Occupational Health Guideline for Manganese

INTRODUCTION
This guideline is intended as a source of information for employees, employers, physicians, industrial hygienists, and other occupational health professionals who may have a need for such information. It does not attempt to present all data; rather, it presents pertinent information and data in summary form.

SUBSTANCE IDENTIFICATION
- Formula: Mn
- Synonyms: None
- Appearance: Gray solid.

PERMISSIBLE EXPOSURE LIMIT (PEL)
The current OSHA standard for manganese is a ceiling level of 5 milligrams of manganese per cubic meter of air (mg/m³).

HEALTH HAZARD INFORMATION
- Routes of exposure
 Manganese can affect the body if it is inhaled. Manganese can also affect the body if it is swallowed.
- Effects of overexposure
 1. Short-term Exposure: Inhalation of fumes with high concentrations of manganese and its oxides may bring about “metal fume fever.” Symptoms of metal fume fever are chills and fever, upset stomach, vomiting, dryness of the throat, cough, weakness, and aching of the head and body. Symptoms often occur several hours after exposure to fumes and usually last for only a day.
 2. Long-term Exposure: Prolonged or repeated exposure to manganese may affect the nervous system with difficulty in walking and balancing, weakness or cramps in the legs, hoarseness of the voice, trouble with memory and judgment, unstable emotions or unusual irritability. If high exposure continues, a person may have poor coordination, difficulty in speaking clearly, or shaking or tremor of the arms or legs. A person may also have hallucinations or uncontrollable laughter or crying. The respiratory system may be affected by a condition known as “manganese pneumonia,” which may result in symptoms and signs of coughing, fever, chills, general aching of the body, chest pain, and other common signs of pneumonia.
 3. Reporting Signs and Symptoms: A physician should be contacted if anyone develops any signs or symptoms and suspects that they are caused by exposure to manganese.
- Recommended medical surveillance
 The following medical procedures should be made available to each employee who is exposed to manganese at potentially hazardous levels:
 1. Initial Medical Examination:
 - A complete history and physical examination: The purpose is to detect pre-existing conditions that might place the exposed employee at increased risk, and to establish a baseline for future health monitoring. Persons with a history of alcoholism, psychiatric, neurologic, or pulmonary diseases or liver dysfunction would be expected to be at increased risk from exposure. Examination of the respiratory tract, hemopoietic system, and kidneys should be stressed.
 - 14” x 17” chest roentgenogram: Manganese causes pneumonitis or metal fume fever. Surveillance of the lungs is indicated.
 - FVC and FEV (1 sec): Manganese is reported to cause decreased pulmonary function. Periodic surveillance is indicated.
 - A complete blood count: Manganese has been reported to cause blood changes. A complete blood count should be performed including a red cell count, a white cell count, a differential count of a stained smear, as well as hemoglobin and hematocrit.
 - Urinalysis: Since kidney damage has been observed in humans exposed to manganese, a urinalysis should be performed, including at a minimum specific gravity, albumin, glucose, and a microscopic on centrifuged

These recommendations reflect good industrial hygiene and medical surveillance practices and their implementation will assist in achieving an effective occupational health program. However, they may not be sufficient to achieve compliance with all requirements of OSHA regulations.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service Centers for Disease Control
National Institute for Occupational Safety and Health

U.S. DEPARTMENT OF LABOR
Occupational Safety and Health Administration

September 1978
sediment. Determination of manganese level in urine may be helpful in assessing exposure.

2. Periodic Medical Examination: The aforementioned medical examinations should be repeated on an annual basis, except that an x-ray is considered necessary only when indicated by the results of pulmonary function testing, or by signs and symptoms of respiratory disease.

- Summary of toxicology

Inhalation of manganese dust or fume primarily affects the central nervous system; high concentrations cause the influenza-like illness termed manganese pneumonitis. Manganese acts either as a direct neurotoxin, or it adversely affects certain neuroenzymes. Manganese fume causes a disease quite similar to Parkinsonism after 6 months to 2 years of exposure. Initially there is headache; asthenia; restless sleep or somnolence; change in personality with psychomotor instability associated with restlessness, irritability, and a tendency to either cry or laugh inappropriately. This is followed by an intermediate phase with visual hallucinations, double vision; impaired hearing; uncontrollable impulses; mental confusion; euphoria; and normal reaction to painful stimuli. In the advanced phase, the subject exhibits possible anemia; excessive salivation; disorders of the basal ganglia of Parkinsonian type, such as mask-like facies, muscle weakness, muscle rigidity, tremor of the upper extremities and head, and impaired gait. High concentrations of manganese dust produce fever and chills similar to mental fume fever. During human exposure to manganese fume there is dryness and irritation of the throat, a sweet or metallic taste followed by substernal tightness, constriction in the chest, and a dry cough. Several hours following exposure the subject develops chills, lassitude, malaise, fatigue, frontal headache, low back pain, muscle cramps, and occasionally blurred vision, nausea, and vomiting. Physical examination reveals fever, perspiration, dyspnea, rales throughout the chest, and tachycardia; in some instances there has been a reversible reduction in pulmonary vital capacity. Leukopenia has been reported in 4 out of 16 cases of manganese poisoning, although there is no convincing evidence that any changes in the blood should be regarded as specific or diagnostic of manganism.

