OCCUPATIONAL SAFETY AND HEALTH GUIDELINE FOR
N-NITROSODIMETHYLAMINE
POTENTIAL HUMAN CARCINOGEN

INTRODUCTION
This guideline summarizes pertinent information about N-nitrosodimethylamine for workers, employers, and occupational safety and health professionals who may need such information to conduct effective occupational safety and health programs. Recommendations may be superseded by new developments in these fields; therefore, readers are advised to regard these recommendations as general guidelines.

SUBSTANCE IDENTIFICATION

- **Formula:** C₉H₁₄N₂O
- **Structure:**
 \[
 \text{CH}_3\text{CH}_3\text{N}^\text{−}\text{N}═\text{O}
 \]
- **Synonyms:** DimethylNitrosamine; N,N-dimethylnitrosamine; dimethylNitrosamine; DMN; DMNA; N-methyl-N-nitrososomethanamine; NDMA; nitrosodimethylamine
- **Identifiers:** CAS 62-75-9; RTECS IQ0525000; DOT not assigned
- **Appearance and odor:** Yellow liquid of low viscosity

CHEMICAL AND PHYSICAL PROPERTIES

- **Physical data**
 1. Molecular weight: 74.10
 2. Boiling point (at 760 mmHg): 152°C (305.6°F)
 3. Specific gravity (water = 1): 1.005
 4. Vapor density (air = 1 at boiling point of N-nitrosodimethylamine): 2.56
 5. Soluble in water
- **Reactivity**
 1. Incompatibilities: Ultraviolet light; strong oxidizing agents
 2. Hazardous decomposition products: Toxic vapors and gases (e.g., oxides of nitrogen and carbon monoxide) may be released in a fire involving N-nitrosodimethylamine.
 3. Caution: Store in dark bottles.
- **Flammability**
 Extinguishant: Dry chemical, alcohol foam, or carbon dioxide

- **Warning properties**
 Evaluation of warning properties for respirator selection: Warning properties are not considered in recommending respirators for use with carcinogens.

EXPOSURE LIMITS
The Occupational Safety and Health Administration (OSHA) does not have a specific permissible exposure limit (PEL) for N-nitrosodimethylamine; however, the OSHA standard requires implementation of stringent controls wherever N-nitrosodimethylamine or solid or liquid mixtures containing at least 0.1% by weight or volume of N-nitrosodimethylamine are manufactured, processed, repackaged, released, handled, or stored (see “General Control Procedures”). Details of this standard can be found in the Code of Federal Regulations, 29 CFR 1910.1016, N-Nitrosodimethylamine. The National Institute for Occupational Safety and Health (NIOSH) concurs with the OSHA standard. The American Conference of Governmental Industrial Hygienists (ACGIH) has designated N-nitrosodimethylamine as an A2 substance (suspected human carcinogen) without having sufficient evidence to assign a threshold limit value (TLV®) (Skin). The notation “Skin” refers to the potential contribution to overall exposure by the cutaneous route including the mucus membranes and eyes.

HEALTH HAZARD INFORMATION

- **Routes of exposure**
 N-nitrosodimethylamine may cause adverse health effects following exposure via inhalation, ingestion, or dermal contact.
- **Summary of toxicology**
 1. **Effects on animals:** Acute intraperitoneal injection of N-nitrosodimethylamine in rats produced cancer of the nasal cavity. In multiple species of animals, subchronic or chronic exposure via several routes of administration produced cancers of the liver, kidneys, or lungs. Intravenous or interplacental injections of N-nitrosodimethylamine in rats caused increased embroyolethality and fetal mortality.
 2. **Effects on humans:** Acute exposure of laboratory workers to N-nitrosodimethylamine has caused inflammation, degeneration, cirrhosis, and dysfunction of the liver and death.
• Signs and symptoms of exposure
 Short-term (acute): Exposure to N-nitrosodimethylamine can cause vomiting, abdominal cramps, diarrhea, headache, fever, and jaundice.

