OCCUPATIONAL SAFETY AND HEALTH GUIDELINE FOR
BENZENE
POTENTIAL HUMAN CARCINOGEN

INTRODUCTION
This guideline summarizes pertinent information about benzene for workers, employers, and occupational safety and health professionals who may need such information to conduct effective occupational safety and health programs. Recommendations may be superseded by new developments in these fields; therefore, readers are advised to regard these recommendations as general guidelines.

SUBSTANCE IDENTIFICATION
- Formula: C₆H₆
- Structure:

- Synonyms: Benzol, benzele, benzolene, bicarburet of hydro- gen, carbon oil, coal naphtha
- Identifiers: CAS 71-43-2; RTECS CY1400000; DOT IIHA, label required: “Flammable Liquid”
- Appearance and odor: Colorless liquid with an aromatic odor

CHEMICAL AND PHYSICAL PROPERTIES
- Physical data
 1. Molecular weight: 78.12
 2. Boiling point (at 760 mmHg): 80.1°C (176°F)
 3. Specific gravity (water = 1): 0.88
 4. Vapor density (air = 1 at boiling point of benzene): 2.7
 5. Melting point: 5.5°C (42°F)
 6. Vapor pressure at 20°C (68°F): 75 mmHg
 7. Solubility in water, g/100 g water at 20°C (68°F): 0.06
 8. Evaporation rate (butyl acetate = 1): 5.1
 9. Saturation concentration in air (approximate) at 25°C (77°F): 12.5% (125,000 ppm)
 10. Ionization potential: 9.25 eV
- Reactivity
 Incompatibilities: Benzene reacts with strong oxidizers including chlorine, oxygen, and bromine with iron.
 2. Hazardous decomposition products: Toxic vapors and gases (e.g., carbon monoxide) may be released in a fire involving benzene.
 3. Caution: Benzene will attack some forms of plastics, coat- ings, and rubber.
- Flammability
 1. Flash point: -11.1°C (12 °F) (closed cup)
 2. Autoignition temperature: 498°C (928°F)
 3. Flammable limits in air, % by volume: Lower, 1.4; upper, 7.1
 4. Extinguishment: Alcohol foam, carbon dioxide, and dry chemical extinguishants are effective. Water may be an ineffective extinguishant but may be used to cool fire-exposed containers.
 5. Class 1B Flammable Liquid (29 CFR 1910.106), Flamma- bility Rating 3 (NFPA)
 6. Unusual fire and explosion hazards: Benzene liquid is flammable, and its vapors can easily form explosive mixtures. Flashbacks may occur along a vapor trail.
- Warning properties
 1. Odor threshold: 12 ppm
 2. Eye irritation levels: 3,000 ppm for 0.5-1 hour
 3. Other information: 3,000 ppm may irritate nose and respiration tract.
 4. Evaluation of warning properties for respirator selection: Warning properties are not considered in recommending respira- tors for use with carcinogens.

EXPOSURE LIMITS
The current Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) for benzene is 1 part of benzene per million parts of air (PPM) as a time-weighted average (TWA) concentration over an 8-hour workshift; the short-term exposure limit is 5 ppm in any 15-minute sampling period. The National Institute for Occupational Safety and Health (NIOSH) recommends that benzene be controlled and handled as a potential human carcinogen in the workplace and that exposure be reduced to the lowest feasible limit. The NIOSH recommended exposure limit (REL) is 0.1 ppm [0.32 milligrams of benzene per cubic meter of air (mg/m³)] as an 8-hour TWA and 1 ppm (3.2 mg/m³) as a ceiling in any 15-minute sampling period. The NIOSH REL is the lowest con-
centration detectable by current NIOSH-validated sampling and analytical methods. The American Conference of Governmental Industrial Hygienists (ACGIH) has designated benzene as an A2 substance (suspected human carcinogen) having an assigned threshold limit value (TLV®) of 10 ppm (30 mg/m³) as a TWA for a normal 8-hour workday and a 40-hour workweek.

