should be established and practiced periodically for donning a fully-encapsulating suit/SCBA ensemble. Assistance should be provided for donning and doffing since these operations are difficult to perform alone, and solo efforts may increase the possibility of suit damage.

Table 8-7 lists sample procedures for donning a fully-encapsulating suit/SCBA ensemble. These procedures should be modified depending on the particular type of suit and/or when extra gloves and/or boots are used. These procedures assume that the wearer has previous training in SCBA use and decontamination procedures.

Once the equipment has been donned, its fit should be evaluated. If the clothing is too small, it will restrict movement, thereby increasing the likelihood of tearing the suit material and accelerating worker fatigue. If the clothing is too large, the possibility of snagging the material is increased, and the dexterity and coordination of the worker may be compromised. In either case, the worker should be recalled and better fitting clothing provided.

Table 8-7. Sample Donning Proceduresabc

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Inspect the clothing and respiratory equipment before donning (see Inspection).</td>
</tr>
<tr>
<td>2.</td>
<td>Adjust hard hat or headpiece if worn, to fit user’s head.</td>
</tr>
<tr>
<td>3.</td>
<td>Open back closure used to change air tank (if suit has one) before donning suit.</td>
</tr>
<tr>
<td>4.</td>
<td>Standing or sitting, step into the legs of the suit; ensure proper placement of the feet within the suit; then gather the suit around the waist.</td>
</tr>
<tr>
<td>5.</td>
<td>Put on chemical-resistant safety boots over the feet of the suit. Tape the leg cuff over the tops of the boots.</td>
</tr>
<tr>
<td></td>
<td>- If additional chemical-resistant boots are required, put these on now.</td>
</tr>
<tr>
<td></td>
<td>- Some one-piece suits have heavy-soled protective feet. With these suits, wear short, chemical-resistant safety boots inside the suit.</td>
</tr>
<tr>
<td>6.</td>
<td>Put on air tanks and harness assembly of the SCBA. Don the facepiece and adjust it to be secure, but comfortable. Do not connect the breathing hose. Open valve on air tank.</td>
</tr>
<tr>
<td>7.</td>
<td>Perform negative and positive respirator facepiece seal test procedures.</td>
</tr>
<tr>
<td></td>
<td>- To conduct a negative-pressure test, close the inlet part with the palm of the hand or squeeze the breathing tube so it does not pass air, and gently inhale for about 10 seconds. Any inward rushing of air indicates a poor fit. Note that a leaking facepiece may be drawn tightly to the face to form a good seal, giving a false indication of adequate fit.</td>
</tr>
<tr>
<td></td>
<td>- To conduct a positive-pressure test, gently exhale while covering the exhalation valve to ensure that a positive pressure can be built up. Failure to build a positive pressure indicates a poor fit.</td>
</tr>
<tr>
<td>8.</td>
<td>Depending on type of suit:</td>
</tr>
<tr>
<td></td>
<td>- Put on long-sleeved inner gloves (similar to surgical gloves).</td>
</tr>
<tr>
<td></td>
<td>- Secure gloves to sleeves, for suits with detachable gloves (if not done prior to entering the suit).</td>
</tr>
<tr>
<td></td>
<td>- Additional overgloves, worn over attached suit gloves, may be donned later.</td>
</tr>
<tr>
<td>9.</td>
<td>Put sleeves of suit over arms as assistant pulls suit up and over the SCBA. Have assistant adjust suit around SCBA and shoulders to ensure unrestricted motion.</td>
</tr>
<tr>
<td>10.</td>
<td>Put on hard hat, if needed.</td>
</tr>
<tr>
<td>11.</td>
<td>Raise hood over head carefully so as not to disrupt face seal of SCBA mask. Adjust hood to give satisfactory comfort.</td>
</tr>
<tr>
<td>12.</td>
<td>Begin to secure the suit by closing all fasteners on opening until there is only adequate room to connect the breathing hose. Secure all belts and/or adjustable leg, head, and waistbands.</td>
</tr>
<tr>
<td>13.</td>
<td>Connect the breathing hose while opening the main valve.</td>
</tr>
<tr>
<td>14.</td>
<td>Have assistant first ensure that wearer is breathing properly and then make final closure of the suit.</td>
</tr>
<tr>
<td>15.</td>
<td>Have assistant check all closures.</td>
</tr>
<tr>
<td>16.</td>
<td>Have assistant observe the wearer for a period of time to ensure that the wearer is comfortable, psychologically stable, and that the equipment is functioning properly.</td>
</tr>
</tbody>
</table>

aSource: Based on reference [9].

