NIOSH Skin Notation Profiles
Azinphos-methyl
This page intentionally left blank.
NIOSH Skin Notation (SK) Profile

Azinphos-methyl
[CAS No. 86-50-0]

Naomi L. Hudson and G. Scott Dotson
Disclaimer

Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations to websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites.

Ordering Information

To receive this document or information about other occupational safety and health topics, contact NIOSH:

Telephone: 1-800-CDC-INFO (1-800-232-4636)
TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov

Or visit the NIOSH website: www.cdc.gov/niosh

For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/niosh/eNews.

Suggested Citation

DHHS (NIOSH) Publication No. 2015-235

September 2015

Safer • Healthier • People™
Foreword

As the largest organ of the body, the skin performs multiple critical functions, such as serving as the primary barrier to the external environment. For this reason, the skin is often exposed to potentially hazardous agents, including chemicals, which may contribute to the onset of a spectrum of adverse health effects ranging from localized damage (such as irritant contact dermatitis and corrosion) to induction of immune-mediated responses (such as allergic contact dermatitis and pulmonary responses) or systemic toxicity (such as neurotoxicity and hepatotoxicity). Understanding the hazards related to skin contact with chemicals is a critical component of modern occupational safety and health programs.

In 2009, the National Institute for Occupational Safety and Health (NIOSH) published *Current Intelligence Bulletin (CIB) 61: A Strategy for Assigning New NIOSH Skin Notations [NIOSH 2009-147]*. This document provides the scientific rationale and framework for the assignment of multiple hazard-specific skin notations (SK) that clearly distinguish between the systemic effects, direct (localized) effects, and immune-mediated responses caused by skin contact with chemicals. The key step within assignment of the hazard-specific SK is the determination of the hazard potential of the substance, or its potential for causing adverse health effects as a result of skin exposure. This determination entails a health hazard identification process that involves use of the following:

- Scientific data on the physicochemical properties of a chemical
- Data on human exposures and health effects
- Empirical data from *in vivo* and *in vitro* laboratory testing
- Computational techniques, including predictive algorithms and mathematical models that describe a selected process (such as skin permeation) by means of analytical or numerical methods.

This *Skin Notation Profile* provides the SK assignments and supportive data for azinphos-methyl. In particular, this document evaluates and summarizes the literature describing the hazard potential of the substance and its assessment according to the scientific rationale and framework outlined in CIB 61. In meeting this objective, this *Skin Notation Profile* intends to inform the audience—mostly occupational health practitioners, researchers, policy- and decision-makers, employers, and workers in potentially hazardous workplaces—so that improved risk-management practices may be developed to better protect workers from the risks of skin contact with the chemicals of interest.

John Howard, M.D.
Director, National Institute for
Occupational Safety and Health
Centers for Disease Control and Prevention
Contents

Foreword ... iii
Abbreviations ... vi
Glossary ... viii
Acknowledgments ... ix

1 Introduction ... 1
 1.1 General Substance Information: 1
 1.2 Purpose ... 1
 1.3 Overview of SK Assignment 1

2 Systemic Toxicity from Skin Exposure (SK: SYS) 2

3 Direct Effects on Skin (SK: DIR) 4

4 Immune-mediated Responses (SK: SEN) 4

5 Summary .. 4

References ... 5

Appendix: Calculation of the SI Ratio for Azinphos-methyl 7
 Overview ... 7
 Calculation ... 8
 Appendix References ... 8
Abbreviations

