1. Choice of cover picture
The cover depicts a worker openly pouring diacetyl from a bucket to a smaller container with a respirator as his only apparent respiratory protection. This picture is a poor representation of how diacetyl should be handled. As NIOSH is aware diacetyl is toxic at relatively "low" concentrations and should be handled in a closed system whenever possible. Respirator protection is not enough on its own. For example, Lockey et al. (2009) found that workers who were only exposed after the use of powered air-purifying respirators was mandated were nevertheless at a 5.7-fold increased risk for obstructive lung disease. We believe a picture of a worker openly handling diacetyl gives the wrong impression in terms of the degree of risk and level of protection required to protect worker health.

2. Evidence supporting a lower REL
It is our understanding that the REL for diacetyl (5 ppb) is derived primarily from quantitative risk analyses (BMD and lifetime risk estimates) of exposed workers. In particular the data from "Company G" was felt to have the "most extensive and representative diacetyl exposure data and largest body of respiratory outcomes data." (page 138). However, the BMD analyses from all companies support an REL lower than 5 ppb. As summarized on page 138 and Table 5.37, excess risk of 1/1000 for company G corresponds to 3 ppb for general population, 5 ppb for smokers, and 0.9 ppb for non-smokers. For the pooled Company K/L it is approx 0.4-0.5 ppb.

The REL appears to be set at the level corresponding to the 1/1000 excess risk for smokers at Company G. All other excess risks of 1/1000 correspond to exposures <5 ppb. We feel strongly that the REL should be set at the level corresponding to excess risk for non-smokers (approx. 1 ppb), particularly since studies authored by NIOSH have noted the apparent health-protective effect of smoking in flavorings-exposed workers. It would be unprecedented for NIOSH to select an REL based on protecting only smokers, rather than the general population, or in this case the more sensitive non-smoking population. If there was any rationale for selecting the highest exposure level corresponding to 1/1000 excess risk for the REL, it was not apparent to us.

An REL around 1 ppb finds convergent support from other analyses. We have previously written a peer-reviewed article recommending an exposure limit around or below 1 ppb (attached - Egilman 2011), based on a qualitative structure-activity relationship (QSAR) analysis, a BMD analysis of (limited) animal data, and evidence of worker disease at "low" exposure levels. Although we understand the criteria document has been in production for some time, we feel this article should have been considered in the process of developing the REL, as it contains novel data and analyses.

For example, the QSAR analysis (which we have previously submitted to the docket), conducted by Kendall Wallace PhD, of ToxDx, found that diacetyl and 2,3-pentanedione have "lowest unoccupied molecular orbital" (LUMO) energy values that are comparable to isocyanates (specifically TDI and ND). These comparable, negative LUMO energy values suggest similar biological reactivity and toxicity. The American Conference of Governmental Industrial Hygienists (ACGIH) sets the TDI exposure limit at 5 ppb (similarly, the NIOSH REL for ND of 5 ppb). However ACGIH noted that FEV1 reductions occur at TDI exposures as low as 2 ppb, and has recommended reducing the exposure limit to 1 ppb (see
http://www.acgih.org/tw/03_TLV-CS-Update_AHice06.pdf). There is clear evidence that 5 ppb is too high to protect workers from TDI exposures, and we feel it would be a grave error to repeat this mistake with diacetyl.

Further, although we understand the technical limitations in detecting 2,3-pentanedione, the very similar LUMO energies of diacetyl and 2,3-pentanedione support the assertion that these two chemicals should have the same RELs. We feel it is unwise and short-sighted to base an REL on detection limits, when evidence indicates the detection limit is too high for a TWA exposure. Rather, the REL for 2,3-pentanedione should be set at the same level as diacetyl (we recommend 1 ppb), with notation that the detection limit is above the REL (therefore any detectible exposures are too high). As the REL stands, if future technologies lower the detection limit we will be left with a completely arbitrary REL that is known to be too high to protect workers.