bPerform the procedures in the order indicated.

cWhen donning a suit, use a moderate amount of a powder to prevent chafing and to increase comfort. Powder will also reduce rubber binding.

As part of donning operations, an assistant tape seals boots to protective clothing to eliminate routes of entry for chemicals.
Respirator Fit Testing

The "fit" or integrity of the facepiece-to-face seal of a respirator affects its performance. A secure fit is important with positive-pressure equipment, and is essential to the safe functioning of negative-pressure equipment, such as most air-purifying respirators. Most facepieces fit only a certain percentage of the population; thus each facepiece must be tested on the potential wearer in order to ensure a tight seal. Facial features such as scars, hollow temples, very prominent cheekbones, deep skin creases, dentures or missing teeth, and the chewing of gum and tobacco may interfere with the respirator-to-face seal. A respirator shall not be worn when such conditions prevent a good seal. The workers' diligence in observing these factors shall be evaluated by periodic checks.

For a qualitative respirator fit testing protocol, see Appendix D of the OSHA lead standard (29 CFR Part 1910.1025). For quantitative fit testing, see the NIOSH publication A Guide to Industrial Respiratory Protection [10]. For specific quantitative testing protocols, literature supplied by manufacturers of quantitative fit test equipment should be consulted. Note that certain OSHA standards require quantitative fit testing under specific circumstances (e.g., 29 CFR Parts 1910.1018[h][3][ii], 1910.1025[f][1][iii], and 1910.1045[h][3][i][iii][B]).

In-Use Monitoring

The wearer must understand all aspects of the clothing operation and its limitations; this is especially important for fully-encapsulating ensembles where misuse could potentially result in suffocation.

During equipment use, workers should be encouraged to report any perceived problems or difficulties to their supervisor(s). These malfunctions include, but are not limited to:

- Degradation of the protective ensemble.
- Perception of odors.
- Skin irritation.
- Unusual residues on PPE.
- Discomfort.
- Resistance to breathing.
- Fatigue due to respirator use.
- Interference with vision or communication.
- Restriction of movement.
- Personal responses such as rapid pulse, nausea, and chest pain.

If a supplied-air respirator is being used, all hazards that might endanger the integrity of the air line should be removed from the working area prior to use. During use, air lines should be kept as short as possible and other workers and vehicles should be excluded from the area.

Doffing an Ensemble

Exact procedures for removing fully-encapsulating suit/SCBA ensembles must be established and followed in order to prevent contaminant migration from the work area and transfer of contaminants to the wearer's body, the doffing assistant, and others.

Table 8-8. Sample Doffing Procedures

If sufficient air supply is available to allow appropriate decontamination before removal:

1. Remove any extraneous or disposable clothing, boot covers, outer gloves, and tape.
2. Have assistant loosen and remove the wearer's safety shoes or boots.
3. Have assistant open the suit completely and lift the hood over the head of the wearer and rest it on top of the SCBA tank.
4. Remove arms, one at a time, from suit. Once arms are free, have assistant lift the suit up and away from the SCBA backpack—avoiding any contact between the outside surface of the suit and the wearer's body—and lay the suit out flat behind the wearer. Leave internal gloves on, if any.
5. Sitting, if possible, remove both legs from the suit.
6. Follow procedure for doffing SCBA.
7. After suit is removed, remove internal gloves by rolling them off the hand, inside out.
8. Remove internal clothing and thoroughly cleanse the body.

