OCCUPATIONAL SAFETY AND HEALTH GUIDELINE FOR
4-NITROBIPHENYL
POTENTIAL HUMAN CARCINOGEN

INTRODUCTION

This guideline summarizes pertinent information about 4-nitrophenyl for workers, employers, and occupational safety and health professionals who may need such information to conduct effective occupational safety and health programs. Recommendations may be superseded by new developments in these fields; therefore, readers are advised to regard these recommendations as general guidelines.

SUBSTANCE IDENTIFICATION

- Formula: C12H8NO2
- Structure:

- Synonyms: p-Nitrophenyl; p-nitrodi phenyl; 4-nitrodiphenyl; p-phenyl-nitrobenzene; 4-phenyl nitrobenzene; PNB
- Identifiers: CAS 92-93-3; RTECS DV560000: DOT not assigned
- Appearance and odor: White to yellow needle-like crystals with a sweetish odor

CHEMICAL AND PHYSICAL PROPERTIES

- Physical data
 1. Molecular weight: 199.22
 2. Boiling point (at 760 mmHg): 340°C (644°F)
 3. Specific gravity (water = 1): 1.2
 4. Vapor density (air = 1 at boiling point of 4-nitrophenyl): 6.87
 5. Melting point: 113.8°C (236.8°F)
 6. Insoluble in water
- Reactivity
 Hazardous decomposition products: Toxic vapors and gases (e.g., oxides of nitrogen) may be released in a fire involving 4-nitrophenyl.
- Flammability
 1. Flash point: 143°C (290°F) (closed cup)
 2. Extinguisher: Water or foam (may cause frothing)
 3. Flammability Rating 1 (NFPA)
- Warning properties
 Evaluation of warning properties for respirator selection: Warning properties are not considered in recommending respirators for use with carcinogens.

EXPOSURE LIMITS

The Occupational Safety and Health Administration (OSHA) does not have a specific permissible exposure limit (PEL) for 4-nitrophenyl; however, the OSHA standard requires implementation of stringent controls wherever 4-nitrophenyl or solid or liquid mixtures containing at least 0.1% by weight or volume of 4-nitrophenyl are manufactured, processed, repackaged, released, handled, or stored (see “General Control Procedures”). Details of this standard can be found in the Code of Federal Regulations, 29 CFR 1910.1003. 4-Nitrophenyl. The National Institute for Occupational Safety and Health (NIOSH) concurs with the OSHA standard. The American Conference of Governmental Industrial Hygienists (ACGIH) has designated 4-nitrophenyl as an AI substance (confirmed human carcinogen). The ACGIH recommends that virtually no exposure to 4-nitrophenyl be permitted.

HEALTH HAZARD INFORMATION

- Routes of exposure
 4-Nitrophenyl may cause adverse health effects following exposure via inhalation, ingestion, or dermal or eye contact.
- Summary of toxicology
 Effects on animals: Chronic oral administration of 4-nitrophenyl to dogs produced bladder cancer. In rats exposed to 4-nitrophenyl, the chemical is metabolically converted to 4-aminodiphenyl, a recognized animal and human bladder carcinogen.
 2. Effects on humans: Because of the known metabolic conversion of 4-nitrophenyl to 4-aminodiphenyl in animals and the potential conversion in humans, it is not possible to separate the exposure to either substance; thus, the carcinogenicity of 4-nitrophenyl alone has not been documented in human epidemiologic studies. Bladder cancer is strongly associated with the chronic exposure to 4-nitrophenyl.
with occupational exposure to 4-aminodiphenyl, and 4-nitrobiphenyl is used in the production of 4-aminodiphenyl.

• **Signs and symptoms of exposure**

 1. **Short-term (acute):** Exposure to 4-nitrobiphenyl can cause headache, lethargy, painful urination, and blood or pus in the urine.

 2. **Long-term (chronic):** Exposure to 4-nitrobiphenyl can cause headache, weakness, dizziness, a feeling of euphoria, breathing difficulty (dysnea), impaired muscular coordination (staxia), blood or pus in the urine, and painful, difficult, or frequent urination.