In sum, all the analyses in our article, and all the BMD analyses conducted by NIOSH on the worker exposures indicate that the diacetyl REL should be set below 5 ppb. We strongly recommend an REL of 1 ppb based on all these analyses. Further, the REL for 2,3-pentanedione should also be set at this level (1 ppb), despite the technical issues relating to detection limits.

3. Denial of consumer risk with no testing and no data

As summarized in our presentation slides given at the public meeting (attached), both NIOSH and the FDA have denied that butter flavorings pose a risk to popcorn consumers. This reassurance was given without any data, any testing, and in the face of at least one case report of BO in a consumer of butter-flavored microwave popcorn. We feel such baseless reassurances are reckless and dangerous to public health. Contrary to such claims of "no risk to consumers," we have conducted analyses indicating that consumer exposures can readily exceed NIOSH’s diacetyl STEL, and can also readily exceed the REL (see attached powerpoint). This is further supported by evidence of lung disease in QA workers at popcorn manufacturing plants (see Egilman et al. 2011, attached).

4. Other issues/corrections

As indicated at the public meeting, the odor threshold in air given in Table 1.1 (page 16) is incorrect. It should be 25 ppb based on the Illovo Sugar Limited 2009 MSDS, and 2.8 to 5.6 ppb based on Blank et al. 1992 (see attached powerpoint). This is important because it indicates whether diacetyl has an odor warning property or not. The odor threshold in water is similarly incorrectly converted - it should be 14 ppb based on Diaz et al 2004, or 1.4 ppm based on Lawless et al. 1993.

Statement of interest: David Egilman has served as an expert in diacetyl/flavorings litigation at the request of injured workers and consumers. Hank Schilling is a researcher at David Egilman’s consulting company.

David Egilman MD, MPH
Clinical Associate Professor Department of Family Medicine
Brown University
Editor International Journal of Occupational & Environmental Health
8 North Main Street
Arlington, Massachusetts 02703
Cell 508-472-2809
Phone 508-226-5091 ext 11
Fax 425-699-7033

Hank Schilling
Researcher - Never Again Consulting
A Proposal for a Safe Exposure Level for Diacetyl

DAVID S. EGILMAN, JOHN HENRY SCHILLING, LELIA MENENDEZ

Diacetyl is a naturally occurring compound that has been used in concentrated form as a food additive, particularly in butter flavorings. Inhalation of diacetyl and butter flavoring fumes has caused a variety of respiratory diseases in workers and consumers including bronchiolitis obliterans (BO), a relatively rare, severe, and irreversible lung disease. A safe level of exposure to diacetyl has not been established. We review the literature on diacetyl and flavoring toxicity and critique a recent proposal for an occupational exposure limit (OEL) of 0.2 ppm for diacetyl. We present unpublished data and novel analyses in support of our proposal for a safe level of exposure. Our findings indicate that a safe level of exposure exists around or below a time-weighted average of 1 ppb for an eight-hour workday. The levels of exposure we found to be unsafe include ranges that popcorn consumers may potentially be exposed to, indicating a risk of severe lung disease (including BO) for some consumers. Key words: diacetyl, butter flavorings, popcorn lung, occupational exposure limit, bronchiolitis obliterans, safe exposure level, occupational disease

INT J OCCUP ENVIRON HEALTH 2011;17:122-134

Diacetyl (IUPAC systematic name: 2,3-butanedione) is a vicinal diketone (two adjacent C=O groups) with the molecular formula C₄H₆O₂.¹ Diacetyl occurs naturally in a variety of foods including milk, milk products, and coffee, and is produced during the fermentation of alcoholic beverages.² It is used as a food additive because of the buttery flavor it imparts.³ Prior to the advent of microwave popcorn, diacetyl levels in finished products were relatively low.⁴ Generally, exposure levels from these products were below the measurable threshold although often above the odor threshold of 1.5 ppb.⁵ The need to produce highly concentrated flavorings for microwave popcorn resulted in much higher diacetyl exposure levels in worker and consumer breathing zones, often in the range of 4-13 ppm.⁵