ACGIH American Conference of Governmental Industrial Hygienists
AChE acetylcholinesterase
Amu atomic mass unit
ATSDR Agency for Toxic Substances and Disease Registry
CIB Current Intelligence Bulletin
cm² squared centimeter(s)
cm/hr centimeter(s) per hour
cm/s centimeter(s) per second
derek Deductive Estimation of Risk from Existing Knowledge
DIR skin notation indicating the potential for direct effects to the skin following contact with a chemical
DMPT dimethylphosphorothioate
EC European Commission
ED₅₀ median effective dose
GHS Globally Harmonized System for Classification and Labelling of Chemicals
GPMT guinea pig maximization test
hr hour(s)
IARC International Agency for Research on Cancer
IPCS International Program for Chemical Safety
IRR subnotation of SK: DIR indicating the potential for a chemical to be a skin irritant following exposure to the skin
kₐq coefficient in the watery epidermal layer
kₚ skin permeation coefficient
kₚₒₕ₈ coefficient in the protein fraction of the stratum corneum
kₚₛₙ permeation coefficient in the lipid fraction of the stratum corneum
LD₅₀ dose resulting in 50% mortality in the exposed population
LD₅₀ₒ₉ dermal lethal dose
LLNA local lymph node assay
LOAEL lowest-observed-adverse-effect level
log Kₐₒ₉ base-10 logarithm of a substance’s octanol–water partition
M molarity
m³ cubic meter(s)
mg milligram(s)
mg/cm²/hr milligram(s) per square centimeter per hour
mg/kg milligram(s) per kilogram body weight
mg/m³ milligram(s) per cubic meter
mL milliliter(s)
mL/kg milliliter(s) per kilogram body weight
MW molecular weight
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>NOAEL</td>
<td>no-observed-adverse-effect level</td>
</tr>
<tr>
<td>NTP</td>
<td>National Toxicology Program</td>
</tr>
<tr>
<td>OEL</td>
<td>occupational exposure limit</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>RBC-AChE</td>
<td>erythrocyte acetylcholinesterase</td>
</tr>
<tr>
<td>REL</td>
<td>recommended exposure limit</td>
</tr>
<tr>
<td>RF</td>
<td>retention factor</td>
</tr>
<tr>
<td>SEN</td>
<td>skin notation indicating the potential for immune-mediated reactions following exposure of the skin</td>
</tr>
<tr>
<td>SI</td>
<td>ratio ratio of skin dose to inhalation dose</td>
</tr>
<tr>
<td>SK</td>
<td>skin notation</td>
</tr>
<tr>
<td>S_w</td>
<td>solubility in water</td>
</tr>
<tr>
<td>SYS</td>
<td>skin notation indicating the potential for systemic toxicity following exposure of the skin</td>
</tr>
<tr>
<td>US EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>μg</td>
<td>microgram(s)</td>
</tr>
<tr>
<td>$\mu g/cm^2$</td>
<td>microgram(s) per square centimeter</td>
</tr>
<tr>
<td>$\mu g/cm^2/hr$</td>
<td>microgram(s) per square centimeter per hour</td>
</tr>
<tr>
<td>μmol</td>
<td>micromole(s)</td>
</tr>
</tbody>
</table>
Glossary

Absorption—The transport of a chemical from the outer surface of the skin into both the skin and systemic circulation (including penetration, permeation, and resorption).

Acute exposure—Contact with a chemical that occurs once or for only a short period of time.

Cancer—Any one of a group of diseases that occur when cells in the body become abnormal and grow or multiply out of control.

Contaminant—A chemical that is (1) unintentionally present within a neat substance or mixture at a concentration less than 1.0% or (2) recognized as a potential carcinogen and present within a neat substance or mixture at a concentration less than 0.1%.

Cutaneous (or percutaneous)—Referring to the skin (or through the skin).

Dermal—Referring to the skin.

Dermal contact—Contact with (touching) the skin.

Direct effects—Localized, non-immune-mediated adverse health effects on the skin, including corrosion, primary irritation, changes in skin pigmentation, and reduction/disruption of the skin barrier integrity, occurring at or near the point of contact with chemicals.

Immune-mediated responses—Responses mediated by the immune system, including allergic responses.

Sensitization—A specific immune-mediated response that develops following exposure to a chemical, which, upon re-exposure, can lead to allergic contact dermatitis (ACD) or other immune-mediated diseases such as asthma, depending on the site and route of re-exposure.

Substance—A chemical.

Systemic effects—Systemic toxicity associated with skin absorption of chemicals after exposure of the skin.
Acknowledgments

This document was developed by the Education and Information Division (Paul Schulte, Ph.D., Director). G. Scott Dotson, Ph.D., was the project officer for this document, assisted in great part by Naomi Hudson, Dr.P.H., M.P.H., Todd Niemier, M.Sc., and Loren Tapp, M.D. The basis for this document was a report (Toxicology Excellence for Risk Assessment [TERA]) contracted by NIOSH and prepared by Bernard Gadagbui, Ph.D., and Andrew Maier, Ph.D.