If the low-pressure warning alarm has sounded, signifying that approximately 5 minutes of air remain:

1. Remove disposable clothing.
2. Quickly scrub and hose off, especially around the entrance/exit zipper.
3. Open the zipper enough to allow access to the regulator and breathing hose.
4. Immediately attach an appropriate canister to the breathing hose (the type and fittings should be predetermined). Although this provides some protection against any contamination still present, it voids the certification of the unit.
5. Follow Steps 1 through 8 of the regular doffing procedure above. Take extra care to avoid contaminating the assistant and wearer.

*Source = Based on reference [9].

Sample doffing procedures are provided in Table 8-8. These procedures should be performed only after decontamination of the suited worker (see Chapter 10, Decontamination). They require a suitably attired assistant. Throughout the procedures, both worker and assistant should avoid any direct contact with the outside surface of the suit.

Clothing Reuse

Chemicals that have begun to permeate clothing during use may not be removed during decontamination and may continue to diffuse through the material towards the inside surface, presenting the hazard of direct skin contact to the next person who uses the clothing.

Where such potential hazards may develop, clothing should be checked inside and out for discoloration or other evidence of contamination (see next section, Inspection). This is particularly important for fully-encapsulating suits, which are generally subject to reuse due to their cost. Note, however, that negative (i.e., no chemical found) test results do not necessarily preclude the possibility that some absorbed chemical will reach the suit's interior.

At present, little documentation exists regarding clothing reuse. Reuse decisions must consider the known factors...
of permeation rates as well as the toxicity of the contaminant(s). In fact, unless extreme care is taken to ensure that clothing is properly decontaminated and that the decontamination does not degrade the material, the reuse of chemical protective clothing that has been contaminated with toxic chemicals is not advisable [4].

Inspection

An effective PPE inspection program will probably feature five different inspections:

- Inspection and operational testing of equipment received from the factory or distributor.
- Inspection of equipment as it is issued to workers.
- Inspection after use or training and prior to maintenance.
- Periodic inspection of stored equipment.
- Periodic inspection when a question arises concerning the appropriateness of the selected equipment, or when problems with similar equipment arise.

Each inspection will cover somewhat different areas in varying degrees of depth. Detailed inspection procedures, where appropriate, are usually available from the manufacturer. The inspection checklists provided in Table 8-9 may also be an aid.

Records must be kept of all inspection procedures. Individual identification numbers should be assigned to all reusable pieces of equipment (respirators may already have ID numbers) and records should be maintained by that number. At a minimum, each inspection should record the ID number, date, inspector, and any unusual conditions or findings. Periodic review of these records may indicate an item or type of item with excessive maintenance costs or a particularly high level of “down-time.”

Storage

Clothing and respirators must be stored properly to prevent damage or malfunction due to exposure to dust, moisture, sunlight, damaging chemicals, extreme temperatures, and impact. Procedures must be specified for both pre-issuance warehousing and, more importantly, post-issuance (in-use) storage. Many equipment failures can be directly attributed to improper storage.

Clothing:

- Potentially contaminated clothing should be stored in an area separate from street clothing.
- Potentially contaminated clothing should be stored in a well-ventilated area, with good air flow around each item, if possible.
- Different types and materials of clothing and gloves should be stored separately to prevent issuing the wrong material by mistake.
- Protective clothing should be folded or hung in accordance with manufacturers’ recommendations.

Respirators:

- SCBAs, supplied-air respirators, and air-purifying respirators should be dismantled, washed, and disinfected after each use.

