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FOREWORD

In the Federal Mine Safety and Health Act of 1977 (Public Law 95-164) and the Occupational
Safety and Health Act of 1970 (Public Law 91-596), Congress declared that its purpose was to
assure, insofar as possible, safe and healthful working conditions for every working man and
woman and to preserve our human resources. In these Acts, the National Institute for Occupa-
tional Safety and Health (NIOSH) is charged with recommending occupational safety and health
standards and describing exposure levels that are safe for various periods of employment,
including but not limited to the exposures at which no worker will suffer diminished health,
functional capacity, or life expectancy as a result of his or her work experience. By means of
criteria documents, NIOSH communicates these recommended standards to regulatory agencies
(including the Occupational Safety and Health Administration [OSHA] and the Mine Safety and
Health Administration [MSHA]) and to others in the community of occupational safety and
health.

Criteria documents provide the scientific basis for new occupational safety and health standards.
These documents generally contain a critical review of the scientific and technical information
available on the prevalence of hazards, the existence of safety and health risks, and the adequacy
of control methods. In addition to transmitting these documents to the Department of Labor,
NIOSH also distributes them to health professionals in academic institutions, industry, organized
labor, public interest groups, and other government agencies.

This criteria document reviews available information about the adverse health effects associated
with exposure to respirable coal mine dust. Epidemiological studies have clearly demonstrated
that miners have an elevated risk of developing occupational respiratory diseases when they are
exposed to respirable coal mine dust over a working lifetime at the current MSHA permissible
exposure limit (PEL) of 2 mg/m3. The exposure limit of 1 rnglm3 recommended in this document
is based on an evaluation of health effects data, sampling and analytical feasibility, and techno-
logical feasibility. However, this recommended exposure limit (REL) does not ensure that miners
exposed at this concentration over a working lifetime will have a zero risk of developing
occupational respiratory diseases. Therefore, NIOSH recommends additional measures to protect
miners’ health: (1) keeping worker exposures as far below the REL as feasible through the use
of engineering controls and work practices, (2) frequent monitoring of worker exposures, and
(3) participation of miners in the recommended medical screening and surveillance program.

Future research may provide new and more effective methods for minimizing occupational health
risks among coal miners, including new methods for controlling exposures to respirable coal mine
dust, more accurate and reliable measures of worker exposures, improved methods for earlier
detection of disease, and new medical interventions to halt or reverse disease progression.

iii




If future developments permit a lower exposure limit that is both technologically feasible and
prudent for the public health, NIOSH will revise its recommended standard. Until then, adherence
to the REL of 1 mg/m~ will minimize the risk of developing occupational respiratory diseases.
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Linda Rosenstock, M.D., M.P.H.

Director, National Institute for
Occupational Safety and Health

Centers for Disease Control and Prevention



ABSTRACT

This document examines the occupational health risks associated with exposures to respirable
coal mine dust over a working lifetime. Such exposures are associated with the development of
occupational respiratory diseases, including simple coal workers’ pneumoconiosis (CWP), pro-
gressive massive fibrosis (PMF), and chronic obstructive pulmonary disease (COPD). Epidemi-
ological studies have clearly demonstrated that miners have an elevated risk of developing simple
CWP, PMF, or deficits in lung function when they are exposed to respirable coal mine dust over
a working lifetime at the current Mine Safety and Health Administration (MSHA) permissible
exposute limit (PEL) of 2 mglms. Coal miners who are exposed to respirable crystalline silica
are also at risk of developing silicosis or mixed-dust pneumoconiosis.

The National Institute for Occupational Safety and Health (NIOSH) recommends that exposures
to respirable coal mine dust be limited to 1 mg/m” as a time-weighted average (TWA) concen-
tration for up to 10 hr/day during a 40-hr workweek, measured according to current MSHA
methods. NIOSH recommends that sampling be conducted with a device that operates in
accordance with the NIOSH accuracy criteria and the international definition of respirable dust.
The l-mglm3 REL is equivalent to 0.9 mg]m3 when measured according to these NIOSH
recommended sampling criteria. The NIOSH REL represents the upper limit of exposure for
each worker during each work shift and shall not be adjusted upward to account for measurement
uncertainty. To minimize the risk of adverse health effects, exposures shall be kept as far below
the REL as feasible using engineering controls and work practices.

Recommendations are made for minimizing the occupational health risks encountered by undet-
ground and surface coal miners. These recommendations pertain to respirable coal mine dust
sampling to monitor worker exposures, use of personal protective equipment (including training
and fit-testing for the use of respirators), and medical screening and surveillance examinations
(including preplacement and periodic chest X-rays and spirometry).
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GLOSSARY

Active workings: Any place in a coal mine where miners are normally required to work or travel
[30 CFR 70.2].

Aerodynamic diameter: The diameter of a sphere with a density 1 g/cm3 and with the same
stopping time as the particle. Particles of a given aerodynamic diameter move within the air
spaces of the respiratory system identically, regardless of density or shape.

Black lung: A common term used to refer to occupational respiratory disease in miners [Weeks
and Wagner 1986].

Chronic obstructive pulmonary disease (COPD): Includes chronic bronchitis, impaired lung
function, and emphysema. COPD is characterized by the irreversible (although sometimes
variable) obstruction of lung airways.

Clearance: The translocation, transformation, and removal of deposited particles from the
respiratory tract [Lioy et al. 1984].

Coal face: The exposed area of a coalbed from which coal is extracted [EIA 1989].

Coal fines: Coal with a maximum particle size that is usually less than one-sixteenth of an inch
and rarely above one-eighth of an inch [EIA 1989].

Coal rank: A classification of coal based on the fixed carbon, volatile matter, and heating value
of the coal. Coal rank indicates the progressive geological alteration (coalification) from lignite
to anthracite [EIA 1989].

Coal type: A classification of coal based on physical characteristics or microscopic constituents
[EIA 1989].

Coal workers® pneumoconiosis (CWP): A chronic dust disease of the lung arising from
employment in an underground coal mine [30 USC 902]. In workers who are or have been
exposed to coal mine dust, diagnosis is based on the radiographic classification of the size, shape,
profusion, and extent of opacities in the lungs.

Coefficient of variation (CV): The CV is a measure of relative dispersion; it is also known as
relative standard deviation and defined as the standard deviation/mean [Leidel et al. 1977].
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Concentration: The amount of a substance contained per unit volume of air [30 CFR 70.2].
Confidence interval (CI), confidence limits (CLs): A range of values (determined by the degree
of presumed random variability in the data) within which a parameter (e.g., a mean) is believed
to lie with the specified level of confidence. The boundaries of a CI are the CLs [Last 1983].
These include the lower confidence limit (LCL) and the upper confidence limit (UCL).

Continuous mining: A mining method used in room-and-pillar mining in which the coal is
removed from the coal face in one operation using a continuous mining machine.

Conventional mining: A mining method used in room-and-pillar mining in which the coal face
is cut so that it breaks easily when blasted (with either explosives or high-pressure air). The
broken coal is then loaded onto conveyors or into shuttle carts for removal to the surface.

Crystalline silica (or free silica): Silicon dioxide (S§i02). “Crystalline” refers to the orientation
of Si0O2 molecules in a fixed pattern as opposed to a nonperiodic, random molecular arrangement
defined as amorphous. The three most common ctystalline forms of free silica encountered in

general industry are quartz, tridymite, and cristobalite [NIOSH 1974]. In coal mines, the
predominant form is quartz.

Culm: Fine anthracite.
Culm bank: The hillside where waste from anthracite mines is dumped.

Deposition: The collection of inhaled airborne particles by the respiratory tract and the initial
regional patterns of these deposited particles [Lioy et al. 1984].

District manager: The manager of the Coal Mine Safety and Health District in which the mine
is located [30 CFR 70.2].

Geometric mean (GM): The GM is a measure of central tendency for a log-normal distribution
[Leidel et al. 1977].

Geometric standard deviation (GSD): The GSD is a measure of relative dispersion (variability)
of a lognormal distribution.

Gob area: The area of subsidence that occurs when roof supports are removed during longwall
mining and the area caves in. The gob area then supports the overlying strata.

Engineering controls: Hazard controls designed into equipment and workplaces.
Highwall: The unexcavated face of exposed overburden or coal in a strip pit.
Inby: Toward the workings of a mine.

Incidence: The frequency of occurrence of new cases of a disease for a given period.
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Incidence rate: The rate at which new events occur in a population. The number of new events
(e.g., new cases of a disease diagnosed or reported during a defined period) is divided by the
number of persons in the population in which the cases occurred [Last 1983].

Inhalable dust; The particulate mass fraction of dust in the mine environment that is hazardous
when deposited anywhere in the respiratory tract [ACGIH 1994].

Longwall mining: A system of mining in which long sections of coal (also called panels) up to
1,000 ft are removed by a cutting machine without leaving pillars of coal for support. A movable,
powered roof support system is used to support the roof in the working area; when these supports
are moved, the area (gob area) caves in and supports the overlying strata.

Mechanized mining unit (MMU): A unit of mining equipment (including hand-loading equip-
ment) used for the production of material [30 CFR 70.2].

MRE instrument. The gravimetric dust sampler with a four-channel horizontal elutriator
developed by the Mining Research Establishment of the National Coal Board, London, England
[30 CFR 70.2].

Normal production shift: A production shift during which the amount of material produced in
an MMU is at least 50% of the average production reported for the last set of five valid samples;
or, the amount of material produced by a new MMU before five valid samples are taken [30 CFR
70.2].

Outby: Toward the shaft or entry of a mine.

Overburden: Any material, consolidated or unconsolidated, that overlies a coal deposit. Over-
burden ratio refers to the amount of overburden that must be removed to excavate a given quantity
of coal [EIA 1989].

Prevalence: The frequency of all current cases of a disease (old and new) occurring within
specific populations at a particular time.

Prevalence rate (ratio): The total number of all individuals who have an attribute or disease at
a given time or during a given period divided by the population at risk of having the attribute or
disease at this point in time or midway through the period [Last 1983].

Progressive massive fibrosis (PMF): Coal workers® complicated pneumoconiosis. Diagnosis is
based on radiographic determination of the presence of large opacities of 1 cm or larger.

Quartz: Crystalline silicon dioxide (SiO2) not chemically combined with other substances and
having a distinctive physical structure [30 CFR 70.2].