Table 1.—Occupational exposure limits for benzene

<table>
<thead>
<tr>
<th></th>
<th>Exposure limits ppm</th>
<th>mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSHA PEL TWA</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Short-term exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>limit (15 min)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NIOSH REL (Ca)* TWA</td>
<td>0.1</td>
<td>0.32</td>
</tr>
<tr>
<td>Ceiling (15 min)</td>
<td>1</td>
<td>3.2</td>
</tr>
<tr>
<td>ACGIH TLV® TWA (A2)†</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

* (Ca): NIOSH recommends treating as a potential human carcinogen.

HEALTH HAZARD INFORMATION

- Routes of exposure
 Benzene may cause adverse health effects following exposure via inhalation, ingestion, or dermal or eye contact.

- Summary of toxicology
 1. Effects on animals: Acute inhalation of benzene by rats, mice, or rabbits caused narcosis, spontaneous heart contractions (ventricular fibrillation), and death due to respiratory paralysis. Subchronic inhalation of benzene by rats produced decreased white blood cell counts, decreased bone marrow cell activity, increased red blood cell activity, and cataracts. In rats, chronic inhalation or oral administration of benzene produced cancers of the liver, mouth, and Zymbal gland. Inhalation of benzene by pregnant rats caused retardation of fetal development and increased fetal mortality.
 2. Effects on humans: Acute inhalation exposure of benzene has caused nerve inflammation (polyneuritis), central nervous system depression, and heart sensitization. Chronic exposure to benzene has produced anorexia and irreversible injury to the blood-forming organs; effects include aplastic anemia and leukemia.

- Signs and symptoms of exposure
 1. Short-term (acute): Exposure to benzene can cause dizziness, euphoria, giddiness, headache, nausea, staggering gait, weakness, drowsiness, respiratory irritation, pulmonary edema and pneumonia, gastrointestinal irritation, convulsions, and paralysis. Benzene can also cause irritation to the skin, eyes, and mucous membranes.
 2. Long-term (chronic): Exposure to benzene can cause fatigue, nervousness, irritability, blurred vision, and labored breathing. Repeated skin contact can cause redness, blistering, and dry, scaly dermatitis.

RECOMMENDED MEDICAL PRACTICES

- Medical surveillance program
 Workers with potential exposures to chemical hazards should be monitored in a systematic program of medical surveillance intended to prevent or control occupational injury and disease. The program should include education of employers and workers about work-related hazards, placement of workers in jobs that do not jeopardize their safety and health, earliest possible detection of adverse health effects, and referral of workers for diagnostic confirmation and treatment. The occurrence of disease (a “sentinel health event,” SHE) or other work-related adverse health effects should prompt immediate evaluation of primary preventive measures (e.g., industrial hygiene monitoring, engineering controls, and personal protective equipment). A medical surveillance program is intended to supplement, not replace, such measures.

 A medical surveillance program should include systematic collection and epidemiologic analysis of relevant environmental and biologic monitoring, medical screening, morbidity, and mortality data. This analysis may provide information about the relatedness of adverse health effects and occupational exposure that cannot be discerned from results in individual workers. Sensitivity, specificity, and predictive values of biologic monitoring and medical screening tests should be evaluated on an industry-wide basis prior to application in any given worker group. Intrinsic to a surveillance program is the dissemination of summary data to those who need to know, including employers, occupational health professionals, potentially exposed workers, and regulatory and public health agencies.

- Preplacement medical evaluation
 Prior to placing a worker in a job with a potential for exposure to benzene, the physician should evaluate and document the worker’s baseline health status with thorough medical, environmental, and occupational histories, a physical examination, and physiologic and laboratory tests appropriate for the anticipated occupational risks. These should concentrate on the function and integrity of the eyes, skin, liver, and respiratory, nervous, and hematopoietic (blood-cell-forming) systems. The physician should obtain baseline values for the complete blood count and a stained differential count of all blood cell types. Medical surveillance for respiratory disease should be conducted by using the principles and methods recommended by NIOSH and the American Thoracic Society (ATS).

A preplacement medical evaluation is recommended in order to detect and assess preexisting or concurrent conditions which may be aggravated or result in increased risk when a worker is exposed to benzene at or below the NIOSH REL. The examining physician should consider the probable frequency, intensity, and duration of exposure, as well as the nature and degree of the condition, in placing such a worker. Such conditions, which should not be regarded as absolute contraindi-
cations to job placement, include a history of chronic skin disease, concurrent dermatitis, or mild non-hemolytic anemia (e.g., mild iron-deficiency anemia).