CHEMICAL AND PHYSICAL PROPERTIES

- Physical data
 1. Molecular weight: 54.94
 2. Boiling point (760 mm Hg): 2097 C (3806 F)
 3. Specific gravity (water = 1): 7.2
 4. Vapor density (air = 1 at boiling point of manganese): Data not available
 5. Melting point: 1245 C (2273 F)
 6. Vapor pressure at 1227 C (2240 F): 1 mm Hg
 7. Solubility in water, g/100 g water at 20 C (68 F): Not pertinent
 8. Evaporation rate (butyl acetate = 1): Not pertinent

- Autoignition temperature: Data not available
- Flammable limits in air, % by volume: Data not available
- Extinguishment: Data not available
- Warning properties

Grant states that "local contact of manganese with the cornea does not appear to be a problem industrially."

MONITORING AND MEASUREMENT PROCEDURES

- Ceiling Evaluation

Measurements to determine employee ceiling exposure are best taken during periods of maximum expected airborne concentrations of manganese. Each measurement should consist of a fifteen (15) minute sample or series of consecutive samples totalling fifteen (15) minutes in the employee's breathing zone (air that would most nearly represent that inhaled by the employee). A minimum of three (3) measurements should be taken on one work shift and the highest of all measurements taken is an estimate of the employee's exposure.

- Method

RESPIRATORS

- Good industrial hygiene practices recommend that engineering controls be used to reduce environmental concentrations to the permissible exposure level. However, there are some exceptions where respirators may be used to control exposure. Respirators may be used when engineering and work practice controls are not technically feasible, when such controls are in the process of being installed, or when they fail and need to be supplemented. Respirators may also be used for operations which require entry into tanks or closed vessels, and in emergency situations. If the use of respirators is necessary, the only respirators permitted are those that have been approved by the Mine Safety and Health Administration (formerly Mining Enforcement and Safety Administration) or by the National Institute for Occupational Safety and Health.

- In addition to respirator selection, a complete respiratory protection program should be instituted which includes regular training, maintenance, inspection, cleaning, and evaluation.

COMMON OPERATIONS AND CONTROLS

The following list includes some common operations in which exposure to manganese may occur and control methods which may be effective in each case:
<table>
<thead>
<tr>
<th>Operation</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberation during welding operations</td>
<td>Local exhaust ventilation; respiratory protective devices; dilution ventilation</td>
</tr>
<tr>
<td>Liberation during casting of molten ferro-manganese</td>
<td>Local exhaust ventilation</td>
</tr>
<tr>
<td>Liberating during bagging of manganese ore</td>
<td>Local exhaust ventilation; respiratory protective devices and dust suppression with water</td>
</tr>
<tr>
<td>Liberation during mixing and pressing of dry battery depolarization</td>
<td>Local exhaust ventilation</td>
</tr>
<tr>
<td>Liberation during grinding of ore containing manganese</td>
<td>Local exhaust ventilation; respiratory protective devices and dust suppression with water</td>
</tr>
<tr>
<td>Liberation during arc burning of manganese-hardened steel in repair and manufacture programs</td>
<td>Local exhaust ventilation; respiratory protective devices; dilution ventilation</td>
</tr>
<tr>
<td>Liberation from top of submerged arc electric furnace</td>
<td>General dilution ventilation and process enclosure, if possible</td>
</tr>
<tr>
<td>Liberation of dust during ore extraction</td>
<td>General dilution ventilation; respiratory protective devices</td>
</tr>
<tr>
<td>Liberation during metal finishing operations of high manganese steel</td>
<td>Local exhaust ventilation; respiratory protective equipment</td>
</tr>
<tr>
<td>Liberation of dust during crushing of ferro-manganese metal prior to shipment; during dumping, weighing, and mixing operations in ceramics and glass manufacture for pigmentation and coloration purposes</td>
<td>Local exhaust ventilation; respiratory protective equipment</td>
</tr>
<tr>
<td>Liberation from formulation of proprietary mixtures for paint and varnish manufacture</td>
<td>Local exhaust ventilation; respiratory protective equipment</td>
</tr>
<tr>
<td>Liberation of dioxide and sulfate during manufacture and application of fertilizers</td>
<td>Local exhaust ventilation</td>
</tr>
<tr>
<td>Liberation of dust during manufacture of manganese soap and wood preservatives; manufacture of safety matches, signal flares, fire-works, and strikers; during mixing and kiln operations of brick manufacture</td>
<td>Local exhaust ventilation</td>
</tr>
<tr>
<td>Liberation of dusts during manufacture and utilization of oxidation catalysts, such as hopcalite, manganese acetate, and naphthenate</td>
<td>Local exhaust ventilation</td>
</tr>
</tbody>
</table>

EMERGENCY FIRST AID PROCEDURES

In the event of an emergency, institute first aid procedures and send for first aid or medical assistance.