Regression analysis: Given data on a dependent variable Y and an independent variable X,

regression analysis involves finding the best mathematical model (within some restricted form)
to describe Y as a function of X or to predict ¥ from X. Most commonly, the model is linear. The
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logistic model is also common in epidemiology. Multiple regression analysis considers Y as a
function of more than one independent variable [Last 1983].

Respirable coal mine dust: That portion of airborne dust in coal mines that is capable of entering
the gas-exchange regions of the lungs if inhaled; by convention, a particle-size-selective fraction

of the total airborne dust; includes particles with aerodynamic diameters less than approximately
10 pm.

Respirable convention (ER): The target sampling curve for instruments approximating the
respirable fraction. ER is defined at aerodynamic diameter D by ISO [1993], CEN [1993], and
ACGTH [1994] in terms of the cumulative normal function @ as:

where the indicated constants are DR = 4.25 um and oRr = In[1.5], and the inhalable convention
E] is defined by

E; = 0.50 (1 + exp[-0.06 D]), D <100 pm

Retention: The temporal distribution of uncleared particles in the respiratory tract [Lioy et al.
1984].

Room-and-pillar mining: A system of mining in which the mine roof is supported primarily by
coal pillars that are left at regular intervals [EIA 1989].

Spoil: Overburden removed in gaining access to the coal during surface coal mining.

Thoracic dust: The particulate mass fraction of dust in the mine environment that is hazardous
when deposited anywhere within the lung airways and the gas-exchange region [ACGIH 1994].

Time-weighted average (TWA): Exposure of a worker over an 8-hr work shift as defined in 29
CFR 1910.1000(d)(1).

Work practices: Procedures followed by employers and workers to control hazards.
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1 RECOMMENDATIONS FOR A COAL MINE DUST STANDARD

The National Institute for Occupational Safety and Health (NIOSH) recommends that occupational
exposures to respirable coal mine dust and respirable crystalline silica” be controlled by complying
with the provisions presented in this document. These recommendations are designed to protect
the health and provide for the safety of workers exposed to respirable coal mine dust and respirable
crystalline silica for up to 10 hr/day during a 40-hr workweek over a working lifetime. The
information presented in this document demonstrates that underground and surface coal miners are
at risk of developing simple coal workers’ pneumoconiosis (CWP), progressive massive fibrosis
(PMF), silicosis, and chronic obstructive pulmonary disease (COPD). Adherence to the recommen-
dations in this document should prevent or greatly reduce the risk of adverse health effectsin workers
exposed to respirable coal mine dust and respirable crystalline silica. NIOSH recommends that
preventive efforts be focused primarily on reducing worker exposures. Effective health and hazard
surveillance and medical screening are also useful components of a comprehensive prevention
effort.

1.1 DEFINITIONS

1.1.1 Miner or Coal Miner

“Miner” or “coal miner” refers to any individual working in a surface or underground coal mine
(including any worker employed by a contractor) who is (1) engaged in the extraction and production
process, or (2) regularly exposed to mine hazards, or (3) employed as a construction, maintenance,
or service worker.

1.1.2 Ex-Miner

“Ex-miner” refers to any individual who was previously employed as a coal miner but who left coal
mining for reasons including retirement, disability, lay-off, or other employment.

1.1.3 Coal Mine

“Coal mine” refers to “an area of land and all structures, facilities, machinery, tools, equipment,
shafts, slopes, tunnels, excavations, and other property, real or personal, placed upon, under, or
above the surface of such land by any person, used in, or to be used in, or resulting from, the work
of extracting in such area bituminous coal, lignite, or anthracite from its natural deposits in the earth

*This document provides the current NIOSH REL for respirable crystalline silica because this substance is an important
component of respirable coal mine dust [NIOSH 1974; NIOSH 1988b). Evaluation of the health effects of respirable
crystalline silica is beyond the scope of this document.
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by any means or method, and the work of preparing the coal so extracted, and includes custom coal
preparation facilities” {30 USCT 802(h)(2)].

1.1.4 Mine Operator

Except where otherwise indicated, a “mine operator” is any owner, lessee, or other person who
operates, controls, or supervises a surface or underground coal mine, or any independent contractor
performing services or construction at such a mine [30 USC 802(d)].

1.1.5 Surface Coal Mine

“Surface coal mine” refers to “a surface area of land and all structures, facilities, machinery, tools,
equipment, excavations, and other property, real or personal, placed upon or above the surface of
such land by any person, used in, or to be used in, or resulting from, the work of extracting in such
area bituminous coal, lignite, or anthracite from its natural deposits in the earth by any means or
method, and the work of preparing the coal so extracted, including custom coal preparation
facilities™ [30 CFR* 71.2(n)].

1.1.6 Surface Work Area of an Underground Coal Mine

“Surface work area of an underground coal mine” refers to “the surface areas of land and all
structures, facilities, machinery, tools, equipment, shafts, slopes, excavations, and other property,
real or personal, placed in, upon or above the surface of such land by any person, used in, or to be
used in, or resulting from, the work of extracting bituminous coal, lignite, or anthracite from its
natural deposits underground by any means or method, and the work of preparing the coal so
extracted, including custom coal preparation facilities” [30 CFR 71.2(p)].

1.2 RECOMMENDED EXPOSURE LIMITS (RELS) FOR RESPIRABLE COAL MINE
DUST AND RESPIRABLE CRYSTALLINE SILICA

1.2.1 RELs

NIOSH recommends that exposures to respirable coal mine dust be limited to 1 mg/m3 as a
time-weighted average (TWA) concentration for up to 10 hr/day during a 40-hr workweek$,
measured according to current MSHA methods (see Section 5.1 and Appendix J). NIOSH
recommends that sampling be conducted with a device that operates in accordance with the NIOSH
accuracy criteria [Busch 1977; Busch and Taylor 1981] and the international definition of
respirable dust [ACGIH 1994; CEN 1993; ISO 1993; Soderholm 1991a,b; 1989].**

The recommended exposure limit (REL) of 1 mg/m3 represents the upper limit of exposure for each
worker during each work shift. For single, full-shift samples used to determine noncompliance,

T United States Code.
*Code of Federal Regulations. See CFR in references.
YA method for estimating an exposure limit “reduction factor™ for extended work shifts is described by Brief and Scala
[1975].
**The recommended exposure limit (REL) of 1 mglm3 is equivalent to 0.9 mg/m3 when measured according to these
NIOSH recommended sampling criteria (see Sections 5.2 and 5.4).
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NIOSH recommends that MSHA make no upward adjustment of the REL to account for measure-
ment uncertainties [NIOSH 1994c] (see also Section 5.6.2).

Occupational exposures to respirable crystalline silica shall not exceed 0.05 mg/m> as a TWA
concentration for up to 10 hr/day during a 40-hr workweek [NIOSH 1974; NIOSH 1988b].

1.2.2 Sampling and Analysis

The concentration of respirable coal mine dust shall be determined gravimetrically (see Appendices
Iand J). The concentration of respirable crystalline silica shall be determined by NIOSH Method
7500, 7602, or a demonstrated equivalent [NIOSH 1994b] (see also Section 5.7).

1.3 EXPOSURE MONITORING

1.3.1 Initial Exposure Monitoring Survey

When a new mechanized mining unit (MMU) is established, the mine operator shall conduct an
initial monitoring survey to determine the exposure of miners to respirable coal mine dust and
respirable crystalline silica. The production level during sampling shall be typical of the normal
production for that MMU (see Sections 5.5.3 and 5.6.1.4). Whenever changes in operational
conditions might result in exposure concentrations above the REL, air sampling shall be conducted
by the mine operator as if it were an initial monitoring survey.

1.3.2 Periodic Exposure Monitoring

Personal exposures to respirable coal mine dust and respirable crystalline silica shall be monitored
periodically at intervals that depend on the concentrations determined in the initial and subsequent
monitoring surveys. For occupations in which worker exposures are found to exceed the REL for
respirable coal mine dust or the REL for respirable crystalline silica (see Section 1.2.1), exposures
shall be monitored as frequently as necessary to demonstrate that exposures have been controlled.
See Section 5.6 for further discussion and recommendations for exposure monitoring.

1.3.3 Sampler Performance Criteria

Worker exposures shall be compared with the RELs for respirable coal mine dust and respirable
crystalline silica using single, full-shift samples collected with a sampling device that operates in
accordance with the NIOSH accuracy criteria [Busch 1977; Busch and Taylor 1981] and the
international definition of respirable dust [ACGIH 1994; CEN 1993; ISO 1993; Soderhotm 1991a,b;
1989] (see Section 5.2).

1.3.4 Worker Notification

A worker exposed to respirable coal mine dust or respirable crystalline silica at concentrations above
the REL shall be notified of the exposure and of the control measures being implemented to reduce
exposures.
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1.3.5 Intake Air Concentrations

Intake air concentrations of respirable coal mine dust and respirable crystalline silica shall be kept
sufficiently below the RELSs to provide effective dilution of respirable dust concentrations and to
keep worker exposures below the RELs.

1.4 MEDICAL SCREENING AND SURVEILLANCE PROGRAM FOR
UNDERGROUND AND SURFACE COAL MINERS

1.4.1 General

All medical examinations and procedures shall be performed by or under the direction of a licensed
physician or other qualified health care provider at NIOSH-approved facilities. The mine operator
shall ensure that miners can participate in the medical screening and surveillance program at a
reasonable time and place without loss of pay or other cost to the miner.

1.4.2 Preplacement and Periodic Medical Examinations

The Coal Workers® X-Ray Surveillance Program is administered by NIOSH and was established
under the Federal Coal Mine Health and Safety Act of 1969 [Public Law 91-731.7T Under this
program, underground coal mine operators are required to provide periodic chest X-rays to
underground coal miners and workers at surface work areas of underground coal mines. The
specifications for giving, interpreting, classifying, and submitting the chest X-raystt required for
this program are contained in 42 CFR 37. See Section 6.2.1 for a more detailed description of this
program. NIOSH recommends that surface coal miners be included in the Coal Workers® X-Ray
Surveillance Program with the same provisions established for underground coal miners.

In addition to the periodic chest X-ray, NIOSH recommends that the Coal Workers® X-Ray
Surveillance Program be extended to include spirometric examination both at the initial (preplace-
ment) medical examination and at the intervals specified below. The purpose of spirometric
examination is to detect unusual decrements in lung function and to permit timely intervention in
the development of COPD.