Inhalation of diacetyl and butter flavoring fumes has caused lung disease in workers, including bronchiolitis obliterans (BO), a relatively rare, severe, and irreversible lung disease.² As a result, hundreds of workers and some popcorn consumers have sued diacetyl, flavoring, and microwave popcorn manufacturers for compensation, resulting in hundreds of millions of dollars in verdicts.⁶

In response to this recent litigation, companies that use diacetyl in food manufacturing hired Toxicology Excellence for Risk Assessment (TERA) to develop a proposal for a “safe level” of diacetyl for use in defending lawsuits.

The current regulatory framework being proposed by California and Federal OSHA will likely be limited to establishing performance based exposure standards without establishing either an exposure limit or a threshold for safety for diacetyl. This will leave employees in the food processing industries confused regarding the safety of diacetyl as well as continue to expose companies who handle diacetyl to potential implied legal liability. [Emphasis added]⁷

TERA’S OCCUPATIONAL EXPOSURE LIMIT IS DERIVED FROM SELECT LIMITED DATA

The TERA researchers proposed an occupational exposure limit (OEL) of 0.2 ppm for a permissible exposure to diacetyl over the course of an eight-hour workday.⁸ TERA’s proposed OEL is based on a single animal experiment involving a total of 30 exposed mice and 10 controls, only 15 of which were exposed for up to 30 hours per week for 12 weeks.⁹ As a sponsor company, ConAgra was “asked to review the material and provide technical comment” (pg. 295). ConAgra did not provide TERA with confidential data they possess relating to diacetyl’s toxicity (Melissa Kohlman-Vincent, personal communication, 7/23/2010). This confidential data, which has been released pursuant to legal discovery includes the underlying data from an epidemiological study suggesting a health risk to popcorn consumers, and a quantitative structure activity relationship (QSAR) analysis, which found that diacetyl’s toxicity was comparable to isocyanates.¹⁰-¹² Isocyanates have a TLV of 1 ppb, 200 times lower than TERA’s proposed OEL for diacetyl.¹³

TERA Fails to Include Epidemiological Studies in their OEL Determination

As previously noted, TERA bases their OEL solely on the analysis of one mouse experiment from a single paper.⁹ The use of quality epidemiology studies in determining human exposure guidelines is well established. For example, a review of the use of animal studies to determine human risks states that “Threshold

Received from: Never Again Consulting, Aulteboro, MA. Send correspondence to David S. Egilman at 8 North Main St., Suite 401, Aulteboro, MA 02708; email: degilman@egilman.com.

Disclosures: David Egilman has served as a consultant at the request of plaintiffs in diacetyl/flavorings litigation. John Henry Schilling and Lelia Menendez have served as research assistant consultants to plaintiffs in diacetyl/flavorings litigation.
Hank Schilling BS Works for Dr. Egilman
degilman@degilman.com
Brown University
Department of Family Medicine
Clinical Associate Professor
David Egilman MD, MPH

NIOSH Dialecty REL Hearing Slides
Work with NIH to set up treatment protocols
Set up a registry for cases

For these workers:
2. Liver transplant units
1. Lung transplant units

Establish registries with standard occupational exposure questionnaires with surveillance system

Let's not repeat this mistake again
(all workers) (pg. 138)

0.9 ppb (non-smokers)

5 ppb (smokers)

3-5 ppb (all workers)

Excess risk of 1/1000 at:

• REL is based on Company C analyses (pg 138).

REL based on highest exposure
Standard should be set at > 1 ppm ALARA •
 most sensitive group (non-smokers)
Exposure level should be based on protecting
 smokers (page 138:7-8)
 and 0.009 ppm (3.15 ug/m3) for non-
 (10.5-17.5 ug/m3) in the general population
 approximately 0.003-0.005 ppm directly
 Excess risk of 1/1000 corresponds to

Multiple RELs?
WORKERS NOT JUST SMOKERS
THE TLV SHOULD PROTECT ALL

smokers
in this case NIOSH chooses to only protect smokers and non-smokers

NIOSH has never set different standards for

DOUBLE STANDARD
UNPRECEDEDENTED AND WRONG
Similar LUMO values indicate similar toxicity.