For their contribution to the technical content and review of this document, special acknowledgment is given to the following NIOSH personnel:

Denver Field Office
Eric Esswein, M.Sc.

Division of Applied Research and Technology
Clayton B’Hymer, Ph.D.
John Snawder, Ph.D.
Mark Toraason, Ph.D.

Division of Respiratory Disease Studies
Gregory A. Day, Ph.D.
Aleksander Stefaniak, Ph.D.

Division of Surveillance, Hazard Evaluations, and Field Studies
Matt Dahm, M.Sc.
Aaron Sussell, Ph.D.

Education and Information Division
Devin Baker, M.Ed.
Charles L. Geraci, Ph.D.
Thomas J. Lentz, Ph.D.
Richard Niemeier, Ph.D.
Ralph Zumwalde, M.Sc.

Health Effects Laboratory Division
Stacey Anderson, Ph.D.
H. Fredrick Frasch, Ph.D.
Vic Johnson, Ph.D.
Michael Luster, Ph.D.
Anna Shvedova, Ph.D.
Paul Siegel, Ph.D.
Berran Yucesoy, Ph.D.

National Personal Protective Technology Laboratory
Heinz Ahlers, J.D., M.Sc.
Angie Shepherd
For their contribution to the technical content and review of this document, special acknowledgment is given to the following CDC personnel:

Office of Surveillance, Epidemiology and Laboratory Services/Epidemiology and Analysis Program Office
Barbara Landreth, M.A.

In addition, special appreciation is expressed to the following individuals for serving as independent, external reviewers and providing comments that contributed to the development or improvement of this document:

Phil Bigelow, B.Sc., M.H.Sc., Ph.D., University of Waterloo, School of Public Health and Health Systems, Waterloo, ON, Canada
Phillip L. Williams, Ph.D., CIH, The University of Georgia, College of Public Health, Athens, GA
G. Frank Gerberick, Ph.D., The Procter and Gamble Company, Cincinnati, OH
Dori Germolec, Ph.D., National Toxicology Program, National Institute for Environmental Health Sciences, Research Triangle, NC
Ben Hayes, M.D., Ph.D., Division of Dermatology, Vanderbilt School of Medicine, Nashville, TN
Jennifer Sahmel, M.Sc., CIH, ChemRisk, Boulder, CO
James Taylor, M.D., Industrial Dermatology, The Cleveland Clinic, Cleveland, OH
1 Introduction

1.1 General Substance Information:

Chemical: Azinphos-methyl
CAS No: 86-50-0
Molecular weight (MW): 317.3
Molecular formula: C_{10}H_{12}O_{3}P_{2}S_{2}N_{5}[(CH_{3})_{2}P(S)CH_{2}(N_{3}C_{7}H_{4}O)]
Structural formula:

Synonyms: O,O-Dimethyl-S-4-oxo-1,2,3-benzotriazin-3(4H)-ylmethyl phosphorodithioate; methyl azinphos; azinfos-methyl; methyl guthion; gluthion; gusathion; gusathion methyl

Uses: Azinphos-methyl is a broad-spectrum organophosphate pesticide; an estimated 3 million pounds (~1.3 million kilograms) of the pesticide was produced in 1982 [HSDB 2009].

1.2 Purpose

This skin notation profile presents (1) a brief summary of epidemiological and toxicological data associated with skin contact with azinphos-methyl and (2) the rationale behind the hazard-specific skin notation (SK) assignment for azinphos-methyl. The SK assignment is based on the scientific rationale and logic outlined in the Current Intelligence Bulletin (CIB) 61: A Strategy for Assigning New NIOSH Skin Notations [NIOSH 2009]. The summarized information and health hazard assessment are limited to an evaluation of the potential health effects of dermal exposure to azinphos-methyl. A literature search was conducted through September 2014 to identify information on azinphos-methyl, including but not limited to data relating to its toxicokinetics, acute toxicity, repeated-dose systemic toxicity, carcinogenicity, biological system/function-specific effects (including reproductive and developmental effects and immunotoxicity), irritation, and sensitization. Information was considered from studies of humans, animals, or appropriate modeling systems that are relevant to assessing the effects of dermal exposure to azinphos-methyl.