<table>
<thead>
<tr>
<th>Table 8-9. Sample PPE Inspection Checklists</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOTHING</td>
</tr>
<tr>
<td>Before use:</td>
</tr>
<tr>
<td>- Determine that the clothing material is correct for the specified task at hand.</td>
</tr>
<tr>
<td>- Visually inspect for:</td>
</tr>
<tr>
<td>- imperfect seams</td>
</tr>
<tr>
<td>- non-uniform coatings</td>
</tr>
<tr>
<td>- tears</td>
</tr>
<tr>
<td>- malfunctioning closures</td>
</tr>
<tr>
<td>- Hold up to light and check for pinholes.</td>
</tr>
<tr>
<td>- Flex product:</td>
</tr>
<tr>
<td>- observe for cracks</td>
</tr>
<tr>
<td>- observe for other signs of shelf deterioration</td>
</tr>
<tr>
<td>- If the product has been used previously, inspect inside and out for signs of chemical attack:</td>
</tr>
<tr>
<td>- discoloration</td>
</tr>
<tr>
<td>- swelling</td>
</tr>
<tr>
<td>- stiffness</td>
</tr>
<tr>
<td>During the work task, periodically inspect for:</td>
</tr>
<tr>
<td>- Evidence of chemical attack such as discoloration, swelling, stiffening, and softening. Keep in mind, however, that chemical permeation can occur without any visible effects.</td>
</tr>
<tr>
<td>- Closure failure.</td>
</tr>
<tr>
<td>- Tears.</td>
</tr>
<tr>
<td>- Punctures.</td>
</tr>
<tr>
<td>- Seam discontinuities.</td>
</tr>
</tbody>
</table>

| **GLOVES** |
| - **BEFORE USE**, pressurize glove to check for pinholes. Either blow into glove, then roll gauntlet towards fingers or inflate glove and hold under water. In either case, no air should escape. |

| **FULLY-ENCAPSULATING SUITS** |
| Before use: |
| - Check the operation of pressure relief valves. |
| - Inspect the fitting of wrists, ankles, and neck. |
| - Check faceshield, if so equipped, for: |
| - cracks |
| - crazing |
| - fogginess |

| **RESPIRATORS** |
| Before use: |
| - Inspect SCBAs: |
| - before and after each use |
| - at least monthly when in storage |
| - every time they are cleaned |
| - Check all connections for tightness. |
| - Check material conditions for: |
| - signs of pliability |
| - signs of deterioration |
| - signs of distortion |
| - Check for proper setting and operation of regulators and valves (according to manufacturers’ recommendations). |
| - Check operation of alarm(s). |
| - Check faceshields and lenses for: |
| - cracks |
| - crazing |
| - fogginess |
Table 8-9. (cont.)

Supplied-Air Respirators
- Inspect SARs:
 - daily when in use
 - at least monthly when in storage
 - every time they are cleaned
- Inspect air lines prior to each use for cracks, kinks, cuts, frays, and weak areas.
- Check for proper setting and operation of regulators and valves (according to manufacturers’ recommendations).
- Check all connections for tightness.
- Check material conditions for:
 - signs of pliability
 - signs of deterioration
 - signs of distortion
- Check faceshields and lenses for:
 - cracks
 - crazing
 - fogginess

Air-Purifying Respirators
- Inspect air-purifying respirators:
 - before each use to be sure they have been adequately cleaned
 - after each use
 - during cleaning
 - monthly if in storage for emergency use
- Check material conditions for:
 - signs of pliability
 - signs of deterioration
 - signs of distortion
- Examine cartridges or canisters to ensure that:
 - they are the proper type for the intended use
 - the expiration date has not been passed
 - they have not been opened or used previously
- Check faceshields and lenses for:
 - cracks
 - crazing
 - fogginess

- SCBAs should be stored in storage chests supplied by the manufacturer. Air-purifying respirators should be stored individually in their original cartons or carrying cases, or in heat-sealed or resealable plastic bags.

Heat Stress and Other Physiological Factors

Wearing PPE puts a hazardous waste worker at considerable risk of developing heat stress. This can result in health effects ranging from transient heat fatigue to serious illness or death. Heat stress is caused by a number of interacting factors, including environmental conditions, clothing, workload, and the individual characteristics of the worker. Because heat stress is probably one of the most common (and potentially serious) illnesses at hazardous waste sites, regular monitoring and other preventive precautions are vital.

Individuals vary in their susceptibility to heat stress. Factors that may predispose someone to heat stress include:
- Lack of physical fitness.
- Lack of acclimatization.
- Age.
- Dehydration.
- Obesity.
- Alcohol and drug use.
- Infection.
- Sunburn.
- Diarrhea.
- Chronic disease.