Reactivity and toxicity potential.

Negative LUMO values indicate high biological toxins.

2,3-pentanedione and other known lung molecular orbital values between diacetyl, molecular orbital (lowest unoccupied)

Compared LUMO (lowest unoccupied performed by ToxDX for Conagra

Quantitative structure-activity relationship

QSAR analysis
Flavoring Components of Microwave-Ready Popcorn: Submitted April 21, 2005 by Kendall Wallace, Ph.D., DABT, Toxics Report: Consumer Safety Estimate for Inhalation of Synthetic Butter

"calculated for diacetyl and 2,3-pentanedione."

the calculated LUMO energy values are similar to those

inducing allergic bronchial asthma. Of note is that

because of their well-established reputation for

Three isocyanates were also included in the data set

"are di-ketones, diacetyl and 2,3-pentanedione."

and greater potential of causing chronic irritation. Both

valuable, indicative of chemicals with greater reactivity

chemical constituents exhibit negative LUMO energy

Of particular note is that only two of the butter flavor

ASAR analysis
TDI from 5 ppb to 1 ppb

ACGIH states that it intends to reduce TLV

for and toxicity.

values and therefore comparable reactivity

2,3-pentanedione have comparable LUMO

diaecetyl and

Toluene-2,4-diisocyanate (TDI), diaecetyl and

QSAR analysis
(page 12:11-12:14)

2007)[page 12:11-12:14]

...effects (Lockey et al., 1998; van Rooy et al.
have been associated with adverse health
as acetaldehyde, butyric acid, and acetoin,
impairment. Other flavoring ingredients such
flavoring ingredient related to health
observed, diacyetyl may not be the only
diacetyl and respiratory disease has been
"Although a causative relationship between

Other chemicals
Other chemicals

- Acetaldehyde, butyric acid, and acetoin are not associated with BO
- Key issue is whether these chemicals impact effective dose, i.e. toxicity of diacetyl to induce BO
- Dr. Morris expert report, Newkirk vs. Congara
 "enhance the effects of diazepam"
 Inhibition of this enzyme would diminish or
 diazepam. Currently it is not known if an
 inhibitor of an enzyme that metabolizes
 inhibitor of an enzyme that metabolizes
 present in butter flavoring vapors, is a known
 For example, butyric acid, one of the vapors

Butyric acid
Butyric acid may also enhance diacetyl toxicity by inhibiting detoxification enzyme.

- Site of injury to humans
- Airways (in rats)
- Butyric acid enhances diacetyl penetration to lower M orris A, H ubbs (2008) results suggest butyric acid

Butyric acid
MD.

"NIOH speaksman Fred Blasser tells Webb,
we don't see any evidence for consumer
customers to worry.
Administrations say there is no reason for
Protection Agency, and the Food and Drug
Safety and Health (NIOH), Environmental

"The CDC's National Institute for Occupational

NIOH denies consumer risk
significant risk to normal consumers...

Currently, even though there is little to suggest increased risk for lung disease...

evidence that cooking with butter is associated with increased risk of lung disease. Nor is there any increased risk of lung disease from corn.

consumers using products such as microwave popcorn.

peer reviewed scientific studies showing that consumers, unlike workers, so far there have not been including level of exposure, to flavorings than typical.

Workers often have different exposure characteristics.

