American College of Radiology

Daniel A. Henry, M.D., F.A.C.R
Chair
ACR Pneumoconiosis Committee
Objectives, organizational perspective

- To implement digital acquisition and display for local x-ray facilities
- To implement digital classification for readers who classify images
Stakeholder actions / challenges

- Facilitate the development of technical guidelines for the acquisition and display of digital chest images suitable for ILO classification
- Based on the above, transition established teaching methods of classification from an analog to digital format and environment
American College of Radiology
The Beginning

- Collaboration with National Institute of Occupational Safety and Health & ILO
- An Integrated Mission
 - Education
 - Technical development and support
ACR
The Beginning

1969 – Federal Coal Mine Health & Safety Act
 - Active miners: CXR within 18 mos, 3yr, 5yr
 - Retired miners
 - Disability / compensation benefits
 - Length of exposure / radiographic findings
 - International Union Against Cancer/Cincinnati system (based on 1958 ILO system)

NIOSH / US Public Health Service requests assistance

1970 - ACR Pneumoconiosis Task Force
ACR Education

Meeting the Instructional Challenge
A crash program was developed
Weekend Symposia for attendee convenience
6 courses in the first year
> 30 meetings since 1970
4,000-5,000 physician attendees
ACR Education

- Viewbox teaching method
- Test-Teach-Test sequence of instruction*
- Compels active participation in the learning process
- Incorporated into other ACR subspecialty teaching seminars
- Remains the backbone of the current ACR Symposia on the Pneumoconioses

ACR Education

- Symposia restricted to physicians
- 6 Technical Symposia for radiographers on chest radiographic technique
- Special seminars for administrative judges & lawyers interpreting the law for state and federal programs
ACR Education

- Development of Home Study Syllabi
 - Classification for Physicians / B-reader candidates
 - Chest technique for radiographers
- Exhibits detailing proper radiographic technique and the ILO classification system
- Cinematic production explaining the law and the obligation of physicians
Support for and validation of the “B reader” examination

Implementation of the step wedge for improving radiographic technique*

Development of a teaching module on asbestos related diseases

*E. DALE TROUT and JOHN P. KELLEY
A PHANTOM FOR THE EVALUATION OF TECHNIQUES AND EQUIPMENT USED FOR ROENTGENOGRAPHY OF THE CHEST

ACR Pneumoconiosis Task Force consulted with various federal agencies conducting related programs:

- Food and Drug Administration
- Department of Labor
- Social Security Administration
- National Cancer Institute
Members of the Task Force have been or are members of ILO committees

ACR sponsored conferences in Washington, D.C. which subsequently led to the 1980 & 2000 Guidelines

ACR instrumental in the production of the 1980 ILO Standard Radiographs & the subsequent quadrant standards

Participated as consultants to NIOSH for the review of teaching materials including the transition to digital
ACR Education

- Development of Technical Guidelines prepared for NIOSH

- Home Study Syllabus on Technique for Chest Radiography

- Technique for Chest Radiography for Pneumoconiosis
TECHNIQUE FOR CHEST RADIOGRAPHY
FOR PNEUMOCONIOSIS

J. Nicholas Sangmei, M.D., Editor

American College of Radiology
ACR

Technique for Chest Radiography for Pneumoconiosis

- Overview
- Equipment
- Technique guides
- Scatter control
- Quantum mottle
- Screen/film combinations
- Sensitometric monitoring
- Radiation protection
ACR

1982-84: ACR-NEMA collaboration
- ACR members requested non-proprietary format for image production from digital sources (CT, NM, US)
- National Electrical Manufacturers Association
- ACR-NEMA Digital Communication Standard
- Digital Imaging and Communication in Medicine standard - DICOM
ACR

DICOM
- To promote communication of digital image information, regardless of manufacturer
- To facilitate the development and expansion of PACS that can interface with other systems of hospital information
- To allow the creation of information databases that can be accessed by a wide variety of devices distributed geographically
DICOM

- Used by other specialties utilizing digital imaging such as cardiology, GI endoscopy, pathology, dentistry, & dermatology
- Consists of 13 layers or sections
- Ongoing evolution
- Critical to digital imaging and this transition
Featured in this issue:
Cardiovascular Imaging
Digital Image Quality
Reassignment Reform
Pay for Performance
Digital Radiography Image Quality: Image Acquisition