- **Periodic medical screening and/or biologic monitoring**
 Occupational health interviews and physical examinations should be performed at regular intervals. Additional examinations may be necessary should a worker report symptoms that may be attributed to exposure to benzene. The interviews, examinations, and appropriate medical screening and/or biologic monitoring tests should be directed at identifying an excessive decrease or adverse trend in the integrity and physiologic function of the skin, liver, and respiratory, nervous, and hematopoietic (blood-cell-forming) systems as compared to the baseline status of the individual worker or to expected values for a suitable reference population. The following tests should be used and interpreted according to standardized procedures and evaluation criteria recommended by NIOSH and the ATS: standardized questionnaires and tests of lung function.

- **Medical practices recommended at the time of job transfer or termination.**
 The medical, environmental, and occupational history interviews, the physical examination, and selected physiologic and laboratory tests which were conducted at the time of placement should be repeated at the time of job transfer or termination. Any changes in the worker’s health status should be compared to those expected for a suitable reference population. Because occupational exposure to benzene may cause diseases of prolonged induction-latency, the need for medical surveillance may extend well beyond termination of employment.

- **Sentinel health events**
 1. Acute SHE’s include: Acute myeloid leukemia and contact and/or allergic dermatitis.
 2. Delayed-onset SHE’s include: Decrease in the number (neutropenia) or absence (agranulocytosis) of certain white blood cells in the peripheral circulation and/or in the bone marrow (aplastic anemia) and cancer of the red blood cells (erythro-leukemia).

MONITORING AND MEASUREMENT PROCEDURES

- **TWA exposure evaluation**
 Measurements to determine worker exposure to benzene should be taken so that the TWA exposure is based on a single entire workshift sample or an appropriate number of consecutive samples collected during the entire workshift. Under certain conditions, it may be appropriate to collect several short-term interval samples (up to 30 minutes each) to determine the average exposure level. Air samples should be taken in the worker’s breathing zone (air that most nearly represents that inhaled by the worker).

- **Ceiling concentration evaluation**
 Measurements to determine worker exposure should be taken during periods of maximum expected airborne concentrations of benzene. Each measurement to determine the NIOSH REL (ceiling exposure) in the worker’s breathing zone (air that most nearly represents that inhaled by the worker) should consist of a 15-minute sample. A minimum of three measurements should be taken during one workshift, and the highest of all measurements taken is an estimate of the worker’s exposure. If the periods of maximum exposure are not clearly defined, a statistical procedure which can be used as a peak exposure detection strategy is given in the *Occupational Exposure Sampling Strategy Manual*.

- **Method**
 Sampling and analysis may be performed by collecting benzene vapors with charcoal tubes followed by desorption with carbon disulfide and analysis by gas chromatography. Direc-reading devices calibrated to measure benzene may also be used if available. A detailed sampling and analytical method for benzene may be found in the *NIOSH Manual of Analytical Methods* (method number 1500).

PERSONAL PROTECTIVE EQUIPMENT

Chemical protective clothing (CPC) should be selected after utilizing available performance data, consulting with the manufacturer, and then evaluating the clothing under actual use conditions.

Workers should be provided with and required to use CPC, gloves, and other appropriate protective clothing necessary to prevent skin contact with benzene.

SANITATION

Clothing which is contaminated with benzene should be removed immediately and placed in sealed containers for storage until it can be discarded or until provision is made for the removal of benzene from the clothing. If the clothing is to be laundered or cleaned, the person performing the operation should be informed of benzene’s hazardous properties. Reusable clothing and equipment should be checked for residual contamination before reuse or storage.

A change room with showers, washing facilities, and lockers that permit separation of street and work clothes should be provided.

Workers should be required to shower following a workshift and prior to putting on street clothes. Clean work clothes should be provided daily.

Skin that becomes contaminated with benzene should be promptly washed with soap and water.

Workers who handle benzene should wash their faces, hands, and forearms thoroughly with soap and water before eating, smoking, or using toilet facilities.

The storage, preparation, dispensing, or consumption of food or beverages, the storage or application of cosmetics, the storage or use of smoking materials, or the storage or use of products for chewing should be prohibited in work areas.