Reduced work tolerance and the increased risk of excessive heat stress is directly influenced by the amount and type of PPE worn. PPE adds weight and bulk, severely reduces the body’s access to normal heat exchange mechanisms (evaporation, convection, and radiation), and increases energy expenditure. Therefore, when selecting PPE, each item’s benefit should be carefully evaluated in relation to its potential for increasing the risk of heat stress. Once PPE is selected, the safe duration of work/rest periods should be determined based on:
- Anticipated work rate.
- Ambient temperature and other environmental factors.
- Type of protective ensemble.
- Individual worker characteristics and fitness.

Maintenance

The technical depth of maintenance procedures vary. Manufacturers frequently restrict the sale of certain PPE parts to individuals or groups who are specially trained, equipped, and “authorized” by the manufacturer to purchase them. Explicit procedures should be adopted to ensure that the appropriate level of maintenance is performed only by individuals having this specialized training and equipment. The following classification scheme is often used to divide maintenance into three levels:
- **Level 1:** User or wearer maintenance, requiring a few common tools or no tools at all.
- **Level 2:** Shop maintenance that can be performed by the employer’s maintenance shop.
- **Level 3:** Specialized maintenance that can be performed only by the factory or an authorized repair person.

Monitoring

Because the incidence of heat stress depends on a variety of factors, all workers, even those not wearing protective equipment, should be monitored.
- For workers wearing permeable clothing (e.g., standard cotton or synthetic work clothes), follow recommendations for monitoring requirements and suggested work/rest schedules in the current American Conference of Governmental Industrial Hygienists’ (ACGIH) Threshold Limit Values for Heat Stress [11]. If the actual clothing worn differs from the ACGIH standard ensemble in insulation value and/or wind and vapor permeability, change the monitoring requirements and work/rest schedules accordingly [12].
For workers wearing semipermeable or impermeable encapsulating ensembles, the ACGIH standard cannot be used. For these situations, workers should be monitored when the temperature in the work area is above 70°F (21°C) [6].

To monitor the worker, measure:

- Heart rate. Count the radial pulse during a 30-second period as early as possible in the rest period.
 - If the heart rate exceeds 110 beats per minute at the beginning of the rest period, shorten the next work cycle by one-third and keep the rest period the same.
 - If the heart rate still exceeds 110 beats per minute at the next rest period, shorten the following work cycle by one-third [12].

- Oral temperature. Use a clinical thermometer (3 minutes under the tongue) or similar device to measure the oral temperature at the end of the work period (before drinking).
 - If oral temperature exceeds 99.6°F (37.6°C), shorten the next work cycle by one-third without changing the rest period.
 - If oral temperature still exceeds 99.6°F (37.6°C) at the beginning of the next rest period, shorten the following work cycle by one-third [12].
 - Do not permit a worker to wear a semipermeable or impermeable garment when his/her oral temperature exceeds 100.6°F (38.1°C)[12].

- Body water loss, if possible. Measure weight on a scale accurate to ±0.25 lb at the beginning and end of each work day to see if enough fluids are being taken to prevent dehydration. Weights should be taken while the employee wears similar clothing or, ideally, is nude. The body water loss should not exceed 1.5 percent total body weight loss in a work day [12].

Initially, the frequency of physiological monitoring depends on the air temperature adjusted for solar radiation and the level of physical work (see Table 8-10). The length of the work cycle will be governed by the frequency of the required physiological monitoring.

Prevention

Proper training and preventive measures will help avert serious illness and loss of work productivity. Preventing heat stress is particularly important because once someone suffers from heat stroke or heat exhaustion, that person may be predisposed to additional heat injuries. To avoid heat stress, management should take the following steps:

- Adjust work schedules:
 - Modify work/rest schedules according to monitoring requirements.
 - Mandate work slow downs as needed.
 - Provide personnel: alternate job functions to minimize overexertion or overexertion at one task.
 - Add additional personnel to work teams.
 - Perform work during cooler hours of the day if possible or at night if adequate lighting can be provided.

- Provide shelter (air-conditioned, if possible) or shaded areas to protect personnel during rest periods.