The recommended components of the revised medical screening and surveillance program for
underground and surface coal miners include the following:

® Aninitial (preplacement) spirometric examination and chest X-ray as soon as possible after
beginning employment (within 3 months for a spirometric examination and within 3 to 6
months for a chest X-ray)

® A spirometric examination each year for the first 3 years after beginning employment and
every 2 to 3 years thereafter if the miner is still engaged in coal mining

"'The 1969 Act was later amended by the Federal Mine Safety and Health Act of 1977 [30 USC 843].
HAlso called radiographs or roentgenograms.
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® A chest X-ray every 4 to 5 years for the first 15 years of employment and every 3 years
thereafter if the miner is still engaged in coal mining

® A chest X-ray and spirometric examination when employment ends if more than 6 months
have passed since the last examination

® A standardized respiratory symptom questionnaire, such as the American Thoracic Society
(ATS) respiratory questionnaire [Ferris 1978 (or the most current equivalent)], to be
administered at the preplacement examination and updated at each periodic examination

* A standardized occupational history questionnaire (including a listing of all jobs held up
to and including present employment, a description of all duties and potential exposures,
and a description of all protective equipment the miner has used or may be required to use)
to be administered at the preplacement examination and updated at each periodic exami-
nation

Information about the interpretation of chest X-rays and spirometric examinations and about medical
intervention procedures is provided in Section 6.4.

1.5 POSTING

All warning signs shall be printed in both English and the predominant language of non-English-
reading workers. Workers unable to read the posted signs shall be informed verbally about the
hazardous areas of the mine and the instructions printed on the signs.

If respiratory protection is required, the following statement shall be posted:

RESPIRATORY PROTECTION REQUIRED IN THIS AREA

1.6 ENGINEERING CONTROLS AND WORK PRACTICES

The mine operator shall use engineering controls and work practices to keep worker exposures at
or below the RELSs for respirable coal mine dust and respirable crystalline silica. Chapter 8 and
Appendices C and D describe available engineering controls and work practices.

1.7 RESPIRATORY PROTECTION

1.7.1 General Considerations

Respirators shall be used when engineering controls and work practices are not effective in main-
taining worker exposures at or below the RELs for respirable coal mine dust and respirable crystalline
silica. Respirators may be used as an interim8% control measure, but they shall not be used in lieu of

¥Interim use periods shall meet one or more of the three conditions listed in Section 8.6.2.1.
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feasible engineering controls and work practices. Whenever respirators are used, the mine operator
shall institute a respiratory protection program conforming to the recommendations in Chapter 8.

1.7.2 Respiratory Protection Program

This program shall include, at a minimum, the following elements:

A designated individual responsible for the administration of the program

A written program for respiratory protection that contains standard operating procedures
governing the selection and use of respirators

Initial and annual training of workers in the proper use and limitations of respirators as
required in 30 CFR 48.28 and 48.31

Annual training of persons whose jobs require them to be certified at underground coal
mines in the use of self-contained, self-rescue devices as required in 30 CFR 75.161

Evaluation of working conditions in the mines (including periodic air monitoring of worker
exposures) to identify situations that require respiratory protection

Routine inspection, cleaning, maintenance, and proper storage of respirators according to
the NIOSH Guide to Industrial Respiratory Protection [NIOSH 1987a)

Initial quantitative fit testing by a trained and qualified person to determine the level of
protection provided by each respirator worn (for a description of qualitative fit testing, see
the NIOSH Guide to Industrial Respiratory Protection [NIOSH 1987a])

Additional daily fit checks conducted by the worker to ensure proper assembly, function,
and face-seal integrity of the respirator

Medical evaluation of the worker’s physical ability to perform work continuously while
breathing through a respirator [Appendix H of NIOSH 1991b; NIOSH 1994d]

Periodic evaluation of program effectiveness through the monitoring of respirator use
patterns, quarterly inspection of the respirator maintenance program, and testing of
supervisors and workers for awareness of respirator use requirements

1.7.3 Respirator Selection

Respirators shall be selected by a qualified person according to the guidelines in Section 8.5.2.2 of
this criteria document and the most recent edition of the NIOSH Respirator Decision Logic [NIOSH
1987b]. Only respirators approved by NIOSH and the Mine Safety and Health Administration
(MSHA) shall be used.
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1.8 INFORMING WORKERS OF THE HAZARDS

1.8.1 Notification of Hazards

The mine operator shall provide all miners with information about workplace hazards before job
assighment and at least annually thereafter.

1.8.2 Training

The mine operator shall institute a continuing education program conforming to the requirements
in 30 CFR 48. The purpose of this program is to ensure that all miners have a current knowledge
of workplace hazards (e.g., respirable coal mine dust and respirable crystalline silica), effective
work practices, engineering controls, and the proper use of respirators and other personal protective
equipment. The continuing education program shall also include a description of the exposure
monitoring and medical surveillance programs and the advantages of participating in them. This
information shall be kept on file and shall be readily available to miners for examination and
copying. The mine operator shall maintain a written plan of these training programs and a written
record of the miners’ attendance at such programs (including dates).

Miners shall be instructed about their responsibilities for following proper work practices and
sanitation procedures necessary to protect their health and safety.

1.9 SANITATION AND HYGIENE

1.9.1 Smoking

Smoking shall be prohibited in all underground and surface coal mines and all other work areas
associated with coal mining. MSHA currently prohibits smoking in all underground mines and in
surface coal mines where fire or explosion may result [30 CFR 75.1072 and 77.1711]. In addition,
NIOSH recommends that smoking be prohibited to prevent exposure to environmental tobacco
smoke, a potential occupational carcinogen [NIOSH 1991a]).

1.9.2 Drinking Water

An adequate supply of potable water shall be provided for workers at each underground worksite
[30 CFR 75.1718] and each surface worksite [30 CFR 71.600-71.603].

1.9.3 Showering, Changing, and Toilet Facilities

The mine operator shall provide workers with clean facilities for showering and changing clothes
at the end of each work shift. Mine operators shall provide an adequate number of toilet facilities.
The mine operator shall also provide storage facilities such as lockers to permit workers to store
street clothing and personal items. Regulations for bath, toilet, and changing facilities are provided
in 30 CFR 71.400-71.501 for surface worksites, and in 30 CFR 75.1712 for underground worksites.
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1.10 RECORDKEEPING

1.10.1 Records of Exposure Monitoring

Records related to the exposure monitoring required in Section 1.3 shall be retained by the mine
operator or by MSHA, as applicable, for at least 40 years after termination of employment.

1.10.2 Medical Records

NIOSH-held records related to the medical screening and surveillance program in Section 1.4 shall
be maintained by NIOSH in accordance with 42 CFR 37.80. Any medical records that the mine
operator may have as part of a medical program for coal miners shall be retained by the mine operator
for at least 40 yeats after termination of employment.

1.10.3 Availability of Records

The miner shall have access to his medical records and be permitted to obtain copies. Records shall
also be made available to former miners or their representatives and to the designated representatives
of the Secretary of Labor and the Secretary of Health and Human Services.

1.10.4 Transfer of Records

Exposure monitoring and medical records shall be transferred as follows:

* Upon termination of employment, the mine operator shall provide the miner with a copy
of his records related to exposure monitoring and medical screening and surveillance.

®  Whenever the mine operator transfers ownership of the mine, all records described in this
section shall be transferred to the new operatot, who shall maintain them as required by
this standard.

®*  Whenevera mine operator ceases to do business and there is no successor, the mine opetator
shall notify the miners of their rights of access to those records at least 3 months before
cessation of business.

® Before a mine operator disposes of records or ceases to do business without a successor to
maintain records, the mine operator shall notify the Director of NIOSH in writing. No
records shall be destroyed until the Director of NIOSH responds in writing to the mine
operator.

® After informing the Director of NIOSH of impending disposal or lack of successor to
maintain records, the mine operator shall transfer custody of records to NIOSH if the
Director of NIOSH or a designee requests it.



2 INTRODUCTION
2.1 PURPOSE

This document presents the criteria and recommended standards necessary to reduce or eliminate
health impairment from exposure to respirable coal mine dust. The document was developed in
accordance with the Federal Mine Safety and Health Act of 1977 [30 USC 811 and 842(d)]* and
the Occupational Safety and Health Act of 1970 [29 USC 20(a)(3) and 22(c}(1)]. In these Acts,
NIOSH is charged with recommending occupational safety and health standards and developing
criteria for toxic materials and harmful physical agents. These criteria are to describe exposures
that are safe for various periods of employment—including (but not limited to) the exposures at
which no worker will suffer diminished health, functional capacity, or life expectancy as a result of
his or her work experience.

NIOSH has formalized a system for developing criteria on which to base standards for ensuring the
health and safety of workers exposed to hazardous chemical and physical agents. Simple compli-
ance with these standards is not the only goal. The criteria and recommended standards are also
intended to help management and labor develop better engineering controls and more healthful work
practices.

Recommended standards for respirable coal mine dust apply to workplace exposures arising from
the extraction, processing, and use of coal. The recommended standards are intended to protect
workers from the chronic effects of exposure to respirable coal mine dust. Exposures are measurable
by techniques that are valid, reproducible, and available to industry and government agencies.
Recommendations in this document pertain to existing regulations in 30 CFR 48, 70, 71, 74, 75,
77, and 90, and in 42 CFR 37.

2.2 SCOPE

The information in this document is used to assess the hazards associated with occupational exposure
to respirable coal mine dust. Epidemiological studies from the United States and abroad have shown
that underground and surface coal miners are at risk of developing simple CWP, PMF, silicosis,
and COPD. PMF and advanced stages of silicosis and COPD are associated with respiratory
impairment, disability, and premature death.

Chapter 1 presents the recommended standards and describes their requirements. Chapter 3 contains
information about the chemical and physical properties of respirable coal mine dust, production

“This act amended the Federal Coal Mine Health and Safety Act of 1969 [Public Law 91-173].
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methods, uses, and the extent of worker exposure. Chapter 4 discusses the health effects of
exposures to respirable coal mine dust. Chapter 5 addresses environmental monitoring, and Chapter
6 describes the recommended medical screening and surveillance program for underground and
surface coal miners. Chapter 7 discusses the basis for the recommended standard for respirable coal
mine dust. Chapter 8 describes methods for worker protection, and Chapter 9 lists research needs.
The appendices include tables of exposures to respirable coal mine dust by occupation; methods for
controlling respirable dust in underground and surface coal mines; technical aspects of spirometric
examinations, spirometry reference values, and the occupational history questionnaire; and techni-
cal analyses of sampling criteria, exposure variability, and validation of risk estimates.