RECOMMENDED MEDICAL PRACTICES

• Medical surveillance program
 Workers with potential exposures to chemical hazards should be monitored in a systematic program of medical surveillance intended to prevent or control occupational injury and disease. The program should include education of employers and workers about work-related hazards, placement of workers in jobs that do not jeopardize their safety and health, earliest possible detection of adverse health effects, and referral of workers for diagnostic confirmation and treatment. The occurrence of disease (a "sentinel health event," SHE) or other work-related adverse health effects should prompt immediate evaluation of primary preventive measures (e.g., industrial hygiene monitoring, engineering controls, and personal protective equipment). A medical surveillance program is intended to supplement, not replace, such measures.

A medical surveillance program should include systematic collection and epidemiologic analysis of relevant environmental and biologic monitoring, medical screening, morbidity, and mortality data. This analysis may provide information about the relatedness of adverse health effects and occupational exposure that cannot be discerned from results in individual workers. Sensitivity, specificity, and predictive values of biologic monitoring and medical screening tests should be evaluated on an industry-wide basis prior to application in any given worker group. Intrinsic to a surveillance program is the dissemination of summary data to those who need to know, including employers, occupational health professionals, potentially exposed workers, and regulatory and public health agencies.

• Preplacement medical evaluation
 Prior to placing a worker in a job with a potential for exposure to N-nitrosodimethylamine, the physician should evaluate and document the worker's baseline health status with thorough medical, environmental, and occupational histories, a physical examination, and physiologic and laboratory tests appropriate for the anticipated occupational risks. These should concentrate on the function and integrity of the liver, kidneys, and respiratory system. Medical surveillance for respiratory disease should be conducted by using the principles and methods recommended by NIOSH and the American Thoracic Society (ATS).

A preplacement medical evaluation is recommended in order to detect and assess preexisting or concurrent conditions which may be aggravated or result in increased risk when a worker is exposed to N-nitrosodimethylamine. The examining physician should consider the probable frequency, intensity, and duration of exposure, as well as the nature and degree of the condition, in placing such a worker. Such conditions, which should not be regarded as absolute contraindications to job placement, include chronic diseases of the liver. The physician should obtain baseline values for liver function tests.

• Periodic medical screening and/or biologic monitoring
 Occupational health interviews and physical examinations should be performed at regular intervals. Additional examinations may be necessary should a worker develop symptoms that may be attributed to exposure to N-nitrosodimethylamine. The interviews, examinations, and appropriate medical screening and/or biologic monitoring tests should be directed at identifying an excessive decrease or adverse trend in the integrity of and physiologic function of the liver, kidneys, and respiratory system as compared to the baseline status of the individual worker or to expected values for a suitable reference population. The following tests should be used and interpreted according to standardized procedures and evaluation criteria recommended by NIOSH and the ATS: standardized questionnaires and tests of lung function.

• Medical practices recommended at the time of job transfer or termination
 The medical, environmental, and occupational history interviews, the physical examination, and selected physiologic and laboratory tests which were conducted at the time of placement should be repeated at the time of job transfer or termination. Any changes in the worker's health status should be compared to those expected for a suitable reference population. Because occupational exposure to N-nitrosodimethylamine may cause diseases of prolonged induction-latency, the need for medical surveillance may extend well beyond termination of employment.

MONITORING AND MEASUREMENT PROCEDURES

• Method
 Sampling and analysis may be performed by collecting N-nitrosodimethylamine vapors with Tenax GC in short glass tubes followed by desorption by heating and purging with helium, separation by capillary gas-liquid chromatography, and analysis by mass spectrometry. Direct-reading devices calibrated to measure N-nitrosodimethylamine may also be used if applicable. A detailed sampling and analytical method for N-nitrosodimethylamine may be found in the NIOSH Manual of Analytical Methods (method number 252).

PERSONAL PROTECTIVE EQUIPMENT

Chemical protective clothing (CPC) should be selected after utilizing available performance data, consulting with the manufacturer, and then evaluating the clothing under actual use conditions.

