7030

Zn	MW: 65.37 (Zn);	CAS: 744
	83.17 (ZnO)	1314

CAS: 7440-66-6 (Zn), 1314-13-2 (ZnO) RTECS: ZG8600000 (Zn) ZH4810000 (ZnO)

METHOD: 7030, Issue 2	EVALUATION: PARTIAL	lssue 1: 15 February 1984 Issue 2: 15 August 1994
 OSHA : 5 mg/m³ (ZnO fume & resp. fraction); 10 mg/m³ (ZnO dust) NIOSH: 5 mg/m³ (ZnO); 15 mg/m³/15 min (ZnO c 10 mg/m³ (ZnO Fume) ACGIH: 5 mg/m³, STEL 10 mg/m³ (ZnO fume) 10 mg/m³ (ZnO dust) 		metal; valence 2; MP 419 ℃ (Zn)

SYNONYMS: vary depending upon the compound.

SAMPLING		ľ	MEASUREMENT	
SAMPLER:	FILTER		TECHNIQUE:	ATOMIC ABSORPTION, FLAME
	(0.8-µm cellulo	se ester membrane)	ANALYTE:	zinc
FLOW RATE: 1 to 3 L/min		ASHING:	conc. HNO₃, 6 mL; 140 °C	
VOL-MIN: -MAX:	2 L @ 5 mg/m ² 400 L	3	FINAL SOLUTION:	1% HNO ₃ , 100 mL
SHIPMENT:	routine		FLAME:	air-acetylene, oxidizing
-	Toutine			,
SAMPLE STABILITY:	stable		WAVELENGTH:	213.9 nm
BLANKS:	2 to 10 field bl	2 to 10 field blanks per set	BACKGROUND CORRECTION:	D_2 or H_2 lamp, if needed
			CALIBRATION:	Zn^{2+} in 10% HNO_3
			RANGE:	10 to 100 µg per sample [1]
ACCURACY		ESTIMATED LOD:	3 µg per sample [2]	
RANGE STU BIAS:	DIED:	not studied not measured	PRECISION (Ŝ _r):	0.03 [1]
OVERALL PI	RECISION (Ŝ _{rt}):	not measured		
ACCURACY:		not determined		

APPLICABILITY: The working range is 1 to 10 mg/m³ for a 10-L sample. This is an elemental analysis, not compound specific. Aliquots of the samples can be analyzed separately for many additional metals.

INTERFERENCES: None known.

OTHER METHODS: This method is a revision and replacement of P&CAM 173 for Zinc [1,3]. Method 7300 (plasma emission) is an alternate analytical method. Method 7502 (X-ray diffraction) is specific for ZnO.

REAGENTS:

- 1. Nitric acid, conc.
- Nitric acid, 1% (v/v). Add 10 mL conc. HNO₃ to 500 mL water; dilute to 1 L.
- Calibration stock solution, 1000 μg/mL Zn. Commercial standard or dissolve 1.00 g Zn metal in minimum volume of (1+1) HCl; dilute to 1 L with 1% (v/v) HNO₃.
- 4. Air, filtered.
- 5. Acetylene.
- 6. Distilled or deionized water.
 - * See SPECIAL PRECAUTIONS.

EQUIPMENT:

- Sampler: cellulose ester membrane filter, 0.8-µm pore size, 37-mm diameter; in cassette filter holder.
- 2. Personal sampling pump, 1 to 3 L/min, with flexible connecting tubing.
- 3. Atomic absorption spectrophotometer with air-acetylene burner head and zinc hollow cathode lamp or electrodeless discharge lamp.
- 4. Regulators, 2-stage, for air and acetylene.
- 5. Beakers, Phillips, 125-mL, or Griffin, 50-mL, With watchglass covers.*
- 6. Volumetric flasks, 100-mL.*
- 7. Micropipets, 1 to 100 µL.*
- 8. Hotplate, surface temperature 140 °C.
 - * Clean with conc. HNO₃ and rinse thoroughly with distilled or deionized water before use.

SPECIAL PRECAUTIONS: Perform all acid digestions in a fume hood.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line.
- Sample at an accurately known flow rate between 1 and 3 L/min for a sample size of 2 to 400
 L. Do not exceed a filter loading of ca. 2 mg total dust.

SAMPLE PREPARATION:

- NOTE: The following sample preparation gave quantitative recovery (see EVALUATION OF METHOD). Steps 4 through 9 of Method 7300 or other quantitative ashing techniques may be substituted, especially if several metals are to be determined on a single filter.
 - 3. Open the cassette filter holders and transfer the samples and blanks to clean beakers.
 - 4. Add 6 mL conc. HNO₃ and cover with a watchglass. Start reagent blanks at this point.
 - 5. Heat on hotplate (140 °C) until sample dissolves and a slightly yellow solution is produced. Add additional acid as needed to completely destroy organic material.
 - 6. When the sample solution is clear, remove watchglass and rinse into the beaker with 1% HNO₃.
 - 7. Place the beakers on the hotplate and allow to go to near dryness (ca. 0.5 mL liquid remaining).
 - 8. Rinse walls of beaker with 10 mL 10% HNO₃. Reheat 5 min to dissolve the residue, then allow to air cool.
 - 9. Transfer the solution quantitatively to a 100-mL volumetric flask and dilute to volume with distilled or deionized water.
 - NOTE: Dilute to a smaller volume, e.g., 10 mL, if required for sensitivity of analysis for other metals in the sample.

CALIBRATION AND QUALITY CONTROL:

- 10. Add known amounts, covering the range 0 to 100 μg Zn per sample, of calibration stock solution to 100-mL volumetric flasks and dilute to volume with 1% HNO₃.
- 11. Analyze the working standards together with the samples and blanks (steps 16 and 17).
- 12. Prepare a calibration graph of absorbance vs. solution concentration (µg/mL).
- 13. Aspirate a standard for every 10 samples to check instrument drift.
- 14. Check recoveries with at least one spiked media blank per 10 samples.
- 15. Use method of standard additions occasionally to check for interferences.

MEASUREMENT:

- 16. Set spectrophotometer according to manufacturer's recommendations and to conditions on page 7030-1.
 - NOTE: Non-atomic absorption may require the use of D₂ or H₂ continuum background correction in some samples.
- 17. Aspirate standards and samples. Record absorbance readings.
 - NOTE: If the absorbance values for the samples are outside of the range of the standards, dilute the solutions with 1% HNO₃, reanalyze, and apply the appropriate dilution factor in the calculations.

CALCULATIONS:

- 18. Using the measured absorbances, calculate the corresponding concentrations (μ g/mL) of zinc in the sample, C_s, and average media blank, C_b, from the calibration graph.
- 19. Using the solution volumes (mL) of the sample, V_s, and media blanks, V_b, calculate the concentration, C (mg/m³), of zinc in the volume of air sampled, V (L):

$$C = \frac{(C_sV_s - C_bV_b)}{V}$$
, mg/m³.

EVALUATION OF METHOD:

Estimated LOD was 3 µg Zn per sample [2]. Since only the analytical procedure was studied, bias, overall precision, and accuracy were not determined.

REFERENCES:

- [1] NIOSH Manual of Analytical Methods, 2nd ed., V. 5, P&CAM 173, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 79-141 (1979).
- [2] User check, UBTL, NIOSH Seq.# 3990-P (unpublished, November 29, 1983).
- [3] Criteria for a Recommended Standard...Occupational Exposure to Zinc Oxide, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 76-104 (1976).

METHOD WRITTEN BY:

Mark Millson, NIOSH/DPSE and R. DeLon Hull, Ph.D., NIOSH/DBBS.