2.3 NIOSH ACTIVITIES AND PROGRAMS FOR COAL MINERS

In addition to recommending occupational safety and health standards under the Federal Mine Safety
and Health Act of 1977 [30 USC 811], NIOSH is responsible for several activities related to coal
miners:

® Conducting epidemiological research to

— identify and define factors involved in occupational diseases of miners,

— provide information about the incidence and prevalence of pneumoconiosis and other
respiratory ailments of miners, and

— improve mandatory health standards [30 USC 951(a)(5)]

® Prescribing the specifications for giving, reading, and classifying chest X-rays and any other
medical tests NIOSH deems necessary [30 USC 843(a)]

® Providing for the autopsy of miners with the consent of the surviving spouse or the next of
kin [30 USC 843(d)]

® Approving respiratory equipment [30 USC 842(h)]
® (Certifying coal mine dust sampling units [30 USC 842(e)]

Under the Black Lung Benefits Act of 1981 [30 USC 901-945], NIOSH is to provide criteria for
medical tests that accurately reflect total disability in coal miners [30 USC 902(f)]. A discussion
of the Black Lung Benefits Program is provided in Appendix H.

2.4 HEALTH EFFECTS STUDIES

Numerous U.S. and foreign studies show that miners exposed to respirable dust in underground coal
mines over a working lifetime are at risk of developing simple CWP and PMF [Attfield and Seixas
1995; Attfield and Motring 1992b; Maclaren et al. 1989; Hurley et al. 1987; Hurley et al. 1982;
Shennan et al. 1981). Miners who show evidence of the higher radiographic categories of simple
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CWP are at increased risk of developing PMF. The current U.S. standard of 2 mg/m3 for respirable
coal mine dust [30 USC 801-962; 30 CFR 70 and 71]) is based primarily on estimates of early studies
of coal miners in the United Kingdom [Jacobsen et al. 1971; McLintock et al. 1971; Cochrane 1962].
The intent of the standard of 2 mg/m3 is to prevent the development of PMF by preventing
progression of simple CWP to category 2 or greater.

More recent studies from the United States and the United Kingdom indicate that the risk of PMF
is higher than estimated in the studies used as the basis for the current U.S. coal dust standard
[Attfield and Seixas 1995; Attfield and Morting 1992b; Hurley and Maclaren 1987; Hurley et al.
1987]. These U.S. and U K. studies have shown that the prevalence of simple CWP and PMF has
been declining since the 1960s [British Coal Corporation 1993; Attfield and Castellan 1992; Attfield
and Althouse 1992]. However, simple CWP and PMF have not been eliminated under the current
standard. Estimates indicate that at age 58, an average of 7/1,000 U.S. workers (exposed to low-rank
coal) and 89/1,000 U.K. workers (exposed to high-rank coal) will have developed PMF during 40
years of exposure to respirable dust at a mean concentration of 2 mg/m3 [Attfield and Seixas 1995;
Attfield and Morring 1992b; Hurley and Maclaren 1987]. Within this range, the higher disease
prevalences are predicted for U.S. miners and for U.S. and U.K. miners exposed to the dust of
higher-ranked coal.

Studies from the United States and abroad have also shown that coal miners are at increased risk of
developing COPD, whether or not simple CWP or PMF is present [Seixas et al. 1993, 1992; Attfield
and Hodous 1992; Soutar et al. 1988; Marine et al. 1988; Soutar and Hurley 1986; Rogan et al.
1973). Studies of surface coal miners have shown that they are also at risk of developing simple
CWP [Love et al. 1992; Amandus et al. 1989, 1984].

2.5 OTHER STANDARDS AND RECOMMENDATIONS
2.5.1 MSHA

The current Federal standard of 2 mg/m? for respirable dust in the mine atmosphere was established
by the Federal Coal Mine Health and Safety Act of 1969 [P.L. 91-173], which was amended by the
Federal Mine Safety and Health Act of 1977 [30 USC 801-962]. An interim standard of 3 mg/m>
was in effect from 1969 to 1972 [30 USC 842 (b)], when the current standard became effective.
MSHA of the U.S. Department of Labor was established under the Federal Mine Safety and Health
Act of 1977 [30 USC 801-962]. MSHA is responsible for enforcing the provisions of the Act,
including the establishment of safety and health regulations [30 CFR 70 and 71]. Two Federal
agencies preceded MSHA: the Mine Enforcement and Safety Administration (MESA) of the U.S.
Department of the Interior (from 1972 to 1977) and the U.S. Bureau of Mines Inspection Division
(before 1972).

MSHA has adopted a permissible exposure limit (PEL) of 2 mg/m? for respirable coal mine dust,
which is measured gravimetrically as an 8-hour TWA concentration of the respirable coal mine
dust. The applicable standard for respirable coal mine dust is reduced when the respirable quartz
content exceeds 5% (a formula of 10 divided by the percentage of respirable guartz is used to
determine the reduced PEL for respirable coal mine dust) [30 CFR 70.101 and 71.101]. Thus, the
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MSHA PEL for respirable quartz (0.1 mg/m3) corresponds to a respirable coal mine dust concen-
tration of 2 mg/m3 and a quartz content of 5%.

Coal mine operators are required to take bimonthly samples of airborne respirable dust in the active
workings of a coal mine with a device approved by the Secretary of the U.S. Department of Labor
and the Secretary of the U.S. Department of Health and Human Services [30 CFR 70.206, 71.206,
and 74]. The measured concentration is multiplied by a conversion factor of 1.38 to adjust for
differences in sampling devices used in the United States (a 10-mm nylon cyclone) and the United
Kingdom (a horizontal elutriator developed by the British Mining Research Establishment [MRE])
[Tomb et al. 1973]. The respirable particulate size fraction is defined by the British Medical
Research Council criterion for particle-size selective dust samplers as “100% efficiency at 1 micron
or below, 50% at 5 microns, and zero efficiency for particles of 7 microns and upwards” [ATC
1970; Orenstein 1960].

2.5.2 OSHA

OSHA has adopted a PEL of 2 mg/m?3 for the respirable dust fraction containing less than 5% quartz
and a PEL of 0.1 mg/m3 for the respirable quartz fraction of coal dust containing 5% or more quartz.
Both OSHA PELs are 8-hr TWAs,

2.5.3 ACGIHTLV

The American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value
(TLV) for respirable coal mine dust is 2 mg/m3 as a TWA.

2.5.4 WHO Exposure Limit

The World Health Organization (WHO) [WHO 1986] has recommended a “tentative health-based
exposure limit” for respirable coal mine dust (with <7% respirable quartz) ranging from 0.5 to 4.0
mg/m3. WHO recommended that this limit be based on (1) the risk factots (i.e., coal rank ot carbon
content, proportion of respirable quartz and other minerals, and particle size distribution of the coal
dust) for CWP category 1 that are determined at each mine, and (2) the assumption that the risk of
PMF over a working lifetime (56,000 hr) will not exceed 2/1,000. Based on the WHO approach,
the risk of disease would be determined separately for each individual mine or group of mines, and
the exposure limit would vary from mine to mine.

2.5.5 Limits in Other Countries

Table 2-1 lists occupational exposure limits for respirable coal mine dust and respirable crystalline
silica in various countries. Exposure limits cannot be directly compared from country to country
because of differences in measurement strategies. Prinz and Stolz [1990] describe differences in
the sampling locations within the mines and differences in the number of samples and the frequency
of sampling in various countries. Measurements in the United States have been compared with
those in the United Kingdom by applying the MRE conversion factor (Section 2.5.1).
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Table 2-1. Occupational exposure limits for respirable coal mine
dust and respirable crystalline silica in various countries

Recommended value
Country (gravimetric) Comment
Australia” 3 mg/m® Coal dust with <5% respirable free silica
_ 10 mg/m’
Belgium % respirable quartz + 2
. 8 mg[m3
Brazil % respirable quartz + 2
Finland 2.0 mg/m’ Coal dust
0.2 mglm3 Quartz (fine dust <5 pm)
0.1 mg/m’ Silica: cristobalite, tridymite
Federal Republic 0.15 mglma Quartz (including cristobalite and tridymite)
of Germany 4.0 mg/m’ Fine dust containing quartz (1% or greater
quartz by weight)
Ttaly 3.33 mg/m> Coal dust with <1% quartz
10 mg [m3 Coal dust with >1% quartz
q+3
where q = % of quartz (mass)
Netherlands 2 mg]m"'t Coal dust (less than 5% respirable quartz)
0.075 mg/m” Silica: cristobalite, tridymite
Sweden 0.05 mg/m® Silica: cristobalite, tridymite
United Kingdom§ 3.8 mglm3 Coal mine dust {average concentration at the
coal face)
United States (MSHA) 20 mglm3 Coal dust with <5% silica
10 mg[m3 Coal dust with >5% silica
% SiO,
10 mg/m’ Silica: quartz
% respirable quartz + 2
Half of the value for quartz Silica: cristobalite, tridymite
Yugoslavia 4 mg/m® Fine dust with <2% free crystalline silica
0.07 x 100 mg m® Fine dust with >2% free crystalline silica
% FCS
0.07 mg/m> Pure quartz (fine dust)

§ourcc: WHO [1986] (except as otherwise noted).
Source: Coal Mines Regulation Act 1982 (New South Wales); Coal Mines Regulation, Respirable Dust 1978

(Queensland).

TSource: German Research Institute [1992].

*Source: Cook [1987].

