OCCUPATIONAL SAFETY AND HEALTH GUIDELINE FOR
1,1-DIMETHYLMIDRAZZINE
POTENTIAL HUMAN CARCINOGEN

INTRODUCTION

This guideline summarizes pertinent information about 1,1-dimethylhydrazine for workers, employers, and occupational safety and health professionals who may need such information to conduct effective occupational safety and health programs. Recommendations may be superseded by new developments in these fields; therefore, readers are advised to regard these recommendations as general guidelines.

SUBSTANCE IDENTIFICATION

- Formula: C₇N₃H₈
- Structure: (CH₃)₂N-NH₂
- Synonyms: Asymmetric dimethylhydrazine; dimazine; dimethylhydrazine; N,N-dimethylhydrazine; dimethylhydrazine unsymmetrical; DMH; UDMH
- Identifiers: CAS 157-14-7; RTECS MV2450000; DOT 1163, label required: "Flammable Liquid"
- Appearance and odor: Colorless liquid that fumes in air, gradually turns yellow, and has a fishy or ammonialike odor

CHEMICAL AND PHYSICAL PROPERTIES

- Physical data
  1. Molecular weight: 60.12
  2. Boiling point (at 760 mmHg): 63.9 °C (147 °F)
  3. Specific gravity (water = 1): 0.782
  4. Vapor density (air = 1 at boiling point of 1,1-dimethylhydrazine): 2.08
  5. Melting point: -58°C (-72°F)
  6. Vapor pressure at 25°C (77°F): 156.8 mmHg
  7. Miscible with water
  8. Evaporation rate (butyl acetate = 1): 8.6
  9. Saturation concentration in air (approximate) at 25°C (77°F): 0.06% (206,000 ppm)
  10. Ionization potential: 7.46 eV
- Reactivity
  1. Incompatibilities: 1,1-dimethylhydrazine is a highly reactive reducing agent, and contact with oxides of iron or copper and with manganese, lead, copper, or their alloys can lead to fires and explosions.
  2. Hazardous decomposition products: Toxic vapors and gases (e.g., oxides of nitrogen and carbon monoxide) may be released in a fire involving 1,1-dimethylhydrazine.
  3. Caution: 1,1-Dimethylhydrazine will attack copper, some forms of plastics, coatings, and rubber.

- Flammability
  1. Flash point: -15°C (5°F) (closed cup)
  2. Autoignition temperature: 249°C (480°F)
  3. Flammable limits in air, % by volume: Lower, 2; Upper, 95
  4. Extinguishing agent: Alcohol foam, dry chemical, or large quantities of coarse water spray
  5. Class IB Flammable Liquid (29 CFR 1910.106), Flammability Rating 3 (NFPA)
  6. Caution: 1,1-dimethylhydrazine may ignite spontaneously when spread on a large surface or when in air and in contact with porous materials such as soil, asbestos, wood, or cloth or with oxidants such as hydrogen peroxide or nitric acid.

- Warning properties
  1. Odor threshold: 6-14 ppm
  2. Evaluation of warning properties for respirator selection: Warning properties are not considered in recommending respirators for use with carcinogens.

EXPOSURE LIMITS

The current Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) for 1,1-dimethylhydrazine is 0.5 parts of 1,1-dimethylhydrazine per million parts of air (ppm) [1 milligram of 1,1-dimethylhydrazine per cubic meter of air (mg/m³)] as a time-weighted average (TWA) concentration over an 8-hour workshift (Skin). The notation "Skin" refers to the potential contribution to overall exposure by the cutaneous route, including the mucous membranes and eyes. The National Institute for Occupational Safety and Health (NIOSH) recommends that 1,1-dimethylhydrazine be controlled and handled as a potential human carcinogen in the workplace and that exposure be minimized to the lowest feasible limit. The NIOSH recommended exposure limit (REL) is 0.06 ppm (0.15 mg/m³) as a ceiling concentration determined in any 120-minute sampling period. The NIOSH REL represents the lowest reliably detectable level by NIOSH-validated methods. The American Con-
ference of Governmental Industrial Hygienists (ACGIH) has
designated 1,1-dimethylhydrazine as an A2 substance (suspected-
human carcinogen) having an assigned threshold limit value (TLV®) of 0.5 ppm (1.0 mg/m³) (Skin) as a TWA for a normal
8-hour workday and a 40-hour workweek (Table 1).