NIOSH denies consumer risk
"Consuming diacetyl is unsafe." FDA denies consumer risk

An FDA spokesperson says the FDA isn't aware of any evidence that diacetyl's safety status. An FDA spokesperson received a citizens' petition to revisit FDA classified as safe. "Last September, the "Generally Recognized as Safe" label for diacetyl was being

FTIR method

4, 7, and 13 ppm reached peak of exposed zone exposure as bag is opened

Workers' breathing

Jasper GML plant: AC

Recommended exposure

Consumer exposures exceed NIOSH
peak curve
taking area under
determined by
could be
Actual exposure
estimate
bag is conservative
peaks level for each
15 sec exposure at
To ppm over 15 sec = 217 ppm over 15 min
7 ppm over 15 sec = 117 ppm over 15 min
4 ppm over 15 sec = 67 ppm over 15 min

Assuming peak exposure for 15 sec/bag:

- NIOSH STEL: 25 ppm over 15 min
- NIOSH recommended STEL per bag

Consumer exposures exceed NIOSH
NIOSH REL: 5 ppq for 8-hour day

Assuming peak exposure for 15 sec/bag:

TWA 4 ppm: 3 bags/day = 6.2 ppq
TWA 7 ppm: 2 bags/day = 7.3 ppq
TWA 13 ppm: 1 bag/day = 6.8 ppq

NIOSH RELs can exceed consumer exposures.
In any case, differential diagnosis found no other cause of

<table>
<thead>
<tr>
<th>Consumption Level</th>
<th>Smoking History</th>
<th>Biopsy Confirmed BO</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3 bags/day, 7 years</td>
<td>None</td>
<td>Yes</td>
<td>AM</td>
</tr>
<tr>
<td>2-3 bags/weekday, 7 years</td>
<td>None</td>
<td>Yes</td>
<td>DD</td>
</tr>
<tr>
<td>(work-related)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 bags/weekend, 4 years</td>
<td>Home +</td>
<td>None</td>
<td>EE</td>
</tr>
<tr>
<td>3-5 bags/day, 8 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3 bags/day, 8 years</td>
<td>None</td>
<td>Yes</td>
<td>WW</td>
</tr>
</tbody>
</table>

Known consumer cases of BO
Error bars represent range of consumption estimates.

Cumulative Exposure Estimates

- AM
- DD
- EX
- WW

Threshold level for
Lung disease from
Cumulative diacetyl

- 2.4 ppm
- 1.3 ppm
- 2 ppm

Peak Exposure:
Estimated

MOSH detected TV hearing slides Ertmann

button] converted to 4g 1 breathing zone

24 ppm (purple bar) comes from Aspen study: peak of 372 ppm (Oryllie Redenbacher)
NIOSH Directly TV Hearing Selphman
8-hour TWA: 1 to 2.9 ppm (unsafe)
Cumulative exposure: 0.45 – 0.132 ppm
(“conservative respiration protection factor”)
Measured levels / 25
0.015 – 0.044 ppm
Lockey estimated average exposure level of
Maximum 3 years exposure
for obstruction
Mixers using PAPR at 5.7-fold increased risk
Lockey et al. (2009) PAPR mixers
In fact, it is 10 to 20 mg/L = 2.8 to 5.6 ppb
- Table 1.1 says 0.01 - 0.02 ppb

: 1992)

- Diacetyl, and 2,3-pentanedione (Blanks et al.
- In fact, it is 0.09 mg/m³ = 25 ppb
- NIOSH Draft: Table 1.1 says 0.09 ppb
- Diacetyl (Jilovo Sugar Limited 2009): Table 1.1, page 16

Wrong Odor Threshold in Air
\[\frac{T}{\text{ppm}} = \frac{12.187}{L} \times \text{ppm} \]

Equivalent units:

\[\text{ug/L} = \text{ng/cc} = \text{mg/m}^3 \]

Individually thresholds varied over a factor of 256

- Lawless et al. (1993): 0.005 ug/ml = 1.4 ppm
- Diaz et al. (2004): 0.05 ug/L = 14 ppm

Table 1. Page 15

Odor Threshold in Water
Thus, diacetetyl does not have an odor warning above dangerous level. In fact, odor threshold in air and water is far below recommended exposure level. NIOSH Table 1.7 states odor threshold in air is Odor Threshold.