¥Source: Jacobsen [1984]. Recommended value is based on maximum allowable concentration of 7 mglm3 in the return
airway during the working shift.
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3 PROPERTIES, PRODUCTION, AND POTENTIAL FOR EXPOSURE

3.1 CHEMICAL AND PHYSICAL PROPERTIES OF COAL MINE DUST

3.1.1 Coal and Its Characteristics

Coal is a combustible, carbonaceous, sedimentary rock that is formed by the accumulation,
compaction, and physical and chemical alteration of vegetation [Simon and Hopkins 1981; Bates
and Jackson 1987]. Coal is classified according to its type, grade, and rank. The type of coal relates
to the plant materials from which the coal originated. The grade of coal refers to the purity of the
coal—or the amount of inorganic material (including ash and sulfur) left after the coal is burned
[Bates and Jackson 1987; Stefanko 1983]. The rank of coal indicates its degree of metamorphosis
and roughly correlates to the geological age of the coal or the geological environment from which
it has been mined [Bates and Jackson 1987]. Rank also indicates the percentage of carbon in dry,
mineral-free coal [Whitten and Brooks 1973] and the degree to which the coalification process has
progressed [Larsen 1981]. The geological process of coalification begins with organic materials
{e.g., celluloses, lignins, and other plant compounds that are deoxygenated and then dehydro-
genated) and ends with coal of various geological ages, from lignite to anthracite [Larsen 1981].
Table 3-1 presents the American Society for Testing and Materials (ASTM) classification of coals
by rank. According to Parkes [1982], high-rank coal includes anthracite and semianthracite coal
(“bard coal,” with 91% to 95% carbon); intermediate-rank coal includes low-, medium-, and
high-volatile bituminous and sub-bituminous coal (“soft coal,” with 76% to 90% carbon); and
low-rank coal includes lignite (with 65% to 75% carbon or less). The rank of coa!l tends to increase
from the western to the eastern United States, with anthracite occurring primarily in eastern
Pennsylvania [Schlick and Fannick 1971]. Most of the coal currently mined in the United States is
bituminous [Given 1984]. A classification of the coal in the United States is provided in Table 3-2.

3.1.2 Composition of Coal Mine Dust

Coal mine dust is a complex and heterogeneous mixture containing more than 50 different elements
and their oxides [Coates 1981; Larsen 1981]. The mineral content varies with the particle size of
the dust and with the coal seam [Stobbe et al. 1990]. Common minerals associated with coal mine
dust include kaolinite, illite, calcite, pyrite, and quartz [Stobbe et al. 1990]. The sulfur content varies
from 0.5% (by weight) to more than 10%, with coal from the western United States generally having
lower sulfur content [Coates 1981].

Airborne respirable dust in underground coal mines has been estimated to be 40% to 95% coal; the
remaining portion consists of a variable mixed dust that is generated from fractured rock on the
mine roof or floor, or that is encountered within the coal seam [Kim 1989]. The coal component
of respirable dust at surface coal mines can be even more variable, depending on the stage of the
mining operation.
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Table 3-1. ASTM classification of coals by rank

Basis of classification
% fixed carbon Heat content in Btuflb Agglomerating
Coal rank and group (range) (range)T character
Anthracitic:
Meta-anthracite 98 —— Nonagglomerating
Anthracite 92-<98 —— Nonagglomerating
Semianthracite® 86-<92 — Nonagglomerating
Bituminous:
Low-volatile bituminous 78-<86 —_ Commonly agglr.muemting§
Medium-volatile bituminous 69-<78 —_ Commonly agglomerating
High-volatile A bituminous <69"" —_ Commonly agglomeratingi
High-volatile B bituminous —_ 13,000-<14,000 Commonly agg]omerating’
High-volatile C bituminous _ 11,500-<13,000 Commonly agglomerating®
High-volatile C bituminous —_ 10,500-<11,500 Agglomerating
Sub-bituminous:
Sub-bituminous A _ 10,500-<11,500 Nonagglomerating
Sub-bituminous B — 9,500-<10,500 Nonagglomerating
Sub-bituminous C —_— 8,300-<9,500 Nonagglomerating
Lignitic:
Lignite A —_ 6,300-<8,300 Nonagglomerating
Lignite B —_ <6,300 Nonagglomerating

Sources: ASTM [1993]; EIA {1993].

*Percentages are based on dry, mineral-matter-free coal. Volatile matter (not shown) is the complement of fixed carbon; that
is, the % fixed carbon and % volatile matter is 100%. As % fixed carbon decreases, % volatile matter increases by the
same amount.

*Calorific values in B/l are based on moist, mineral-matter-free coal.
*If agglomerating, classify in the low-volatile group of the bituminous class.
¥Nonagglomerating varieties may exist in the bituminous class, most notably in the high-volatile C bituminous group.

*"Coals having 269% fixed carbon are classified according to fixed catbon, regardless of Btu value. Coals with <69% fixed

carbon but with 214,000 Btu/lb are classified as high-volatile A bituminous.

Huggins et al. [1985] compared the size disttibutions of respirable quartz at surface and underground
coal mines and found that the distributions of particle sizes less than 4.2 pm were similar. The
distribution of particles at surface coal mines included more quartz particles in the size range of 4.2
t0 9.6 pm (2.7% versus 6.4%). The distribution of particles in both surface and underground coal
mines contained <0.25% of respirable quartz larger than 9.6 pm.

Dust of high-rank coal contains a greater proportion of silica particles with uncontaminated surfaces
than does dust of lower-rank coal [Kriegseis and Scharmann 1985]. Dust of high-rank coal also
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contains a greater concentration of oxygen radicals when the coal is freshly crushed [Dalal et al.
1989a,b; Dalal et al. 1988; Vallyathan et al. 1988] and a greater concentration of respirable particles
that have large surface areas relative to other particles in the same aerodynamic size range (i.c.,
plate-shaped particles) [Addison and Dodgson 1990]. Dust of anthracite coal may contain a greater
concentration of respirable crystalline silica than dust of lower-rank coal because the anthracite
seams are dominated by quartzite in the roof and floor [Mutmansky and Lee 1984].

The particle size distribution of dust in the mine environment includes the respirable, thoracic, and
inhalable particulate mass fractions. These fractions are defined as those that are hazardous when
deposited in the following regions of the human respiratory tract: in the gas-exchange region
(respirable dust), anywhere within the lung airways and gas-exchange region (thoracic dust), and
anywhere in the respiratory tract (inhalable dust) [ACGIH 1994]. The source of the dust generated
in longwall mines influences the particle size distributions measured at various locations in the
mines [Potts et al. 1990]. The proportion of thoracic dust is up to seven times greater than that of
respirable dust [Potts et al. 1990]. Furthermore, the thoracic dust concentration is higher in mines
using longwall methods than in mines using continuous methods.

Coal miners may be exposed to diesel emission particulates in mines where diesel-powered
equipment is used. These diesel particulates are of respirable size and contribute to the total
concentration of respirable dust in an occupational environment [NIOSH 1988a]. The concentration
of respirable coal mine dust is determined gravimetrically, and this method does not distinguish
between coal dust particulates and diesel particulates. In a study of five underground coal mines
using diesel equipment, Cantrell et al. [1993] found that 27% to 62% of the measured respirable
dust concentration was diesel exhaust particulates (depending on the sampling location).

3.2 COAL PRODUCTION AND MINING METHODS

As mechanization was introduced into the mines, the total number of U.S. coal miners decreased
from more than 400,000 in 1950 to approximately 130,000 in 1990, and coal production increased
fivefold (Table 3-3) [EIA 1989; Morgan 1975]. Table 3-3 lists coal mine production and number
of miners employed from 1900 through 1990. In 1992, approximately 120,000 U.S. coal miners
produced 997.5 million short tons of coal (1 short ton = 2,000 1b); 41% of the total production
was from underground mines, and 59% was from surface mines [EIA 1993]. Figure 3-1 shows
U.S. coal production from both surface and underground coal mines. Figure 3-2 illustrates U.S.
coal production by rank (as described in Section 3.1.1).

Whether coal is mined by underground or surface methods depends on the depth of the coalbed
from the surface and the character of the terrain. Underground methods are usually used to mine
coalbeds deeper than about 200 feet, and surface methods are used to mine shallower coalbeds
[EIA 1989].

3.2.1 Underground Coal Mining Methods

Underground mines are classified by their openings to the surface of the earth and by the coal mining
method. A “shaft mine” is driven vertically into the coal deposit, while a “slope mine” is driven at
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Table 3-3. Miners employed and U.S. production trends of bituminous coal
and lignite in surface and underground mines, 1900 through 1990

Production
(in thousands of short tons) Number of miners Average tons
Year Underground Surface Total ern:nployetff per miner per day*
1900 212,316 Nat NA 304,375 2.98
1901 225,828 NA NA 340,235 2.94
1902 260,217 NA NA 370,056 3.06
1903 282,749 NA NA 415,777 3.02
1904 278,660 NA NA 437,832 3.15
1905 315,063 NA NA 460,629 324
1906 342,875 NA NA 478,425 3.36
1907 394,759 NA NA 516,258 329
1908 332,574 NA NA 516,264 3.34
1909 379,744 NA NA 543,152 3.34
1910 417,111 NA NA 555,533 3.46
1911 405,907 NA NA 549,775 3.50
1912 450,105 NA NA 548,632 3.68
1913 478,435 NA NA 571,882 3.61
1914 421,436 1,268 422,704 583,506 371
1915 439,792 2,832 442,624 557,456 391
1916 498,500 4,020 502,520 561,102 3.90
1917 546,273 5,518 551,791 603,143 377
1918 571,275 8,111 579,386 615,305 3.78
1919 460,270 5,590 465,860 621,998 3.84
1920 559,807 8,860 568,667 639,547 4.00
1921 410,865 5,057 415,922 663,754 4.20
1922 412,059 10,209 422,268 687,958 4.28
1923 552,625 11,940 564,565 704,793 4.47
1924 470,080 13,607 483,687 619,604 4.56
1925 503,182 16,871 520,053 588,493 4.52
1926 556,444 16,923 573,367 593,647 4.50
1927 499,385 18,378 517,763 593,918 4.55
1928 480,956 19,789 500,745 522,150 4,73
1929 514,721 20,268 534,989 502,993 4.85
1930 447,684 19,842 467,526 493,202 5.06
1931 363,157 18,932 382,089 450,213 5.30
1932 290,069 19,641 309,710 406,380 5.22
1933 315,360 18,270 333,630 418,703 4.78
1934 338,578 20,790 359,368 458,011 4.40
1935 348,726 23,647 372,373 462,403 4.50
1936 410,962 28,126 439,088 477,204 4.62
1937 413,780 31,751 445,531 491,864 4.69
1938 318,138 30,407 348,545 441,333 4.89
1939 357,133 37,722 394,855 421,788 525
See footnotes at end of table. {Continued)
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Table 3-3 (Continued). Miners employed and U.S. production trends of bltummous coal
and lignite in surface and underground mines, 1900 through 1990"