<table>
<thead>
<tr>
<th></th>
<th>Exposure limits</th>
<th>ppm</th>
<th>mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSHA PEL TWA (Skin)*</td>
<td>0.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NIOSH REL (Ca)† Ceiling (120 min)</td>
<td>0.06</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>ACGIH TLV® TWA (Skin) (A2)§</td>
<td>0.5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

* (Skin): Potential contribution to overall exposure by the
cutaneous route including mucous membranes and eyes.
† (Ca): NIOSH recommends treating as a potential human car-
cinogen.

HEALTH HAZARD INFORMATION

- Routes of exposure
1,1-Dimethylhydrazine may cause adverse health effects fol-
lowing exposure via inhalation, ingestion, or dermal or eye
contact.

- Summary of toxicology
  1. Effects on animals: Acute inhalation of 1,1-dimethylhydrazine by
     mice, rats, or dogs caused central nervous system (CNS)
     stimulation, respiratory distress, convulsions, and death. Repeated
daily exposure of dogs to 1,1-dimethylhydrazine vapor produced
     CNS depression, salivation, vomiting, diarrhea, loss
     of muscular coordination (ataxia), convulsive seizures, and
     hemolytic anemia. Chronic oral administration of
     1,1-dimethylhydrazine to mice caused tumors of the blood ves-
     sels, lungs, kidneys, and liver.

  2. Effects on humans: Exposure of workers to 1,1-dimethylhydrazine has
cau sed increased blood pressure, fatty infiltra-
tion of the liver, impaired liver function (resulting in elevated
serum glutamic-pyruvic transaminase levels, respiratory dis-
stress, hemolysis, and reduced oxygen supply to tissues
(anoxia).

- Signs and symptoms of exposure
  1. Short-term (acute): Exposure can cause a choking sensation,
     chest pain, breathing difficulty (dyspnea), lethargy, nausea,
     vomiting, and irritation of the skin, eyes, nose, and throat.
  2. Long-term (chronic): Exposure to 1,1-dimethylhydrazine can
cause pulmonary irritation, conjunctivitis, and gastrointesti-
nal irritation.

RECOMMENDED MEDICAL PRACTICES

- Medical surveillance program
  Workers with potential exposures to chemical hazards should
  be monitored in a systematic program of medical surveillance
  intended to prevent or control occupational injury and disease.

  The program should include education of employers and work-
ers about work-related hazards, placement of workers in jobs
  that do not jeopardize their safety and health, earliest possi-
bility detection of adverse health effects, and referral of workers
  for diagnostic confirmation and treatment. The occurrence of
disease (a "sentinel health event," SHE) or other work-related
adverse health effects should prompt immediate evaluation of
primary preventive measures (e.g., industrial hygiene monitor-
ing, engineering controls, and personal protective equipment).
A medical surveillance program is intended to supplement, not
replace, such measures.

  A medical surveillance program should include systematic col-
lection and epidemiologic analysis of relevant environmental
and biologic monitoring, medical screening, morbidity, and
mortality data. This analysis may provide information about
the relatedness of adverse health effects and occupational ex-
posure that cannot be discerned from results in individual
workers. Sensitivity, specificity, and predictive values of bio-
logic monitoring and medical screening tests should be evalu-
ated on an industry-wide basis prior to application in any given
worker group. Intrinsic to a surveillance program is the dis-
semination of summary data to those who need to know, in-
cluding employers, occupational health professionals,
potentially exposed workers, and regulatory and public health
agencies.

- Preplacement medical evaluation
  Prior to placing a worker in a job with a potential for exposure
to 1,1-dimethylhydrazine, the physician should evaluate and
document the worker's baseline health status with thorough
medical, environmental, and occupational histories, a physi-
cal examination, and physiologic and laboratory tests appropri-
ate for the anticipated occupational risks. These should
concentrate on the function and integrity of the eyes, skin, liver,
kidneys, red blood cells, and nervous and respiratory systems.
Medical surveillance for respiratory disease should be conduct-
ed by using the principles and methods recommended by
NIOSH and the American Thoracic Society (ATS). There is little
information available on the risk to a worker with a history
of hemolytic anemia. The physician should obtain a com-
plete blood cell count and baseline tests for red blood cell
hemolysis. A preplacement medical evaluation is recommend-
ed in order to detect and assess preexisting or concurrent con-
ditions which may be aggravated or result in increased risk
when a worker is exposed to 1,1-dimethylhydrazine at or be-
low the NIOSH REL. The examining physician should con-
sider the probable frequency, intensity, and duration of
exposure, as well as the nature and degree of the condition,
in placing such a worker. Such conditions, which should not
be regarded as absolute contraindications to job placement,
include a history of chronic skin disease or concurrent derma-
titis. Mild non-hemolytic anemia (e.g., mild iron-deficiency
anemia) is not a contraindication for placement in a job with
a potential for exposure to 1,1-dimethylhydrazine.