1.3 Overview of SK Assignment

Azinphos-methyl is potentially capable of causing adverse health effects following skin contact. The skin notation profile provides the following information:

<table>
<thead>
<tr>
<th>Skin notation</th>
<th>Critical effect</th>
<th>Available data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK: SYS (FATAL)</td>
<td>Acetylcholinesterase (AChE) inhibition</td>
<td>Sufficient human and animal data</td>
</tr>
<tr>
<td>SK: SEN</td>
<td>Skin allergy</td>
<td>Limited animal data</td>
</tr>
</tbody>
</table>
contact. A critical review of available data has resulted in the following SK assignment for azinphos-methyl: **SK: SYS (FATAL)-SEN**. Table 1 provides an overview of the critical effects and data used to develop the SK assignment for azinphos-methyl.

2 Systemic Toxicity from Skin Exposure (SK: SYS)

Toxicokinetic data from dermal exposure of humans and animals to azinphos-methyl were identified. In volunteers, azinphos-methyl was dissolved in a small amount of acetone and applied to the forearm (4 micrograms per square centimeter [µg/cm²]) under non-occlusive conditions for 24 hours; 15.9% of the dose was absorbed, as measured by total excretion in the urine after 120 hours [Feldman and Maibach 1974]. When the same amount of azinphos-methyl was applied to the undamaged forearm skin of humans but under occlusive conditions, the *in vivo* percutaneous absorption was reported as 56.1% of the applied dose [Wester and Maibach 1985]. Franklin et al. [1989] reported on percutaneous absorption of azinphos-methyl in humans, monkeys, and rats. In humans, percutaneous absorption was 36% of the applied dose when the test material was applied to the forehead; in monkeys, it was 47% (forehead) and 32% (forearm); and in rats it was 93% [Franklin et al. 1989]. Thongsinthusack [1999] estimated absorption of 44.2% to 59.0% of the applied dose following application of 0.93 µg/cm² azinphos-methyl to the skin of rats for 10 hours. Miles Inc. [1992] investigated the dermal absorption in rats of azinphos-methyl in a guthion (35%) wettable powder formulation using ¹⁴C-azinphos-methyl. Animals were treated with 0.26 to 267 µg of the formulation per cm² (corresponding to 0.93 to 93 µg azinphos-methyl/cm²). The absorption of the highest dosage level was 20% when calculated directly and 26% when calculated indirectly.

The potential of azinphos-methyl to pose a skin absorption hazard was also evaluated, with use of a predictive algorithm for estimating and evaluating the health hazards of dermal exposure to substances [NIOSH 2009]. The evaluation method compares an estimated dose accumulated in the body from skin absorption and an estimated dose from respiratory absorption associated with a reference occupational exposure limit. On the basis of this algorithm, a ratio of the skin dose to the inhalation dose (SI ratio) of 0.059 was calculated for azinphos-methyl. An SI ratio of ≥0.1 indicates that skin absorption may significantly contribute to the overall body burden of a substance [NIOSH 2009]; therefore, azinphos-methyl is not considered to be absorbed through the skin following dermal exposure. Additional information on the SI ratio and the variables used in its calculation are included in the appendix.

No estimated dermal lethal doses (LD₅₀) for humans were identified. A dermal LD₅₀ value (lethal dose in 50% of exposed animals) of 65.03 milligrams per kilogram body weight (mg/kg) was reported for a 20% azinphos-methyl formulation in mice [Sato 1959], and LD₅₀ values of 90 to 220 mg/kg were reported for rats [Gaines 1960; Pasquet et al. 1976]. Sato [1959] reported that the acute symptoms in percutaneous application of organic phosphorus, including azinphos-methyl, were similar to those in oral poisoning, including stillness, loss of coordination, dyspnea, muscle cramp, and fibrillation, indicating the potential of azinphos-methyl to cause acetylcholinesterase (AChE) inhibition. Skinner [1982a] reported a dermal LD₅₀ of 6000 mg/kg for mice; however, in this study the rodent’s feet were immersed in azinphos-methyl. Because the reported acute dermal LD₅₀ values for mice and rats are less than the critical dermal LD₅₀ value of 200 mg/kg that identifies chemical substances with the potential for fatality following acute dermal exposure [NIOSH 2009], azinphos-methyl is considered potentially fatal following acute dermal exposure.