- Maintain workers’ body fluids at normal levels. This is necessary to ensure that the cardiovascular system functions adequately. Daily fluid intake must approximately equal the amount of water lost in sweat, i.e., 8 fluid ounces (0.23 liters) of water must be ingested for approximately every 8 ounces (0.23 kg) of weight lost. The normal thirst mechanism is not sensitive enough to ensure that enough water will be drunk to replace lost sweat [14]. When heavy sweating occurs, encourage the worker to drink more. The following strategies may be useful:
 - Maintain water temperature at 50°F to 60°F (10°C to 15.6°C).
 - Provide small disposable cups that hold about 4 ounces (0.1 liter).
 - Have workers drink 16 ounces (0.5 liters) of fluid (preferably water or dilute drinks) before beginning work.
 - Urge workers to drink a cup or two every 15 to 20 minutes, or at each monitoring break. A total of 1 to 1.5 gallons (4 to 6 liters) of fluid per day are recommended, but more may be necessary to maintain body weight.
 - Weigh workers before and after work to determine if fluid replacement is adequate.

- Encourage workers to maintain an optimal level of physical fitness:
 - Where indicated, acclimatize workers to site work conditions: temperature, protective clothing, and workload (see Level of Acclimatization at the end of this chapter).
 - Urge workers to maintain normal weight levels.

- Provide cooling devices to aid natural body heat exchange during prolonged work or severe heat exposure. Cooling devices include:
 - Field showers or hose-down areas to reduce body temperature and/or to cool off protective clothing.
 - Cooling jackets, vests, or suits (see Table 8-5 for details).

- Train workers to recognize and treat heat stress. As part of training, identify the signs and symptoms of heat stress (see Table 8-11).

Other Factors

PPE decreases worker performance as compared to an unequipped individual. The magnitude of this effect varies considerably, depending on both the individual and the PPE ensemble used. This section discusses the demonstrated physiological responses to PPE, the individual human characteristics that play a factor in these.

Although no protective ensemble is “completely” impermeable, for practical purposes an outfit may be considered impermeable when calculating heat stress risk.
Table 8-10. Suggested Frequency of Physiological Monitoring for Fit and Acclimatized Workers*

<table>
<thead>
<tr>
<th>ADJUSTED TEMPERATUREb</th>
<th>NORMAL WORK ENSEMBLEc</th>
<th>IMPERMEABLE ENSEMBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°F (32.2°C) or above</td>
<td>After each 45 minutes of work</td>
<td>After each 15 minutes of work</td>
</tr>
<tr>
<td>87.5°F – 90°F (30.8°C – 32.2°C)</td>
<td>After each 60 minutes of work</td>
<td>After each 30 minutes of work</td>
</tr>
<tr>
<td>82.5°F – 87.5°F (28.1°C – 30.8°C)</td>
<td>After each 90 minutes of work</td>
<td>After each 60 minutes of work</td>
</tr>
<tr>
<td>77.5°F – 82.5°F (25.3°C – 28.1°C)</td>
<td>After each 120 minutes of work</td>
<td>After each 90 minutes of work</td>
</tr>
<tr>
<td>72.5°F – 77.5°F (22.5°C – 25.3°C)</td>
<td>After each 150 minutes of work</td>
<td>After each 120 minutes of work</td>
</tr>
</tbody>
</table>

Source: Reference [13].

bFor work levels of 250 kilocalories/hour.

cCalculate the adjusted air temperature (ta adj) by using this equation: ta adj °F = ta °F + (13 x % sunshine). Measure air temperature (ta) with a standard mercury-in-glass thermometer, with the bulb shielded from radiant heat. Estimate percent sunshine by judging what percent time the sun is not covered by clouds that are thick enough to produce a shadow. (100 percent sunshine = no cloud cover and a sharp, distinct shadow; 0 percent sunshine = no shadows.)

*A normal work ensemble consists of cotton coveralls or other cotton clothing with long sleeves and pants.