Mark B. Williams, PhDa, Elizabeth A. Krupinski, PhDb, Keith J. Strauss, MSc, William K. Breeden, Ill, MSd, Mark S. Rzeszotarski, PhDe, Kimberly Applegate, MD, MSf, Margaret Wyattg, Sandra Bjork, RN, JDg, J. Anthony Seibert, PhDh

This article on digital radiography image acquisition is the first of two articles written as part of an interdivisional effort to establish image quality standards for digital and computed radiography. The topic of the other article is digital radiography image processing and display. The articles were developed collaboratively by the American Association of Physicists in Medicine, and the Society for Imaging Informatics in Medicine. Increasingly, medical imaging and patient information are being managed using digital data during acquisition, transmission, storage, display, interpretation, and consultation. Data management during each of these operations has a direct impact on the quality of patient care. These articles describe what is known to improve quality for digital and computed radiography and make recommendations on optimal acquisition, processing, and display. The practice of digital radiography not only needs to be developed and will continue to be developed, but needs to be continuously adapted to new technologies and clinical practice.
Digital Radiography Image Quality: Image Processing and Display

Elizabeth A. Krupinski, PhD, Mark B. Williams, PhD, Katherine Andriole, PhD, Keith J. Strauss, MS, Kimberly Applegate, MD, MS, Margaret Wyatt, Sandra Bjork, RN, JD, J. Anthony Seibert, PhD

This article on digital radiography image processing and display is the second of two articles written as part of a joint effort to establish image quality standards for digital and computed radiography. The first paper is digital radiography image acquisition. The articles were developed collaboratively by the American Association of Physicists in Medicine, and the Society for Imaging Informatics in Medicine, and the Society for Imaging Informatics in Medicine. Increasingly, medical imaging and patient information are being managed using digital data acquisition, transmission, storage, display, interpretation, and consultation. The management of data from these operations may have an impact on the quality of patient care. These articles describe what is known about image quality for digital and computed radiography and to make recommendations on optimization, processing, and display. The practice of digital radiography is a rapidly evolving technology, and continued vigilance for an optimal patient care is essential.
ACR

- ACR practice guidelines
 - Performance of Adult Chest Radiography (10/06)
 - Digital Radiography* (10/07)
- ACR Technical Standard for Electronic Practice of Medical Imaging (10/07)

*Developed collaboratively by
American College of Radiology
American Association of Physicists in Medicine
Society for Imaging Informatics in Medicine
American College of Radiology
“Dust to Digital”

- Collaboration with National Institute of Occupational Safety and Health
- An Integrated Mission
 - Education
 - Technical development and support
ACR
Dust to Digital

- Transition to *digital* “viewbox” seminars
- Maintain the individual or registrant oriented approach for instruction
- Test – Teach – Test, interactive model
- What type of digital display devices will be necessary?
- Emulate the test and practice environment
ACR
Dust to Digital

- The challenge for teaching
- Transition away from the viewbox
- Classroom of the future
- New logistical paradigm using digital media but maintaining the benefits of the viewbox seminar
- Converting analogue material
ACR
Dust to Digital

- New facility
- Site of future teaching seminars?
- Site of future b-reader testing?
Image processing driving display market
Industry has moved to color LCD monitors
More versatile for cross sectional imaging and CR/DR
Color monitors generally load images faster
Cheaper
Can we use color monitors for B-reading?
Will we require a B/W monitor?
ACR Dust to Digital

- Established models for image acquisition
- Reestablish the primacy of high quality standard procedures in acquiring images regardless of modality
- Integrate digital acquisition and display guidelines with basic elements of chest radiography
- Reinvent the 1984 monograph as “Technique for Digital Chest Radiography for Pneumoconiosis”
ACR Dust to Digital

- Use past experience as template
- Transition the current ACR Pneumoconiosis Committee to a Task Force, once again
- Draw from ACR Digital Guidelines authors & collaborators and members of this workshop
- Expand the Task Force’s role and composition from primarily education to a more integrated and supportive posture with NIOSH & ILO to assist in the “dust to digital” technical and educational transition
- Explore accreditation/ QA function