RECOMMENDED MEDICAL PRACTICES

• **Medical surveillance program**

Workers with potential exposures to chemical hazards should be monitored in a systematic program of medical surveillance intended to prevent or control occupational injury and disease. The program should include education of employers and workers about work-related hazards, placement of workers in jobs that do not jeopardize their safety and health, earliest possible detection of adverse health effects, and referral of workers for diagnostic confirmation and treatment. The occurrence of disease (a “sentinel health event,” SHE) or other work-related adverse health effects should prompt immediate evaluation of primary preventive measures (e.g., industrial hygiene monitoring, engineering controls, and personal protective equipment). A medical surveillance program is intended to supplant, not replace, such measures.

A medical surveillance program should include systematic collection and epidemiologic analysis of relevant environmental and biologic monitoring, medical screening, morbidity, and mortality data. This analysis may provide information about the relatedness of adverse health effects and occupational exposure that cannot be discerned from results in individual workers. Sensitivity, specificity, and predictive values of biologic monitoring and medical screening tests should be evaluated on an industry-wide basis prior to application in any given worker group. Intrinsic to a surveillance program is the dissemination of summary data to those who need to know, including employers, occupational health professionals, potentially exposed workers, and regulatory and public health agencies.

• **Preplacement medical evaluation**

Prior to placing a worker in a job with a potential for exposure to 4-nitrobiphenyl, the physician should evaluate and document the worker's baseline health status with thorough medical, environmental, and occupational histories, a physical examination, and physiologic and laboratory tests appropriate for the anticipated occupational risks. These should concentrate on the function and integrity of the liver and urinary tract.

A preplacement medical evaluation is recommended in order to detect and assess preexisting or concurrent conditions which may be aggravated or result in increased risk when a worker is exposed to 4-nitrobiphenyl. The examining physician should consider the probable frequency, intensity, and duration of exposure, as well as the nature and degree of the condition, in placing such a worker. Such conditions, which should not be regarded as absolute contraindications to job placement, include chronic diseases of the liver or urinary tract. The physician should obtain baseline values for liver function tests.

• **Periodic medical screening and/or biologic monitoring**

Occupational health interviews and physical examinations should be performed at regular intervals. Additional examinations may be necessary should a worker develop symptoms that may be attributed to exposure to 4-nitrobiphenyl. The interviews, examinations, and appropriate medical screening and/or biologic monitoring tests should be directed at identifying an excessive decrease or adverse trend in the physiologic function of the liver and urinary tract as compared to the baseline status of the individual worker or to expected values for a suitable reference population. The physician should consider use of a test which characterizes internal exposure (e.g., benzidine in urine). However, this test should be used and interpreted according to standardized epidemiologic procedures and evaluation criteria.

• **Medical practices recommended at the time of job transfer or termination**

The medical, environmental, and occupational history interviews, the physical examination, and selected physiologic and laboratory tests which were conducted at the time of placement should be repeated at the time of job transfer or termination. Any changes in the worker's health status should be compared to those expected for a suitable reference population. Because occupational exposure to 4-nitrobiphenyl may cause diseases of prolonged induction-latency, the need for medical surveillance may extend well beyond termination of employment.

• **Sentinel health events**

Delayed-onset SHE's include: Bladder cancer.

MONITORING AND MEASUREMENT PROCEDURES

• **Method**

Sampling and analysis may be performed by collecting 4-nitrobiphenyl dust with glass fiber filters and silica gel tubes followed by elution with 2-propanol and analysis by gas chromatography. Direct-reading devices calibrated to measure 4-nitrobiphenyl may also be used if available. A detailed sampling and analytical method for 4-nitrobiphenyl may be found in the NIOSH Manual of Analytical Methods (method number 273).

PERSONAL PROTECTIVE EQUIPMENT

Chemical protective clothing (CPC) should be selected after utilizing available performance data, consulting with the manufacturer, and then evaluating the clothing under actual use conditions.