- Periodic medical screening and/or biologic monitoring
  Occupational health interviews and physical examinations
should be performed at regular intervals. Additional examina-
tions may be necessary should a worker develop symptoms that
may be attributed to exposure to 1,1-dimethylhydrazine. The
interviews, examinations, and appropriate medical screening and/or biologic monitoring tests should be directed at identifying an excessive decrease or adverse trend in the integrity and physiologic function of the skin, liver, kidneys, red blood cells, and nervous and respiratory systems as compared to the baseline status of the individual worker or to expected values for a suitable reference population. The following tests should be used and interpreted according to standardized procedures and evaluation criteria recommended by NIOSH and ATS: standardized questionnaires and tests of lung function.

- **Medical practices recommended at the time of job transfer or termination**
  The medical, environmental, and occupational history interviews, the physical examination, and selected physiologic and laboratory tests which were conducted at the time of placement should be repeated at the time of job transfer or termination. Any changes in the worker's health status should be compared to those expected for a suitable reference population. Because occupational exposure to 1,1-dimethylhydrazine may cause diseases of prolonged induction latency, the need for medical surveillance may extend well beyond termination of employment.

- **Sentinel health events**
  Acute SHE's include contact and/or allergic dermatitis.

**MONITORING AND MEASUREMENT PROCEDURES**

- **Ceiling concentration evaluation**
  Measurements to determine worker exposure should be taken during periods of maximum expected airborne concentrations of 1,1-dimethylhydrazine. Each measurement to determine the NIOSH REL (ceiling exposure) in the worker's breathing zone (air that most nearly represents that inhaled by the worker) should consist of a 120-minute sample or a series of consecutive samples that total 120 minutes. A minimum of three measurements should be taken during one workshift, and the highest of all measurements taken is an estimate of the worker's exposure. If the periods of maximum exposure are not clearly defined, a statistical procedure which can be used as a peak exposure detection strategy is given in the *Occupational Exposure Sampling Strategy Manual.*

- **Method**
  Sampling and analysis may be performed by collecting 1,1-dimethylhydrazine vapors with sulfuric acid-coated silica gel tubes and analyzing by gas chromatography. Direct-reading devices calibrated to measure 1,1-dimethylhydrazine may also be used if available. A detailed sampling and analytical method for 1,1-dimethylhydrazine may be found in the *NIOSH Manual of Analytical Methods* (method number 248).

**PERSONAL PROTECTIVE EQUIPMENT**

Chemical protective clothing (CPC) should be selected after utilizing available performance data, consulting with the manufacturer, and then evaluating the clothing under actual use conditions. Workers should be provided with and required to use CPC, gloves, and other appropriate protective clothing necessary to prevent skin contact with 1,1-dimethylhydrazine.

**SANITATION**

Clothing which is contaminated with 1,1-dimethylhydrazine should be removed immediately and placed in sealed containers for storage until it can be discarded or until provisions are made for the removal of 1,1-dimethylhydrazine from the clothing. If the clothing is to be laundered or cleaned, the person performing the operation should be informed of 1,1-dimethylhydrazine's hazardous properties. Reusable clothing and equipment should be checked for residual contamination before reuse or storage.

A change room with showers, washing facilities, and lockers that permit separation of street and work clothes should be provided.

Workers should be required to shower following a workshift and prior to putting on street clothes. Clean work clothes should be provided daily.

Skin that becomes contaminated with 1,1-dimethylhydrazine should be promptly washed with soap and water.

The storage, preparation, dispensing, or consumption of food or beverages, the storage or application of cosmetics, the storage or smoking of tobacco or other smoking materials, or the storage or use of products for chewing should be prohibited in work areas.

Workers who handle 1,1-dimethylhydrazine should wash their faces, hands, and forearms thoroughly with soap and water before eating, smoking, or using toilet facilities.

**COMMON OPERATIONS AND CONTROLS**

Common operations in which exposure to 1,1-dimethylhydrazine may occur and control methods which may be effective in each case are listed in Table 2.

<table>
<thead>
<tr>
<th>Operations</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the formulation of and use in jet and rocket propellants</td>
<td>Process enclosure, local exhaust ventilation, personal protective equipment</td>
</tr>
<tr>
<td>During the manufacture of 1,1-dimethylhydrazine and during maintenance of manufacturing and storage equipment</td>
<td>Process enclosure, local exhaust ventilation, personal protective equipment</td>
</tr>
<tr>
<td>During use in the chemical synthesis of catalysts, automotive antifreeze, pharmaceuticals, dyestuffs, and stabilizing agents</td>
<td>Process enclosure, local exhaust ventilation, personal protective equipment</td>
</tr>
<tr>
<td>During use in the formulation of photographic developers and the processing of styrene-butadiene rubber</td>
<td>Process enclosure, local exhaust ventilation, personal protective equipment</td>
</tr>
</tbody>
</table>
EMERGENCY FIRST AID PROCEDURES

In the event of an emergency, remove the victim from further exposure, send for medical assistance, and initiate emergency procedures.