McCurdy [1994] used the urinary metabolite dimethylphosphorothioate (DMPT) as the most sensitive indicator of recent exposure, since it correlated with dermal and clothing
levels, in addition to erythrocyte acetylcholinesterase (RBC-AChE) levels among 20 northern California peach harvesters. McCurdy [1994] reported that RBC-AChE levels decreased 7% over the initial 3-day period post-application of azinphos-methyl, and the levels continued to decrease up to 19% over the 6-week season. Quinby et al. [1958] described a pilot who spilled azinphos-methyl on his hands and washed them within 3 minutes. Following the azinphos-methyl spill, the pilot experienced headache, chest tightness, abdominal cramps, nausea, vomiting, weakness, and an excess in saliva [Quinby et al. 1958]. However, the pilot also had been dermally exposed to azinphos-methyl in the previous 10 days while loading methyl parathion. Symptoms were improved following treatment with atropine [Quinby et al. 1958].

In animals, ED₅₀ values (levels of a compound that caused depression in 50%) for response of blood cholinesterase inhibition in mice exposed to foliar residue of azinphos-methyl (that is, the amount of azinphos-methyl that might be available shortly after application) were studied [Skinner and Kilgore 1982b]. In this study, mice were exposed to foliar doses of 5.4, 7.6, or 16.9 μg/cm² of dislodgeable active ingredient (corresponding to 0.135, 0.19, and 0.423 mg/kg-day) for 10 hours per day for 6 days, but there were no measurable responses in the mice at maximal foliar concentrations. The lack of effects on cholinesterase in this study may be attributed to the low dose levels used.

No standard toxicity or specialty studies were identified that evaluated biological system/function–specific effects (including reproductive/developmental toxicity or immunotoxicity) following dermal exposure to azinphos-methyl. No studies were identified that evaluated the potential of azinphos-methyl to be a carcinogen following dermal exposure. Table 2 summarizes carcinogenic designations for azinphos-methyl by multiple governmental and nongovernmental organizations.

Although the mathematical model indicates that azinphos-methyl is not absorbed by the skin after dermal exposure, sufficient toxicokinetic data from humans [Feldman and Maibach 1974; Wester and Maibach 1985; Franklin et al. 1989; McCurdy et al. 1994] and animals [Thongsinthusack 1999; Franklin et al. 1989] demonstrate that azinphos-methyl can be absorbed through the skin and is systemically available. Acute dermal toxicity data [Gains 1960; Pasquet et al. 1976; Sato 1959]¹ and a case report [Quinby et al. 1958] indicate that azinphos-methyl has potential to be fatal at low doses following

¹References in bold text indicate studies that serve as the basis of the SK assignments.
exposure. Although adequate prolonged, repeated-dose dermal toxicity studies were not identified, azinphos-methyl acts via inhibition of AChE as its primary mode of action for inducing systemic toxicity [Sheets 1994]. Therefore, on the basis of the data for this assessment, azinphos-methyl is assigned the SK: SYS(FATAL) notation.

3 Direct Effects on Skin (SK: DIR)

No human or animal in vivo studies for corrosivity of azinphos-methyl, in vitro tests for corrosivity using human or animal skin models, or in vitro tests of skin integrity using cadaver skin were identified. No case reports or standard skin irritation tests in animals were identified that evaluated the potential of azinphos-methyl to cause direct skin effects. The structure-activity relationship model, Deductive Estimation of Risk from Existing Knowledge (DEREK) for Windows, predicted azinphos-methyl to be negative for skin irritation.

Therefore, on the basis of the data for this assessment, azinphos-methyl is not assigned the SK: DIR (IRR) notation.