In operations involving "laboratory-type hoods" or in locations where N-nitrosodimethylamine is contained in an otherwise "closed system" but is transferred, charged, or discharged into other normally closed containers, OSHA requires that workers: (1) be provided with and required to use clean, full-body CPC (smocks, coveralls, or long-sleeved shirts and long pants), shoe covers, and gloves prior to entering a regulated area; (2) be provided with and required to use approved respirators (a respirator affording higher levels of protection may be substituted); and (3) remove the protective clothing and equipment prior to exiting a regulated area, and at the last exit of the day, place
used clothing and equipment in impervious containers for decontamination or disposal.

SANITATION

For closed system operations or in locations where N-nitrosodimethylamine is contained in an otherwise “closed system” but is transferred, charged, or discharged into other normally closed containers, OSHA requires that workers: (1) wash their hands, forearms, faces, and necks prior to exiting from the regulated area and before engaging in other activities, and (2) shower in designated facilities after the last exit of the day.

In isolated systems, such as a “glove box,” OSHA requires that workers wash their hands and arms with soap and water upon completion of the assigned task and before engaging in other activities not associated with the isolated system.

If it is necessary for workers to wear protective clothing, OSHA requires that a clean change room be provided and equipped with showers and washing facilities. NIOSH recommends that lockers that permit separation of street and work clothes be provided for the worker.

Clothing which is contaminated with N-nitrosodimethylamine should be removed immediately and placed in sealed containers for storage until it can be discarded or until provision is made for the removal of N-nitrosodimethylamine from the clothing. If the clothing is to be laundered or cleaned, the person performing the operation should be informed of N-nitrosodimethylamine’s hazardous properties. Reusable clothing and equipment should be checked for residual contamination before reuse or storage.

Decontamination and disposal procedures should be established and implemented to remove N-nitrosodimethylamine from materials and equipment. Contaminated material should be removed from regulated areas without further contamination of the facility.

OSHA requires that workers wash their faces, necks, hands, and forearms thoroughly with soap and water before eating, smoking, or using toilet facilities.

In regulated areas, OSHA prohibits the storage or consumption of food or beverages, the storage or application of cosmetics, the storage or smoking of tobacco or other smoking materials, or the storage or use of products for chewing.

OSHA prohibits the location of drinking fountains in regulated areas.

GENERAL CONTROL PROCEDURES

The following control procedures are derived from OSHA requirements as stated in 29 CFR 1910.1016:

Areas where N-nitrosodimethylamine is manufactured, processed, used, repackaged, released, handled, or stored shall be designated as regulated areas, and entry into and exit from these areas shall be restricted and controlled. Only authorized workers are permitted access to regulated areas.

Workers authorized to enter regulated areas shall receive a training and indoctrination program including but not limited to the nature of the carcinogenic hazards of N-nitrosodimethylamine, including local and systemic toxicity, the specific nature of the operation which could result in exposure, and the purpose for and the significance of decontamination and emergency practices and procedures.

Entrances to regulated areas shall be posted with signs indicating that a cancer-suspect agent is present and that only authorized workers wearing appropriate protective clothing and equipment shall be admitted.

Appropriate signs and instructions shall be posted at the entrance to and exit from regulated areas to inform workers of the procedures that must be followed when entering or leaving a regulated area.

Open vessel system operations involving N-nitrosodimethylamine which are not in an isolated system, laboratory-type hood, or other system affording equivalent protection against the entry of N-nitrosodimethylamine into regulated areas, nonregulated areas, or the external environment are prohibited.

In operations involving “laboratory-type hoods” or in locations where N-nitrosodimethylamine is contained in an otherwise “closed system” but is transferred, charged, or discharged into other normally closed containers, each operation shall be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation. Exhaust air shall not be discharged to regulated areas, nonregulated areas, or the external environment unless decontaminated. Clean makeup air shall be introduced in sufficient volume to maintain the correct operation of the local exhaust system.