In operations involving “laboratory-type hoods” or in locations where 4-nitrobiphenyl is contained in an otherwise “closed system” but is transferred, charged, or discharged into other normally closed containers, OSHA requires that workers: (1) be provided with and required to use clean, full-body CPC (smocks, coveralls, or long-sleeved shirts and long pants), shoe
covers, and gloves prior to entering a regulated area; (2) be provided with and required to use approved respirators (a respirator affording higher levels of protection may be substituted); and (3) remove the protective clothing and equipment prior to exiting from a regulated area, and at the last exit of the day, place used clothing and equipment in impervious containers for decontamination or disposal.

SANITATION

For closed system operations or in locations where 4-nitrobiophenyl is contained in an otherwise "closed system" but is transferred, charged, or discharged into other normally closed containers, OSHA requires that workers: (1) wash their hands, forearms, faces, and necks prior to exiting the regulated area and before engaging in other activities, and (2) shower in designated facilities after the last exit of the day.

In isolated systems, such as a "glove box," OSHA requires that workers wash their hands and arms with soap and water upon completion of the assigned task and before engaging in other activities not associated with the isolated system.

If it is necessary for workers to wear protective clothing, OSHA requires that a clean change room be provided and equipped with showers and washing facilities. NIOSH recommends that lockers that permit separation of street and work clothes be provided for the worker.

Clothing which is contaminated with 4-nitrobiophenyl should be removed immediately and placed in sealed containers for storage until it can be discarded or until provision is made for the removal of 4-nitrobiophenyl from the clothing. If the clothing is to be laundered or cleaned, the person performing the operation should be informed of 4-nitrobiophenyl's hazardous properties. Reusable clothing and equipment should be checked for residual contamination before reuse or storage.

Decontamination and disposal procedures should be established and implemented to remove 4-nitrobiophenyl from materials and equipment. Contaminated material should be removed from regulated areas without further contamination of the facility.

OSHA requires that workers wash their faces, necks, hands, and forearms thoroughly with soap and water before eating, smoking, or using toilet facilities.

In regulated areas, OSHA prohibits the storage or consumption of food or beverages, the storage or application of cosmetics, the storage or smoking of tobacco or other smoking materials, or the storage or use of products for chewing.

OSHA prohibits the location of drinking fountains in regulated areas.

GENERAL CONTROL PROCEDURES

The following control procedures are derived from OSHA requirements as stated in 29 CFR 1910.1003:

Areas where 4-nitrobiophenyl is manufactured, processed, used, repackaged, released, handled, or stored shall be designated as regulated areas, and entry into and exit from these areas shall be restricted and controlled. Only authorized workers shall be permitted access to regulated areas.

Workers authorized to enter regulated areas shall receive a training and indoctrination program including but not limited to the nature of the carcinogenic hazards of 4-nitrobiophenyl, local and systemic toxicity, the specific nature of the operation that could result in exposure, and the purpose for and the significance of decontamination and emergency practices and procedures.

Entrances to regulated areas shall be posted with signs indicating that a cancer-suspect agent is present and that only authorized workers wearing appropriate protective clothing and equipment shall be admitted.

Appropriate signs and instructions shall be posted at the entrance to and exit from regulated areas to inform workers of the procedures that must be followed when entering or leaving a regulated area.

Open vessel system operations involving 4-nitrobiophenyl which are not in an isolated system, laboratory-type hood, or other system affording equivalent protection against the entry of 4-nitrobiophenyl into regulated areas, nonregulated areas, or the external environment are prohibited.

In operations involving “laboratory-type hoods” or in locations where 4-nitrobiophenyl is contained in an otherwise “closed system” but is transferred, charged, or discharged into other normally closed containers, each operation shall be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation. Exhaust air shall not be discharged to regulated areas, nonregulated areas, or the external environment unless decontaminated. Clean makeup air shall be introduced in sufficient volume to maintain the correct operation of the local exhaust system.

Containers of 4-nitrobiophenyl shall be identified as to contents and shall contain a hazard warning.

Regulated areas (with the exception of outdoor operations) shall be operated under negative pressure with respect to nonregulated areas. Local exhaust ventilation may be used to satisfy this requirement. Clean makeup air in equal volume shall replace air that is removed.

The introduction or removal of any equipment, materials, or other items to or from a regulated area shall be done in a manner that does not cause contamination of nonregulated areas or the external environment.