Production
{in thousands of short tons) Number of miners Average tons
Year Underground Surface Total employedf per miner per day¢
1940 417,604 43,167 460,771 439,075 5.19
1941 459,078 55,071 514,149 456,981 5.20
1942 515,490 67,203 582,693 461,991 5.12
1943 510,492 79,685 590,177 416,007 5.38
1944 518,678 100,896 619,576 393,347 5.67
1945 467,630 109,987 577,617 383,100 5.78
1946 420,958 112,962 533,922 396,434 6.30
1947 491,229 139,395 630,624 419,182 6.42
1948 460,012 139,506 599,518 441,631 6.26
1949 331,823 106,045 437,868 433,698 6.43
1950 392,844 123,467 516,311 415,582 6.77
1951 415,842 117,823 533,665 372,897 7.04
1952 356,425 110,416 466,841 335,217 7.47
1953 349,551 107,739 457,290 293,106 8.17
1954 289,112 102,594 391,706 227,397 9.47
1955 343,465 121,168 464,633 225,093 9.84
1956 365,774 135,100 500,874 228,163 10.28
1957 360,649 132,055 492,704 228,635 10.59
1958 286,884 123,562 410,446 197,402 11.33
1959 283,434 128,594 412,028 179,636 12.22
1960 284,888 130,624 415,512 169,400 12.83
1961 272,766 130,211 402,977 150,474 13.87
1962 281,266 140,883 422,149 143,822 14.72
1963 302,256 156,672 458,928 141,646 15.83
1964 321,808 165,190 486,998 128,698 16.84
1965 332,661 179,427 512,088 133,732 17.52
1966 338,524 195,357 533,881 131,752 18.52
1967 349,133 203,494 552,626 131,523 19.17
1968 344,142 201,103 545,245 127,894 19.37
1969 347,132 213,373 560,505 124,532 19.90
1970 338,788 264,144 602,930 140,140 18.84
1971 275,888 276,304 552,192 145,664 18.02
1972 304,103 291,284 595,386 149,265 17.74
1973 299,353 292,384 591,738 148,121 17.58
1974 277,309 326,098 603,406 166,701 17.58
1975 292-826 355,612 648,438 189,880 14.74
1976 294,880 383,805 678,685 202,280 14.46
1977 265,950 425,394 691,344 221,428 14.84
1978 242,177 422,950 665,127 242,295 14.68
1979 320,321 455,978 776,299 224,203 15.33
See footnotes at end of table. (Continued)
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Table 3-3 (Continued). Miners employed and U.S. production trends of bitu;kninous coal
and lignite in surface and underground mines, 1900 through 1990

Production
(in thousands of short tons) Number of miners Average tons
Year Underground Surface Total employch per miner per dayt
1980 336,925 486,719 823,644 224,938 16.32
1981 315,875 502,477 818,352 226,250 18.08
1982 338,572 494,951 833,523 214,400 18.13
1983 299,892 478,111 778,003 173,543 21.19
1984 351,474 540,285 891,759 175,746 22.26
1985 350,073 528,856 878,930 167,009 23.13
1986 359,800 526,223 886,023 152,668 25.69
1987 372,238 542,963 915,202 141,065 28.19
1988 381,546 565,164 946,710 133,913 30.57
1989 393,322 584,058 977,381 130,103 32.05
1990 424,119 601,449 1,025,570 129,619 33.25

Source: EIA [1991].

“Note: Sub-bituminous coal is included with bituminous coal. Totals may not equal sum of components because of
independent rounding. Sources: 1900-1976: U.S. Department of Intetior, Bureau of Mines, Minerals Yearbooks;
1977-1978: Energy Information Administration, Bituminous Coal & Lignite Production and Mine Operations;
1979-1990; Coal Production, various issues.

TNote: The number of “miners employed™ is lower than that listed in MSHA [1991] because mines producing less than
10,000 tons are excluded hete.

*After 1978, excludes miners employed at mines that produced less than 10,000 tons.

¥NA = Not available; relatively small amounts included with underground.

anangle to reach the coal. A “drift mine” is driven horizontally into coal that is exposed or accessible
in a hillside. A “punch mine” is a small drift mine used to recover coal from strip-mine highwalls
or from small coal deposits [EIA 1989]. Room-and-pillar mining and longwall mining are the two
predominant methods.

3.2.1.1 Room-and-Pillar Mining

The most common underground coal mining method is the room-and-pillar mining system, in which
the mine roof is supported primarily by coal pillars that are left at regular intervals [EIA 1989]. The
rooms are the areas where the coal is mined. Either a conventional or a continuous mining method
is used to extract the coal in the room-and-pillar method. Conventional mining consists of a series
of operations in which the coal face is cut so that it breaks easily when blasted (with either explosives
or high-pressure air). The broken coal is then loaded onto conveyers or into shuttle cars for removal
to the surface. In continuous mining, the coal is extracted and removed from the coal face in one
operation, using a continuous mining machine. Room-and-pillar retreat mining occurs after coal
has been extracted from the rooms in a mine section; additional coal is extracted by mining the
supportive pillars [EIA 1989].
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Figure 3-1. U.S. coal production in surface and underground mines, 1983-92. (Source: EIA [1993]).

3.2.1.2 Longwall Mining

Another common underground coal mining method is the longwall mining system, in which long
sections of coal (also called panels) up to about 1,000 ft are removed by a cutting machine without
leaving pillars of coal for support. Instead, a movable, powered roof-support system is used to
support the roof in the working area. When the roof supports are moved, the area caves in and is
called the gob area. After subsidence occurs, the gob area supports the overlying strata. Longwall
mining is used where the coalbed is thick and generally flat, and where surface subsidence is
acceptable [EIA 1989]. In 1992, mines using longwall methods accounted for 31% of the coal
produced in underground coal mines [EIA 1993].

3.2.1.3 Additional Underground Coal Mining Methods

A shortwall mining system is a room-and-pillar, continuous mining system in which movable roof
supports are used with a continuous miner operator. The working face is wider than in conventional
or continuous sections (up to 150 ft) but smaller than in longwall mining [EIA 1989].

Hydraulic mines use high-pressure water jets to break coal from a steeply inclined, thick coalbed.
The coal is transpotted to the surface by a system of flumes or a pipeline [EIA 1989].
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Figure 3-2. U.S. coal production by coal rank, 1983-92. (Source: EIA [1993])

3.2.1.4 Roof Supports

The principal method of supporting the mine roof in room-and-pillar mining is through roof bolting,
a process in which bolts are drilled into the mine roof to strengthen it by pulling together rock strata
or by fastening weak strata to strong strata. The bolts are 2 to 10 ft long and have an expansion
shell or resin grouting [EIA 1989].

3.2.1.5 Control of Gases and Airborne Dust

The principal method of controlling noxious gases and airborne respirable dust in coal mines is
through mine ventilation, in which fans are used to supply fresh air and remove gases and dust from
the mine. To reduce the possibility of a coal dust explosion, rock dust is sprayed in underground
coal mines. Rock dust is a very fine, noncombustible material —usually pulverized limestone {EIA
1989]. Table 3-4 describes mining equipment used in underground coal mines.

3.2.2 Surface Coal Mining Methods

Strip mining, the most common type of surface coal mining, produced 99% of the coal from U.S.
surface coal mines in 1992 (Table 3-5). Auger mining, coal dredging, and culm bank reclamation
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Table 3-4. Glossary of underground coal mining equipment

Equipment name

Description

Coal cutting

Continuous auger

Continuous mining

Conveyer systems

Face drill

Loading machine

Longwall mining

Mine locomotive

Ram carfscoop car

Roof-bolting machine (roof bolter)

Scoop

Shortwall mining machine

Shuttle car

Equipment used in conventional mining to undercut, topeut, of machine shear
the coal face so that coal can be fractured easily when blasted. This equip-
ment can cut 9-13 ft into the coal face.

Augers used in mining coalbeds less than 3 ft thick. The auger machine cutting
depth is about 5 ft. It usually uses a continuous conveyer belt to haul coal to
the surface.

Equipment used during continuous mining to cut or rip the coal from the coal
face and load it into shuttle cars or conveyors. Continuous mining equipment
eliminates the use of blasting and performs the functions of other machines
(e.g., drills, cutting machines, and loaders). It has a turning drum with sharp
bits and extracts 16-22 ft of coal before roof bolting is required. Coal is
extracted at 8-15 tons/min.

Systems to carry coal. The mainline conveyer is permanently installed and
carries coal to the surface. The section conveyer connects the working face
to the mainline conveyet.

Drill used in conventional mining to drill shotholes in the coalbed for explosive
charges.

Machines used in conventional mining to scoop broken coal from the working
area and load it into the shuttle car.

A machine that shears coal from a long, straight coal face (up to about 600 ft)
by working back and forth across the face under a movable, hydraulic-jack,
roof-support system. Broken coal is transported by conveyor. Coal is ex-
tracted at 1,000 tons per shift.

A locomotive that operates on tracks and is used to haul mine cars containing
coal and other material or to move personnel in mantrip cars; some can haul
20 tons at 10 mph. The locomotive is electric or battery-powered.

A rubber-tired haulage vehicle that is unloaded by means of a movable steel
plate at rear of haulage bed.

A machine used to drill holes and place bolts to support the mine roof. This
machine can be installed on a continuous mining machine.

A rubber-tired haulage vehicle used in thin coalbeds.

Usually a continuous mining machine used with a powered, self-advancing roof
support system. It shears coal from a short coal face (up to 150 ft long).
Broken coal is hauled by shuttle cars to a conveyer belt.

A rubber-tired haulage vehicle that hauls coal to mine cars or conveyers for
delivery to the surface. The car is unloaded by a built-in conveyer.

Source: EIA [1989].
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Table 3-5. U.S. coal production by work location and type of coal in 1987 (operator data)

[In short tons]
Type of coal
Work location Anthracite Bituminous®* All coal
Underground mines 369,958 403,233,450 403,603,408
Surface mines:
Strip mines 1,813,376 575,398,356 577,211,732
Auger mines —_—— 3,464,461 3,464,461
Culm bank 1,462,002 697,984 2,159,986
Dredge 3,466 258,438 261,904
Total (surface) 3,278,844 579,819,239 583,098,083
Total (underground
and surface) 3,648,802 983,052,689 986,701,491
Adapted from MSHA [1993].