- Eye exposure
Where there is any possibility of a worker's eyes being exposed to 1,1-dimethylhydrazine, an eye-wash fountain should be provided within the immediate work area for emergency use.

If 1,1-dimethylhydrazine gets into the eyes, flush them immediately with large amounts of water for 15 minutes, lifting the lower and upper lids occasionally. Get medical attention as soon as possible. Contact lenses should not be worn when working with this chemical.

- Skin exposure
Where there is any possibility of a worker's body being exposed to 1,1-dimethylhydrazine, facilities for quick drenching of the body should be provided within the immediate work area for emergency use.

If 1,1-dimethylhydrazine gets on the skin, wash it immediately with soap and water. If 1,1-dimethylhydrazine penetrates the clothing, remove the clothing immediately and wash the skin with soap and water. Get medical attention promptly.

- Rescue
If a worker has been incapacitated, move the affected worker from the hazardous exposure. Put into effect the established emergency rescue procedures. Do not become a casualty. Understand the facility's emergency rescue procedures and know the locations of rescue equipment before the need arises.

SPILLS AND LEAKS

Workers not wearing protective equipment and clothing should be restricted from areas of spills or leaks until cleanup has been completed.

If 1,1-dimethylhydrazine is spilled or leaked, the following steps should be taken:
1. Remove all ignition sources.
2. Ventilate area of spill or leak.
3. Small quantities of liquids containing 1,1-dimethylhydrazine may be flushed with water and collected in open holding tanks. Concentrations less than 2% can be oxidized by slowly adding 10% hydrogen peroxide, calcium hypochlorite, or household bleach.
4. Large quantities of liquids containing 1,1-dimethylhydrazine may be diluted with water and flushed to a safe, open area such as a catch basin. 1,1-Dimethylhydrazine should not be allowed to enter a confined space such as a sewer because of the possibility of an explosion.

WASTE REMOVAL AND DISPOSAL

U.S. Environmental Protection Agency, Department of Transportation, and/or state and local regulations shall be followed to assure that removal, transport, and disposal are in accordance with existing regulations.

RESPIRATORY PROTECTION

It must be stressed that the use of respirators is the least preferred method of controlling worker exposure and should not normally be used as the only means of preventing or minimizing exposure during routine operations. However, there are some exceptions for which respirators may be used to control exposure: when engineering and work practice controls are not technically feasible, when engineering controls are in the process of being installed, or during emergencies and certain maintenance operations including those requiring confined-space entry (Table 3).

In addition to respirator selection, a complete respiratory protection program should be instituted which as a minimum complies with the requirements found in the OSHA Safety and Health Standards 29 CFR 1910.134. A respiratory protection program should include as a minimum an evaluation of the worker's ability to perform the work while wearing a respirator, the regular training of personnel, fit testing, periodic environmental monitoring, maintenance, inspection, and cleaning. The implementation of an adequate respiratory protection program, including selection of the correct respirators, requires that a knowledgeable person be in charge of the program and that the program be evaluated regularly.

Only respirators that have been approved by the Mine Safety and Health Administration (MSHA, formerly Mining Enforcement and Safety Administration) and by NIOSH should be used. Remember! Air-purifying respirators will not protect from oxygen-deficient atmospheres.

BIBLIOGRAPHY

Table 3.—Respiratory protection for 1, 1-dimethylhydrazine

<table>
<thead>
<tr>
<th>Condition</th>
<th>Minimum respiratory protection*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any detectable concentration</td>
<td>Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td></td>
<td>Any supplied-air respirator with a full facepiece and operated in a pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td>Planned or emergency entry into environments containing unknown or any detectable concentration</td>
<td>Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td></td>
<td>Any supplied-air respirator with a full facepiece and operated in a pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td>Firefighting</td>
<td>Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td>Escape only</td>
<td>Any air-purifying full facepiece respirator (gas mask) with a chin-style or front- or back-mounted organic vapor canister</td>
</tr>
<tr>
<td></td>
<td>Any appropriate escape-type self-contained breathing apparatus</td>
</tr>
</tbody>
</table>

* Only NIOSH/MSHA-approved equipment should be used.