Decontamination procedures shall be established and implemented to remove 4-nitrobiophenyl from materials, equipment, and the decontamination facility.

COMMON OPERATIONS AND CONTROLS

Common operations in which exposure to 4-nitrobiophenyl may occur and control methods which may be effective in each case are listed in Table 1.
Table 1.—Operations and methods of control for 4-nitro biphenyl

<table>
<thead>
<tr>
<th>Operations</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>During use in the production of rocket fuel; during use as an industrial solvent (especially in the fibers and plastics industries), as an oxidant, and as an additive in lubricants</td>
<td>Process enclosure, restricted access, local exhaust ventilation where appropriate, personal protective equipment, good housekeeping and personal hygiene practices, substitution with less toxic substances</td>
</tr>
</tbody>
</table>

EMERGENCY FIRST AID PROCEDURES

In the event of an emergency, remove the victim from further exposure, send for medical assistance, and initiate emergency procedures. If a worker has contact with 4-nitro biphenyl, OSHA requires that the worker shower as soon as possible, unless contraindicated by physical injuries.

• Eye exposure
Where there is any possibility of a worker's eyes being exposed to 4-nitro biphenyl, an eye-wash fountain should be provided within the immediate work area for emergency use.

If 4-nitro biphenyl gets into the eyes, flush them immediately with large amounts of water for 15 minutes, lifting the lower and upper lids occasionally. Get medical attention as soon as possible. Contact lenses should not be worn when working with this chemical.

• Skin exposure
Where there is any possibility of a worker's body being exposed to 4-nitro biphenyl, facilities for quick drenching of the body should be provided within the immediate work area for emergency use.

If 4-nitro biphenyl gets on the skin, wash it immediately with soap and water. If 4-nitro biphenyl penetrates the clothing, remove the clothing immediately and wash the skin with soap and water. Get medical attention promptly.

• Rescue
If a worker has been incapacitated, move the affected worker from the hazardous exposure. Put into effect the established emergency rescue procedures. Do not become a casualty. Understand the facility's emergency rescue procedures and know the locations of rescue equipment before the need arises.

WASTE REMOVAL AND DISPOSAL

U.S. Environmental Protection Agency, Department of Transportation, and/or state and local regulations shall be followed to assure that removal, transport, and disposal are in accordance with existing regulations.

RESPIRATORY PROTECTION

It must be stressed that the use of respirators is the least preferred method of controlling worker exposure and should not normally be used as the only means of preventing or minimizing exposure during routine operations. However, there are some exceptions for which respirators may be used to control exposure: when engineering and work practice controls are not technically feasible, when engineering controls are in the process of being installed, or during emergencies and certain maintenance operations, including those requiring confined-space entry (Table 2).

In addition to respirator selection, a complete respiratory protection program should be instituted which as a minimum complies with the requirements found in the OSHA Safety and Health Standards, 29 CFR 1910.134. A respiratory protection program should include as a minimum an evaluation of the worker's ability to perform the work while wearing a respirator, the regular training of personnel, fit testing, periodic environmental monitoring, maintenance, inspection, and cleaning. The implementation of an adequate respiratory protection program, including selection of the correct respirators, requires that a knowledgeable person be in charge of the program and that the program be evaluated regularly.
Only respirators that have been approved by the Mine Safety and Health Administration (MSHA, formerly Mining Enforcement and Safety Administration) and by NIOSH should be used. Remember! Air-purifying respirators will not protect from oxygen-deficient atmospheres.

BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>Condition</th>
<th>Minimum respiratory protection*</th>
</tr>
</thead>
</table>
| Any detectable concentration | Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode
Any supplied-air respirator with a full facepiece and operated in a pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive pressure mode |
| Planned or emergency entry into environments containing unknown or any detectable concentration | Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode
Any supplied-air respirator with a full facepiece and operated in a pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive pressure mode |
| Firefighting | Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode |
| Escape only | Any air-purifying full facepiece respirator with a high-efficiency particulate filter
Any appropriate escape-type self-contained breathing apparatus |

* Only NIOSH/MSHA-approved equipment should be used.