*Includes sub-bituminous and lignite.

account for the remainder. At an auger mine, coal is recovered with a large-diameter,
screw-type drill that is driven up to 200 feet into a coal seam that outcrops on a hillside [EIA
1993]. Although auger mining is inefficient (only 35% of the coal is recovered), it produces
coal at a lower cost in seams that are thin, dirty, isolated, or not economically recovered by
other surface methods. In addition, labor costs are minimal because only the auger operators
and truck drivers are needed [Porterfield and Phelps 1981]. Silty coal fines are recovered from
bodies of water with coal dredges. Culm banks, the hillside where waste from anthracite mines
is dumped, have been reclaimed for the fine anthracite (culm) [EIA 1993].

Strip mining is a large-scale, earth-moving process during which the overburden (or material
overlying a bed of coal) is excavated and the underlying coal is removed. The working area of the
strip mine is known as the pit. Overburden material excavated from the strip being mined typically
is side-cast into the strip pit previously mined. The process is repeated over and over until some
limit is reached (e.g., a geological limit; a property-line limit; or some economic or equipment limit)
[Stefanko 1983}, The average thickness of the overburden to be removed at surface coal mines
typically ranges between 30 and 60 ft. The nature of the overburden at surface coal mines is variable
but is generally some combination of sandstone, shale, limestone and loose soils. The unexcavated
face of exposed overburden or coal in a strip pit is referred to as the “highwall.” Highwalls up to
180 ft in height have been mined [Stefanko 1983].

The process of extracting coal from a surface-coal strip mine and delivering it to consumers typically
involves the following operations: (1) drilling, (2) blasting, (3) overburden excavation (stripping),
(4) coal loading, (5) coal haulage, (6) reclamation, (7) coal preparation, and (8) transportation to
the consumer [Stefanko 1983]. Coal preparation and transportation to the consumer are common
processes to all coal mining ventures.
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3.2.2.1 Drilling

Topsoil is first removed and stored for reclamation of the area to be mined. In most cases, holes
are drilled in the overburden material where explosives can be placed for blasting. Drilling and
blasting the overburden layer creates fragments that are easier to excavate and results in fewer
problems with the operation and maintenance of excavating equipment (and thus a more rapid
and economical stripping process) [Stefanko 1983].

If the overburden is greater than 50 ft thick, vertical holes for blasting are drilled in the highwall.
The advantage of drilling vertical holes rather than placing explosives in a horizontal hole above the coal
seam is that thicker and harder layers of overburden may be fractured without damaging the undetlying
coal seam. In some mines, vertical holes for blasting are also routinely drilled when the overburden is less
than 50 ft thick [Stefanko 1983].

The spacing of the vertical holes in the highwall depends on factors such as the strength of the
overburden material to be blasted and the type of explosive that will be used. A larger hole
allows a greater amount of explosives and permits greater spacing between holes. Thus,
15-in.-diameter holes might be placed about 35 ft apart, whereas 7-in.-diameter holes might be
spaced about 15 ft apart.

A stream of compressed air (referred to as “bail air™) is typically injected into the drill stem and
forced out through orifices in the drill bit. This air cools the drill bit’s cutting points and bearings
and keeps the hole being drilled free of cuttings. The injected air bails the drill cuttings up and out
of the drill hole. The bail air exiting from the drill hole forms a dust cloud that may contain relatively
large amounts of crystalline silica. The amount of dust from the drill hole and the amount of
respirable crystailine silica in the dust cloud may fluctuate considerably, depending on factors such
as geology, drilling methods, weather conditions, and water content [BOM 1986). These factors
must be considered when selecting a dust collection method for the drilling machinery.

When the overburden is less than 50 ft thick and consists of soft shale materials, an auger-type drill
may be used to place long horizontal holes for blasting about 1 to 2 ft above the coal seam. This
horizontal hole approach allows a large area of overburden to be blasted with a small number of
holes [Stefanko 1983].

3.2.2.2 Blasting

The next step in the work process is to place explosives in the holes that have been drilled in the
overburden. Ammonium nitrate (94%) with fuel oil (6%) (generically referred to as ANFO) is the
most commonly used explosive in surface coal mining. This explosive is detonated by using special
cast primers that are in turn ignited by blasting caps. A detonating fuse is typically used with a
highly explosive core of pentaerythritol tetranitrate (PETN). Millisecond-delay elements permit
delays between detonation of individual holes to improve fragmentation [Stefanko 1983].

3.2.2.3 Overburden Excavation (Stripping)

The blast causes some of the overburden to fall into the pit. However, most of the overburden is
retained in the highwall area as fragmented material. Several different types of equipment may be
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used to remove the fragmented overburden material. Descriptions of this equipment are provided
in Table 3-6. When there are small amounts of overburden, bulldozers, scrapers, and front-end
loaders may be used. When there are large amounts of overburden, power shovels may be operated
in the pit, or draglines may be operated from on top of the overburden beside the pit. In addition,
bucket-wheel excavators are used at a few surface coal mines in the United States [Stefanko 1983].

The overburden removed in gaining access to the coal is called the spoil. The excavated overburden
from the pit and the highwall are typically discharged (spoiled) at the side of the pit opposite the
highwall. The process builds up mounds of loose material that are collectively called the spoil bank
[Stefanko 1983].

3.2.2.4 Coal Loading

Following overburden removal, the exposed coal seam is excavated and loaded onto trucks by power
shovels or by front-end loaders, either rubber-tited or track-mounted. In some mines, coal
excavation may include drilling and blasting (so that the coal can be excavated with relative ease)
or using a ripper to loosen it [Stefanko 1983].

3.2.2.5 Coal Haulage

In the United States, large, off-highway diesel or electric trucks are typically used in surface coal
mines to transport coal from the pit to the coal preparation plant or a railroad loading siding. Eastern
and midwestern strip mines tend to employ rear-dump units (35- to 85-ton capacity) because this
type of truck maneuvers well in compact pit operations, has good traction capabilities, and can cope
with the steep ramps and sharp haul road turns. Westernstrip mines tend to use drop-bottom
tractor-trailer units (100- to 200-ton capacity) because the pits are larger, the haul distances are
longer, the ramps have gentler grades, and traction is not a problem [Stefanko 1983].

3.2.2.6 Reclamation

The Surface Mining Control and Reclamation Act of 1977 [30 USC 1201 et seq.] and State laws
require reclamation of a surface mine work area after coal has been extracted. Reclamation enables
the land to be used in the future for some other purpose; it also minimizes wind and water erosion,
and it is more aesthetically acceptable. The reclamation process includes putting the overburden
back in the same stratigraphic layer in which it originally existed, providing drainage, replacing
topsoil, recontouring, and reestablishing permanent vegetation [Stefanko 1983].

3.2.2.7 Coal Preparation

Most of the coal produced in the United States undergoes some degree of processing or preparation
before it is used. The amount of preparation depends on the specifications of the customer. About
two-thirds of the coal shipped to electric power plants from eastern mines is cleaned, whereas most
of the coal shipped to electric utilities from western mines is only crushed and screened to facilitate
handling and to remove any extraneous material [EIA 1989].
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Table 3-6. Glossary of surface coal mining equipment

Equipment name Description

Auger A large-diameter (16- to 48- in.) screw drill that cuts, transports, and loads overburden or coal
onto vehicles or conveyors.

Bucket wheel A boom-mounted, rotating, vertical wheel with buckets on its periphery used to load an intemal
conveyor network that discharges away from the digging area.

Bulldozer A tractor with a vertically curved steel blade mounted on the front end. The blade is held at
a fixed distance by arms secured on a pivot or shaft near the horizontal center of the tractor.

Dragline Excavating equipment that can cast a cable-hung bucket a considerable distance. The dragline
can collect material by pulling the bucket toward itself on the ground with a second cable,
elevate the bucket, and dump the material in a pile.

Front-end loader A tractor-loader with a digging bucket mounted and operated on the front end.

Power shovel An excavating and loading machine with a digging bucket at the end of an arm suspended
from a boom that extends crane-like from the part of the machine that houses the power
plant.

Ripper A steel accessory (tooth-shaped) that is mounted or towed by a bulldozer and is used in place

of blasting for loosening compacted materials.

Scraper A steel tractor that can dig, haul, and grade. A scraper has a cutting edge, a carrying bowl, a
movable front wall, and a dumping or ejecting mechanism.

Sources: EIA [1989]; Skelly and Loy [1979].

Cleaning upgrades the quality and heating value of coal by (1) removing or reducing the amount of
pyrite, rock, clay, or other ash-producing material, and (2) removing any materials mixed with the
coal during mining, such as wire and wood. Coal cleaning is based on the principle that coal is
lighter than rock and other impurities mixed or embedded in it. The impurities are separated by
various mechanical devices using pulsating water current, rapidly spinning water, and liquids of
different densities (dense media). Finely sized coal is cleaned by froth flotation. In this process,
the coal adheres to air bubbles in a reagent and floats to the top of the washing device, whereas the
refuse sinks to the bottom [EIA 1989]. Exposure to respirable dust at preparation plants may occur
(1) during loading, unloading, and moving coal, (2) when processing equipment is cleaned, (3) when
heavy media (e.g., magnetite) are added to liquid slurry to achieve a desired specific gravity in a
cyclone, and (4) when refuse is transported [Llewellyn et al. 1981].

3.2.2.8 Transportation to Consumers

Coal may be delivered to consumers by several different modes of transportation, including
railroads, barges, ships, trucks, conveyors, and slurry pipelines. Railroads deliver nearly 70% of
the coal distributed to domestic customers and export terminals. More than half of all railroad coal
shipments are made by unit trains (a train that is dedicated to coal transportation and that carries
coal from a specified loading facility directly to a specified customer) [EIA 1989].
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3.3 NUMBER OF MINERS POTENTIALLY EXPOSED IN U.S. COAL MINES

In 1992, an estimated 118,733 miners were employed in U.S. underground and surface coal mines,
including 1,991 miners at anthracite coal mines and 116,742 miners at bituminous coal mines
[MSHA 1993]. Of the 118,733 miners, 54% (64,481) were employed at underground coal mines,
34% (39,882) were employed at surface coal mines, and 12% (14,370) were employed at coal
preparation plants or other operations [MSHA 1993].

3.3.1 Occupational Exposures in U.S. Coal Mines

MSHA requires that respirable dust samples be collected by mine operators to determine compliance
with the PELs for respirable coal mine dust and respirable crystalline silica [30 CFR 70.201-70.220;
71.201-71.220]. MSHA also conducts periodic mine inspections and respirable dust sampling
[MSHA 1989a]. From 1988 through 1992, approximately 350,000 respirable coal mine dust
samples were collected in underground mines by both MSHA inspectors and coal mine operators,
and approximately 19,700 samples were analyzed for respirable crystalline silica. In surface coal
mines, approximately 60,600 respirable coal mine dust samples were collected, and approximately
4,100 samples were analyzed for respirable crystalline silica. Tables A-1 through A-3 in Appendix
A provide the number of respirable coal mine dust samples collected by MSHA inspectors and mine
opetators and the number of samples analyzed for respirable crystalline silica each year from 1988
through 1992. Also listed for each year is the number of producing mines.