Table 8-11. Signs and Symptoms of Heat Stress*

- Heat rash may result from continuous exposure to heat or humid air.
- Heat cramps are caused by heavy sweating with inadequate electrolyte replacement. Signs and symptoms include:
 - muscle spasms
 - pain in the hands, feet, and abdomen
- Heat exhaustion occurs from increased stress on various body organs including inadequate blood circulation due to cardiovascular insufficiency or dehydration. Signs and symptoms include:
 - pale, cool, moist skin
 - heavy sweating
 - dizziness
 - nausea
 - fainting
- Heat stroke is the most serious form of heat stress. Temperature regulation fails and the body temperature rises to critical levels. Immediate action must be taken to cool the body before serious injury and death occur. Competent medical help must be obtained. Signs and symptoms are:
 - red, hot, usually dry skin
 - lack of or reduced perspiration
 - nausea
 - dizziness and confusion
 - strong, rapid pulse
 - coma

*Source: Reference [6].

responses, and some of the precautionary and training measures that need to be taken to avoid PPE-induced injury.

The physiological factors may affect worker ability to function using PPE include:

- Physical condition.
- Level of acclimatization.
- Age.
- Gender.
- Weight.

Physical Condition
Physical fitness is a major factor influencing a person's ability to perform work under heat stress. The more fit someone is, the more work they can safely perform. At a given level of work, a fit person, relative to an unfit person, will have [5,8,15,16]:

- Less physiological strain.
- A lower heart rate.
- A lower body temperature, which indicates less retained body heat (a rise in internal temperature precipitates heat injury).
- A more efficient sweating mechanism.
- Slightly lower oxygen consumption.
- Slightly lower carbon dioxide production.

Level of Acclimatization
The degree to which a worker's body has physiologically adjusted or acclimatized to working under hot conditions affects his or her ability to do work. Acclimatized individuals generally have lower heart rates and body temperatures than unacclimatized individuals [17], and sweat sooner and more profusely. This enables them to maintain lower skin and body temperatures at a given level of environmental heat and work loads than unacclimatized workers [18]. Sweat composition also becomes more dilute with acclimatization, which reduces salt loss [8].
Acclimatization can occur after just a few days of exposure to a hot environment [15,16]. NIOSH recommends a progressive 6-day acclimatization period for the unacclimatized worker before allowing him/her to do full work on a hot job [16]. Under this regimen, the first day of work on site is begun using only 50 percent of the anticipated workload and exposure time, and 10 percent is added each day through day 6 [16]. With fit or trained individuals, the acclimatization period may be shortened 2 or 3 days. However, workers can lose acclimatization in a matter of days, and work regimens should be adjusted to account for this.

When enclosed in an impermeable suit, fit acclimatized individuals sweat more profusely than unfit or unacclimatized individuals and may therefore actually face a greater danger of heat exhaustion due to rapid dehydration. This can be prevented by consuming adequate quantities of water. See previous section on Prevention for additional information.

Age
Generally, maximum work capacity declines with increasing age, but this is not always the case. Active, well-conditioned seniors often have performance capabilities equal to or greater than young sedentary individuals. However, there is some evidence, indicated by lower sweat rates and higher body core temperatures, that older individuals are less effective in compensating for a given level of environmental heat and work loads [19]. At moderate thermal loads, however, the physiological responses of “young” and “old” are similar and performance is not affected [19].

Age should not be the sole criterion for judging whether or not an individual should be subjected to moderate heat stress. Fitness level is a more important factor.

Gender
The literature indicates that females tolerate heat stress at least as well as their male counterparts [20]. Generally, a female’s work capacity averages 10 to 30 percent less than that of a male [8]. The primary reasons for this are the greater oxygen-carrying capacity and the stronger heart in the male [15]. However, a similar situation exists as with aging: not all males have greater work capacities than all females.

Weight
The ability of a body to dissipate heat depends on the ratio of its surface area to its mass (surface area/weight). Heat loss (dissipation) is a function of surface area and heat production is dependent on mass. Therefore, heat balance is described by the ratio of the two.

Since overweight individuals (those with a low ratio) produce more heat per unit of surface area than thin individuals (those with a high ratio), overweight individuals should be given special consideration in heat stress situations. However, when wearing impermeable clothing, the weight of an individual is not a critical factor in determining the ability to dissipate excess heat.

References

3. MSHA/NIOSH. Canister bench tests; minimum requirements. 30 CFR Part 11.102-5.