4 Immune-mediated Responses (SK: SEN)

Evidence of skin sensitization following dermal exposure to azinphos-methyl is limited. While no diagnostic tests evaluating skin sensitization in humans were identified, one predictive test (Buehler patch test) was conducted in guinea pigs [Bayer AG 1987]. A dermal application of the test compound at a concentration of 12.5% [Bayer AG 1987] induced sensitization in approximately 50% of the experimental animals when a 6% active ingredient concentration was used (1st challenge), but when one-tenth of the concentration (0.6%) was used (2nd challenge) it failed to elicit any relevant skin reactions. Bayer AG [1987] concluded that the test compound had skin-sensitizing properties that were elicited only after application of relatively high concentrations. No other predictive tests were identified that evaluated the potential of azinphos-methyl to cause skin sensitization in animals. The structure-activity relationship model, DEREK for Windows, predicted azinphos-methyl to be positive for skin sensitization, indicating that azinphos-methyl has structural alerts for skin sensitization.

Although no diagnostic tests in humans or human case reports were identified that evaluated the potential for azinphos-methyl to be a skin sensitizer, one study using a standardized protocol, the Buehler patch test, indicated that azinphos-methyl is a sensitizer in guinea pigs [Bayer AG 1987]. Therefore, on the basis of the data for this assessment, azinphos-methyl is assigned the SK: SEN notation.

5 Summary

There is sufficient data from toxicokinetic studies in humans [Feldman and Maibach 1974; Wester et al. 1985; Franklin et al. 1989; McCurdy et al. 1994] and animals [Franklin et al. 1989; Thongsinthusack 1999] to demonstrate that azinphos-methyl can be absorbed through the skin and is systemically available. Acute dermal toxicity data from animals [Gains 1960; Sato 1959; Pasquet et al. 1976] and a case report [Quinby et al. 1958] indicate that azinphos-methyl can be fatal following exposure at low doses. No prolonged, repeated-dose dermal toxicity studies were identified, but azinphos-methyl inhibits AChE in the central and peripheral nervous systems, as is observed in oral toxicity studies in rats [Sheets 1994]. No case reports or standard skin irritation tests in animals were identified for determining the potential of azinphos-methyl to cause direct skin effects. No diagnostic tests in humans or case reports of sensitization were identified, but a well-conducted Buehler patch test on guinea pigs indicates that azinphos-methyl has the potential to cause skin sensitization [Bayer AG 1987]. Therefore, on the basis of these assessments,
azinphos-methyl is assigned a composite skin notation of \textbf{SK: SYS (FATAL)-SEN}.

Table 3 summarizes the skin hazard designations for azinphos-methyl previously issued by NIOSH and other organizations. The equivalent dermal designations for azinphos-methyl, according to the Globally Harmonized System (GHS) for the Classification and Labelling of Chemicals, are Acute Toxicity Category 3 (Hazard statement: Toxic in contact with the skin) and Skin Sensitization Category 1 (Hazard statement: May cause an allergic skin reaction) [European Parliament 2008].

\textbf{References}

\textbf{Note:} Asterisks (*) denote sources cited in text; daggers (†) denote additional resources.

\footnotesize{*ACGIH [2014]. Skin hazard designation.}

\footnotesize{ACGIH = American Conference of Governmental Industrial Hygienists; NIOSH = National Institute for Occupational Safety and Health; OSHA = Occupational Safety and Health Administration.}

\footnotesize{*Date accessed.}

\footnotesize{\textbf{Table 3. Summary of previous skin hazard designations for azinphos-methyl}}

<table>
<thead>
<tr>
<th>Organization</th>
<th>Skin hazard designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIOSH [2005]</td>
<td>[skin]: Potential for dermal absorption. Prevent skin contact.</td>
</tr>
<tr>
<td>OSHA [2014]</td>
<td>[skin]: Potential for dermal absorption. Prevent skin contact.</td>
</tr>
<tr>
<td>ACGIH [2014]</td>
<td>[skin]: Based on the relatively low doses applied to rabbit skin that produced lethality and the reports of cholinergic inhibition in agricultural workers dermally exposed. DSEN: based on positive results of maximization tests and patch testing in animals</td>
</tr>
</tbody>
</table>

\footnotesize{\textbf{References}}

\footnotesize{Bayer AG [1987]. Study of skin sensitization effect on guinea pigs (Buehler patch test). By Heimann KG. Wuppertal, Germany: Bayer AG, Report #98565. EPA MRID #410644-01.}