Containers of N-nitrosodimethylamine shall be identified as to contents and shall contain a hazard warning.

Regulated areas (with the exception of outdoor operations) shall be operated under negative pressure with respect to nonregulated areas. Local exhaust ventilation may be used to satisfy this requirement. Clean makeup air in equal volume shall replace air that is removed.

The introduction or removal of any equipment, materials, or other items to or from a regulated area shall be done in a manner that does not cause contamination of nonregulated areas or the external environment.

Decontamination procedures shall be established and implemented to remove N-nitrosodimethylamine from materials, equipment, and decontamination facility.

COMMON OPERATIONS AND CONTROLS

Common operations in which exposure to N-nitrosodimethylamine may occur and control methods which may be effective in each case are listed in Table 1.

EMERGENCY FIRST AID PROCEDURES

In the event of an emergency, remove the victim from further exposure, send for medical assistance, and initiate emergen-
Table 1.—Operations and methods of control for N-nitrosodimethylamine

<table>
<thead>
<tr>
<th>Operations</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>During use in the production of rocket fuel; during use as a solvent in the fibers and plastics industries, as an oxidant, and as an additive in lubricants</td>
<td>Process enclosure, restricted access, local exhaust ventilation, personal protective equipment, good housekeeping and personal hygiene practices, substitution with less toxic substance</td>
</tr>
</tbody>
</table>

If N-nitrosodimethylamine is spilled or leaked, the following steps should be taken:

1. Ventilate area of spill or leak.
2. For small quantities liquids containing N-nitrosodimethylamine, absorb on paper towels and place in an appropriate container.
3. Large quantities of liquids containing N-nitrosodimethylamine may be absorbed in vermiculite, dry sand, earth, or a similar material and placed in an appropriate container.
4. Liquids containing N-nitrosodimethylamine may be collected by vacuuming with an appropriate system.

WASTE REMOVAL AND DISPOSAL

U.S. Environmental Protection Agency, Department of Transportation, and/or state and local regulations shall be followed to assure that removal, transport, and disposal are in accordance with existing regulations.

RESPIRATORY PROTECTION

It must be stressed that the use of respirators is the least preferred method of controlling worker exposure and should not normally be used as the only means of preventing or minimizing exposure during routine operations. However, there are some exceptions for which respirators may be used to control exposure: when engineering and work practice controls are not technically feasible, when engineering controls are in the process of being installed, or during emergencies and certain maintenance operations including those requiring confined-space entry (Table 2).

In addition to respirator selection, a complete respiratory protection program should be instituted which as a minimum complies with the requirements found in the OSHA Safety and Health Standards 29 CFR 1910.134. A respiratory protection program should include as a minimum an evaluation of the worker’s ability to perform the work while wearing a respirator, the regular training of personnel, fit testing, periodic environmental monitoring, maintenance, inspection, and cleaning. The implementation of an adequate respiratory protection program, including selection of the correct respirators, requires that a knowledgeable person be in charge of the program and that the program be evaluated regularly.

Only respirators that have been approved by the Mine Safety and Health Administration (MSHA, formerly Mining Enforcement and Safety Administration) and by NIOSH should be used. Remember! Air-purifying respirators will not protect from oxygen-deficient atmospheres.

BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>Condition</th>
<th>Minimum respiratory protection*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any detectable concentration</td>
<td>Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td></td>
<td>Any supplied-air respirator with a full facepiece and operated in a pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td>Planned or emergency entry into environments containing unknown or any detectable concentration</td>
<td>Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td></td>
<td>Any supplied-air respirator with a full facepiece and operated in a pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td>Firefighting</td>
<td>Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td>Escape only</td>
<td>Any air-purifying full facepiece respirator with a high-efficiency particulate filter</td>
</tr>
<tr>
<td></td>
<td>Any appropriate escape-type self-contained breathing apparatus</td>
</tr>
</tbody>
</table>

* Only NIOSH/MSHA-approved equipment should be used.