- **Breathing**
 If a person breathes in large amounts of manganese, move the exposed person to fresh air at once. If breathing has stopped, perform artificial respiration. Keep the affected person warm and at rest. Get medical attention as soon as possible.

- **Swallowing**
 When manganese has been swallowed and the person is conscious, give the person large quantities of water immediately. After the water has been swallowed, try to get the person to vomit by having him touch the back of his throat with his finger. Do not make an unconscious person vomit. Get medical attention immediately.

- **Rescue**
 Move the affected person from the hazardous exposure. If the exposed person has been overcome, notify someone else and put into effect the established emergency rescue procedures. Do not become a casualty. Understand the facility's emergency rescue procedures and know the locations of rescue equipment before the need arises.

SPILL AND DISPOSAL PROCEDURES

- Persons not wearing protective equipment and clothing should be restricted from areas of spills until cleanup has been completed.
- If manganese is spilled, the following steps should be taken:
 1. Remove all ignition sources.
2. Ventilate area of spill.
2. For small quantities, sweep onto paper or other suitable material, place in an appropriate container and burn in a safe place (such as a fume hood). Large quantities may be reclaimed; however, if this is not practical, dissolve in a flammable solvent (such as alcohol) and atomize in a suitable combustion chamber equipped with an appropriate effluent gas cleaning device.

- Waste disposal methods:
 Manganese may be disposed of:
 1. By making packages of manganese in paper or other flammable material and burning in a suitable combustion chamber equipped with an appropriate effluent gas cleaning device.
 2. By dissolving manganese in a flammable solvent (such as alcohol) and atomizing in a suitable combustion chamber equipped with an appropriate effluent gas cleaning device.

ADDITIONAL INFORMATION

To find additional information on manganese, look up manganese in the following documents:
- Medical Surveillance for Chemical Hazards
- Respiratory Protection for Chemical Hazards
- Personal Protection and Sanitation for Chemical Hazards

These documents are available through the NIOSH Division of Technical Services, 4676 Columbia Parkway, Cincinnati, Ohio 45226.

REFERENCES

<table>
<thead>
<tr>
<th>Condition</th>
<th>Minimum Respiratory Protection* Required Above 5 mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust or Mist Concentration</td>
<td></td>
</tr>
<tr>
<td>25 mg/m³ or less</td>
<td>Any dust and mist respirator, except single-use respirators.</td>
</tr>
<tr>
<td>50 mg/m³ or less</td>
<td>Any dust and mist respirator, except single-use or quarter-mask respirator.</td>
</tr>
<tr>
<td>Dust, Mist, or Fume Concentration</td>
<td></td>
</tr>
<tr>
<td>50 mg/m³ or less</td>
<td>Any fume respirator or high efficiency particulate filter respirator.</td>
</tr>
<tr>
<td></td>
<td>Any supplied-air respirator.</td>
</tr>
<tr>
<td></td>
<td>Any self-contained breathing apparatus.</td>
</tr>
<tr>
<td>250 mg/m³ or less</td>
<td>A high efficiency particulate filter respirator with a full facepiece.</td>
</tr>
<tr>
<td></td>
<td>Any supplied-air respirator with a full facepiece, helmet, or hood.</td>
</tr>
<tr>
<td></td>
<td>Any self-contained breathing apparatus with a full facepiece.</td>
</tr>
<tr>
<td>5000 mg/m³ or less</td>
<td>A powered air-purifying respirator with a high efficiency particulate filter.</td>
</tr>
<tr>
<td></td>
<td>A Type C supplied-air respirator operated in pressure-demand or other positive pressure or continuous-flow mode.</td>
</tr>
<tr>
<td>10,000 mg/m³ or less</td>
<td>A Type C supplied-air respirator with a full facepiece operated in pressure-demand or other positive pressure mode or with a full facepiece, helmet, or hood operated in continuous-flow mode.</td>
</tr>
<tr>
<td>Greater than 10,000 mg/m³ or entry and escape from unknown concentrations</td>
<td>Self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode.</td>
</tr>
<tr>
<td></td>
<td>A combination respirator which includes a Type C supplied-air respirator with a full facepiece operated in pressure-demand or other positive pressure or continuous-flow mode and an auxiliary self-contained breathing apparatus operated in pressure-demand or other positive pressure mode.</td>
</tr>
<tr>
<td>Fire Fighting</td>
<td>Self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode.</td>
</tr>
</tbody>
</table>

*Only NIOSH-approved or MSHA-approved equipment should be used.