COMMON OPERATIONS AND CONTROLS

Common operations in which exposure to benzene may occur and control methods which may be effective in each case are listed in Table 2.
Table 2.—Operations and methods of control for benzene

<table>
<thead>
<tr>
<th>Operations</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the manufacture and processing of benzene; during use as a raw material in the production of aromatic compounds and derivatives</td>
<td>Process enclosure, local exhaust ventilation, personal protective equipment</td>
</tr>
<tr>
<td>During the use of chemicals in which benzene may be an impurity (e.g., naphthas, toluene, xylene)</td>
<td>Process enclosure, local exhaust ventilation, personal protective equipment</td>
</tr>
<tr>
<td>During the manufacture and use of motor fuel blends in which benzene is used as an ingredient; during use as an extracting solvent</td>
<td>Process enclosure (when possible), local exhaust ventilation, personal protective equipment, material substitution</td>
</tr>
<tr>
<td>During the preparation and use of paint and varnish removers, rubber cements, and lacquers</td>
<td>Process enclosure (when possible), local exhaust ventilation, personal protective equipment, material substitution</td>
</tr>
</tbody>
</table>

SPILLS AND LEAKS

Workers not wearing protective equipment and clothing should be restricted from areas of spills or leaks until cleanup has been completed.

If benzene is spilled or leaked, the following steps should be taken:

1. Remove all ignition sources.
2. Ventilate area of spill or leak.
3. For small quantities of liquids containing benzene, absorb on paper towels and place in an appropriate container.
4. Large quantities of liquids containing benzene may be absorbed in vermiculite, dry sand, earth, or a similar material and placed in an appropriate container.
5. Liquids containing benzene may be collected by vacuuming with an appropriate system. If a vacuum system is used, there should be no sources of ignition in the vicinity of the spill, and flashback prevention devices should be provided.

WASTE REMOVAL AND DISPOSAL

U.S. Environmental Protection Agency, Department of Transportation, and/or state and local regulations shall be followed to assure that removal, transport, and disposal are in accordance with existing regulations.

RESPIRATORY PROTECTION

It must be stressed that the use of respirators is the least preferred method of controlling worker exposure and should not normally be used as the only means of preventing or minimizing exposure during routine operations. However, there are some exceptions for which respirators may be used to control exposure: when engineering and work practice controls are not technically feasible, when engineering controls are in the process of being installed, or during emergencies and certain maintenance operations including those requiring confined-space entry (Table 3).

In addition to respirator selection, a complete respiratory protection program should be instituted which as a minimum complies with the requirements found in the OSHA Safety and Health Standards, 29 CFR 1910.134. A respiratory protection program should include as a minimum an evaluation of the worker's ability to perform the work while wearing a respirator, the regular training of personnel, fit testing, periodic environmental monitoring, maintenance, inspection, and cleaning. The implementation of an adequate respiratory protection program, including selection of the correct respirators, requires that a knowledgeable person be in charge of the program and that the program be evaluated regularly.

Only respirators that have been approved by the Mine Safety and Health Administration (MSHA, formerly Mining Enforcement and Safety Administration) and by NIOSH should be used. Remember! Air-purifying respirators will not protect from oxygen-deficient atmospheres.
BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>Condition</th>
<th>Minimum respiratory protection*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any detectable concentration</td>
<td>Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td></td>
<td>Any supplied-air respirator with a full facepiece and operated in a pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td>Planned or emergency entry into environments containing unknown or any detectable concentration</td>
<td>Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td></td>
<td>Any supplied-air respirator with a full facepiece and operated in a pressure-demand or other positive pressure mode in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td>Firefighting</td>
<td>Any self-contained breathing apparatus with a full facepiece and operated in a pressure-demand or other positive pressure mode</td>
</tr>
<tr>
<td>Escape only</td>
<td>Any air-purifying full facepiece respirator (gas mask) with a chin-style or front- or back-mounted organic canister</td>
</tr>
<tr>
<td></td>
<td>Any appropriate escape-type self-contained breathing apparatus</td>
</tr>
</tbody>
</table>

* Only NIOSH/MSHA-approved equipment should be used.