\footnotesize{Gaines TB [1960]. The toxicity of pesticides to rats. Toxicol Appl Pharmacol 2:88–99.}

Appendix: Calculation of the SI Ratio for Azinphos-methyl

This appendix presents an overview of the SI ratio and a summary of the calculation of the SI ratio for azinphos-methyl. Although the SI ratio is considered in the determination of a substance’s hazard potential following skin contact, it is intended to serve only as supportive data during the assignment of the NIOSH SK. An in-depth discussion on the rationale and calculation of the SI ratio can be found in Appendix B of the Current Intelligence Bulletin (CIB) 61: A Strategy for Assigning New NIOSH Skin Notations [NIOSH 2009].

Overview

The SI ratio is a predictive algorithm for estimating and evaluating the health hazards of skin exposure to substances. The algorithm is designed to evaluate the potential for a substance to penetrate the skin and induce systemic toxicity [NIOSH 2009]. The goals for incorporating this algorithm into the proposed strategy for assigning SYS notation are as follows:

1. Provide an alternative method to evaluate substances for which no clinical reports or animal toxicity studies exist or for which empirical data are insufficient to determine systemic effects.
2. Use the algorithm evaluation results to determine whether a substance poses a skin absorption hazard and should be labeled with the SYS notation.

The algorithm evaluation includes three steps:

1. determining a skin permeation coefficient \(k_p\) for the substance of interest,
2. estimating substance uptake by the skin and respiratory absorption routes, and
3. evaluating whether the substance poses a skin exposure hazard.

The algorithm is flexible in the data requirement and can operate entirely on the basis of the physicochemical properties of a substance and the relevant exposure parameters. Thus, the algorithm is independent of the need for biologic data. Alternatively, it can function with both the physicochemical properties and the experimentally determined permeation coefficient when such data are available and appropriate for use.

The first step in the evaluation is to determine the \(k_p\) for the substance to describe its transdermal penetration rate [NIOSH 2009]. The \(k_p\), which represents the overall diffusion of the substance through the stratum corneum and into the blood capillaries of the dermis, is estimated from the compound’s molecular weight \((MW)\) and base-10 logarithm of its octanol–water partition coefficient \((\log K_{ow})\). In this example, \(k_p\) is determined for a substance with use of Equation 1. A self-consistent set of units must be used, such as centimeters per hour \((\text{cm/hr})\), outlined in Table A1. Other model-based estimates of \(k_p\) may also be used [NIOSH 2009].

\[
\text{Equation 1: Calculation of Skin Permeation Coefficient } (k_p)
\]

\[
k_p = \frac{1}{\frac{1}{k_{psc}} + \frac{1}{k_{pol}} + \frac{1}{k_{aq}}}
\]

where \(k_{psc}\) is the permeation coefficient in the lipid fraction of the stratum corneum, \(k_{pol}\) is the coefficient in the protein fraction of the stratum corneum, and \(k_{aq}\) is the coefficient in the watery epidermal layer. These components are individually estimated by

\[
\log k_{psc} = -1.326 + 0.6097 \times \log k_{sw} - 0.1786 \times MW^{0.5}
\]

\[
k_{pol} = 0.0001519 \times MW^{-0.5}
\]

\[
k_{aq} = 2.5 \times MW^{0.5}
\]

The second step is to calculate the biologic mass uptake of the substance from skin absorption (skin dose) and inhalation (inhalation dose) during the same period of exposure. The skin dose is calculated as a mathematical product of the \(k_p\), the water solubility \((S_w)\) of the substance, the exposed skin surface area,
and the duration of exposure. Its units are milligrams (mg). Assume that the skin exposure continues for 8 hours to unprotected skin on the palms of both hands (a surface area of 360 squared centimeters [cm²]).

Equation 2: Determination of Skin Dose

\[\text{Skin dose} = k_s \times S_w \times \text{Exposed skin surface area} \times \text{Exposure time} = k_s (\text{cm/hour}) \times S_w (\text{mg/cm}^2) \times 360 \text{ cm}^2 \times 8 \text{ hours} \]

The inhalation dose (in mg) is derived on the basis of the occupational exposure limit (OEL) of the substance—if the OEL is developed to prevent the occurrence of systemic effects rather than sensory/irritant effects or direct effects on the respiratory tract. Assume a continuous exposure of 8 hours, an inhalation volume of 10 cubic meters (m³) inhaled air in 8 hours, and a factor of 75% for retention of the airborne substance in the lungs during respiration (retention factor, or RF).

Equation 3: Determination of Inhalation Dose

\[\text{Inhalation dose} = \text{OEL} \times \text{Inhalation volume} \times \text{RF} = \text{OEL (mg/m}^3\text{)} \times 10 \text{ m}^3 \times 0.75 \]

The final step is to compare the calculated skin and inhalation doses and to present the result as a ratio of skin dose to inhalation dose (the SI ratio). This ratio quantitatively indicates (1) the significance of dermal absorption as a route of occupational exposure to the substance and (2) the contribution of dermal uptake to systemic toxicity. If a substance has an SI ratio greater than or equal to 0.1, it is considered a skin absorption hazard.

Calculation

Table A1 summarizes the data applied in the previously described equations to determine the SI ratio for azinphos-methyl. The calculated SI ratio was 0.059. On the basis of these results, azinphos-methyl is not predicted to represent a skin absorption hazard.

Appendix References

Table A1. Summary of data used to calculate the SI ratio for azinphos-methyl

<table>
<thead>
<tr>
<th>Variables used in calculation</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin permeation coefficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeation coefficient of stratum corneum lipid path (k_{psl})</td>
<td>cm/hr</td>
<td>0.0015</td>
</tr>
<tr>
<td>Permeation coefficient of the protein fraction of the stratum corneum (k_{pol})</td>
<td>cm/hr</td>
<td>8.527×10^{-4}</td>
</tr>
<tr>
<td>Permeation coefficient of the watery epidermal layer (k_{aq})</td>
<td>cm/hr</td>
<td>0.1403</td>
</tr>
<tr>
<td>Molecular weight (MW^*)</td>
<td>amu</td>
<td>317.33</td>
</tr>
<tr>
<td>Base-10 logarithm of its octanol–water partition coefficient ($\log K_{ow}^*$)</td>
<td>None</td>
<td>2.75</td>
</tr>
<tr>
<td>Calculated skin permeation coefficient (k_p)</td>
<td>cm/hr</td>
<td>0.0015</td>
</tr>
<tr>
<td>Skin dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water solubility (S_w)</td>
<td>mg/cm3</td>
<td>0.0209</td>
</tr>
<tr>
<td>Calculated skin permeation coefficient (k_p)</td>
<td>cm/hr</td>
<td>0.0015</td>
</tr>
<tr>
<td>Estimated skin surface area (palms of hands)</td>
<td>cm2</td>
<td>360</td>
</tr>
<tr>
<td>Exposure time</td>
<td>hr</td>
<td>8</td>
</tr>
<tr>
<td>Calculated skin dose</td>
<td>mg</td>
<td>0.0884</td>
</tr>
<tr>
<td>Inhalation dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational exposure limit (OEL)$^+$</td>
<td>mg/m3</td>
<td>0.2</td>
</tr>
<tr>
<td>Inhalation volume</td>
<td>m3</td>
<td>10</td>
</tr>
<tr>
<td>Retention factor (RF)</td>
<td>None</td>
<td>0.75</td>
</tr>
<tr>
<td>Inhalation dose</td>
<td>mg</td>
<td>1.5</td>
</tr>
<tr>
<td>Skin dose–to–inhalation dose (SI) ratio</td>
<td>None</td>
<td>0.059</td>
</tr>
</tbody>
</table>

*Variables identified from SRC [ND].
$^+$The OEL used in calculation of the SI ratio for azinphos-methyl was the NIOSH recommended exposure limit (REL) [NIOSH 2005].
To receive NIOSH documents or more information about occupational safety and health topics, contact NIOSH at

1-800-CDC-INFO (1-800-232-4636)
TTY: 1-888-232-6348
CDC-INFO: www.cdc.gov/info

or visit the NIOSH website at www.cdc.gov/niosh.
For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/niosh/eNews.

DHHS (NIOSH) Publication No. 2015-235

SAFER • HEALTHIER • PEOPLE™