3.3.1.1 Exposures to Respirable Coal Mine Dust

Tables A-4 through A-7 list the concentrations of respirable coal mine dust in underground and
surface coal mines. These concentrations are based on samples collected by MSHA inspectors and
coal mine operators from 1988 to 1992. Samples for underground occupations (Tables A-4 and
A-5) show that average concentrations of respirable coal mine dust from 1988 to 1992 were below
2.0 mg/m3* for most occupations. However, even occupations with average concentrations below
2.0 mg/m> had up to 42% of individual samples exceeding 2.0 mg/m3. It should be noted that
compliance with the MSHA PEL is currently determined by an arithmetic average of five samples
collected during a normal production shift or work shift [30 CFR 70.207(a), 70.2(k)]). Thus, the
occurrence of individual samples that exceed the MSHA PEL is not an indication that a mine is out
of compliance. Another current regulation is that sampling devices are operated for a full shift or
for 8 hr, whichever is less [30 CFR 70.201(b), 71.201(b)]. Thus, if actual work shifts exceed 8 to
10 hr/day and 40 hrfweek, the measured concentrations would underestimate actual exposures.
Area sampling results for respirable coal mine dust in underground mines from 1988 to 1992 are
summarized in Table A-12.

Samples for surface coal mine and preparation plant occupations (Tables A-6 and A-7) show that

the average concentrations of respirable coal mine dust from 1988 to 1992 were below 2.0 mg/m?3
for all occupations. In general, less than about 16% of individual samples exceeded 2.0 mg/m3.

*Based on the current MSHA sampling method (Section 5.1), including use of the MRE conversion factor of 1.38 and
a sampling flow rate of 2.0 L/min.
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3.3.1.2 Exposures to Respirable Crysialline Silica

The average concentration of respirable crystalline silica from 1988 to 1992 was greater than the
MSHA PEL of 0.1 mg/m? for up to 7 underground occupations and greater than the NIOSH REL
of 0.05 mg/m3' for more than 20 underground occupations (Tables A-8 and A-9). Among those
occupations with average exposures to respirable crystalline silica less than or equal to the MSHA
PEL of 0.1 mg/m3, approximately one-third of all individual samples exceeded 0.1 mg/m3. Area
sampling results for respirable crystalline silica in underground coal mines from 1988 to 1992 are
summarized in Table A-13,

In surface operations, the average concentration of respirable crystalline silica was greater than the
MSHA PEL of 0.1 mg/m? for all occupations combined (see MSHA code 999, summary for
valid occupations, in Tables A-10 and A-11). The average concentration of respirable crystalline
silica exceeded the NIOSH REL of 0.05 mg/m3 for up to 13 surface occupations. Exposures of
drillers and driller helpers to respirable crystalline silica are of particular concern, with average
concentrations from 1988 to 1992 ranging from 0.15 to 0.51 mg/m3, and with up to 70% of all
samples exceeding the MSHA PEL and up to 82% exceeding the NIOSH REL. Methods for
controlling exposures during overburden drilling at surface coal mines are provided in Appendix D.

Only those samples with at least 0.5 mg of respirable coal mine dust are currently analyzed for
respirable crystalline silica [Niewiadomski et al. 1990]. Therefore, the estimated values listed in
Tables A-8 through A-11 for both the mean concentration of respirable crystalline silica and the
percentage of samples exceeding specified concentrations may be biased toward higher concentra-
tions and higher percentages.

Miners who show radiographic evidence of simple CWP category 1 or greater have the option to
transfer to another position in the mine where the concentration of respirable dust is either
<1.0 mg/m3 (if attainable) or the lowest attainable concentration below 2 mg/m?3 [30 USC 843(b);
30 CFR 90]. Appendix B provides the respirable coal mine dust and respirable crystalline silica
exposures of miners who elected to transfer under the provisions of 30 CFR 90. Tables B-1 through
B-4 show that the average respirable coal mine dust concentrations for some occupations exceeded
1 mg/m3. Among surface occupations, all of the average concentrations of respirable coal mine
dust and most of the individual samples were below 1 mg/m3. Exposure to respitable crystalline
silica remains a concern for miners who elect to transfer [30 CFR 90]; Tables B-5 and B-6 show
that exposures for some occupations (particularly roof bolters) exceeded the MSHA PEL of
0.1 mg/m3. Purthermore, the average concentration of respirable crystalline silica for all under-
ground occupations combined (Part 90 miners) exceeded the NIOSH REL of 0.05 mg/m?> (Table B-5).

3.3.2 Occupational Exposures in Small Mines

Nearly 3,000 small coal mines are in operation in the United States, and more than 40,000 miners
are employed at these small mines [MSHA 1994]. A small mine is one with fewer than 50
employees. Small mines are often operated by contract production operators and are part of a larger
economic entity. Most small mines are located in the Appalachian regions of eastern Kentucky,

"Based on a sampling flow rate of 1.7 L/min and no use of the MRE conversion.
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southern West Virginia, and southwestern Virginia. Sixty-five percent of the small mines are
surface mines.

The incidence rates of fatalities and serious injuries have been higher in small mines than in larger
mines [MSHA 1994]. The prevalence of simple CWP has also been found to be higher in small
mines [Linch 1994]. Exposures to respirable coal mine dust in small coal mines do not exceed those
in larger coal mines [Linch 1994], but there is concern that sampling procedures and inspections
may be inadequate and that extended work schedules may result in exposures that exceed those
reported [MSHA 1994]. In April 1994, MSHA convened a conference to focus on ways to
improve safety and health in small mines [MSHA 1994].
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4 HEALTH EFFECTS OF EXPOSURE TO
RESPIRABLE COAL MINE DUST

This chapter describes the adverse health effects associated with exposure to respirable coal mine
dust. Epidemiological studies of underground and surface coal miners in the United States and
other countries are discussed. Also discussed are animal studies that add to our understanding of
particle deposition and retention in the lungs and associated disease responses. This chapter
emphasizes studies that (1) were performed since the passage of the Federal Coal Mine Health and
Safety Act of 1969 [P.L. 91-173], (2) used standardized methods of exposure monitoring and
disease classification, and (3) investigated exposure-response relationships between respirable coal
mine dust exposure and disease. Several published review articles contain further discussion of
health effects studies of coal miners [Attfield and Wagner 1992b; Petsonk and Attfield 1994; Cotes
and Steel 1987; Merchant et al. 1986; Morgan and Lapp 1976; Morgan 1975].

4.1 DESCRIPTION OF OCCUPATIONAL RESPIRATORY DISEASES IN
COAL MINERS

4.1.1 Historical Perspective

“Black lung” was recognized as a disease of British coal miners in the mid-17th century [Davis
1980]. The term “pneumonokoniosis” was introduced in 1866 and was shortened to “pneumoco-
niosis” in 1874 [Meiklejohn 1951]. The term means “dusty lung.” The term “silicosis™ was
introduced in 1870 to describe pneumoconiosis resulting from silica [NIOSH 1974]. Investigations
into the etiology of black lung disease began in the 1900s. By 1907, chest X-rays were used to
study lung disease in coal miners, but their quality permitted detection of only gross pathological
changes until about 1930 [Meiklejohn 1952 a,b].

The causative agent of pneumoconiosis in coal miners was thought to be silica until studies in the
United Kingdom provided evidence that exposure to coal dust containing minimal silica could also
cause pneumoconiosis [Collis and Gilchrist 1928; Gough 1940]. These investigators found pneu-
moconiosis among coal trimmers, who were responsible for the loading and distribution of coal
(previously washed and separated from rock) into the holds of ships. King etal. [1956] later reported
that the severity of pneumoconiosis (based on both radiographic and pathologic data) was related
to the total dust in the lungs of U.K. coal miners but not to the silica content of the coal.

In the United States, few studies of pneumoconiosis in coal miners were performed before the 1960s
[Dressen and Jones 1936; Flinn et al. 1941]. In the early 1960s, studies of pneumoconiosis were
conducted among coal miners in central and western Pennsylvania [Lieben et al. 1961; McBride et
al. 1963] and in seven states in the Appalachian region [Lainhart et al. 1968] (Section 4.2.1.1). By
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the early 1970s, investigators suggested that CWP was not a single disease but a composite of
disorders, each varying in incidence and severity depending on geographic area, occupational
exposure, and individual susceptibility [Naeye and Dellinger 1972].

In the Federal Coal Mine Health and Safety Act of 1969, CWP was defined as “a chronic dust disease
of the lung arising out of employment in an underground coal mine” [30 USC 902]. The definition
of pneumoconiosis was amended in the Black Lung Benefits Reform Act of 1977 as “a chronic dust
disease of the lung and its sequelae, including respiratory and pulmonary impairments, arising out
of coal mine employment” [30 USC 901(a) and 902(b)]. CWP has been medically defined as a
parenchymal lung disease produced by deposits of coal dust in the lung and the response of the host
to the retained dust [Weeks and Wagner 1986; Wyngaarden and Smith 1982].

4.1.2 Simple CWP and PMF

Diagnosis of CWP is generally based on chest X-ray findings and a history of working in coal mines
(usually for 10 or more years) [Attfield and Wagner 1992b; Balaan et al. 1993]. The radiographic
patterns are often the same for CWP and silicosis; thus, these diseases are distinguishable only by
work history or pathological examination [Attfield and Wagner 1992b; Wagner et al. 1993b]. The
radiographic appearance of simple CWP is not necessarily associated with impaired lung function
[Parkes 1982; Morgan et al. 1974] or increased mortality [Cochrane et al. 1979; Jacobsen 1976].
However, miners with simple CWP are at increased risk of developing complicated CWP or PMF
[Balaan et al. 1993; McLintock et al. 1971; Cochrane 1962].

PMF is associated with significant decreases in lung function, oxygen-diffusing capacity, and
arterial blood gas tension (PaO,) [Attfield and Wagner 1992b; Rasmussen et al. 1968]. PMF is also
associated with breathlessness (at rest or with exercise), chronic bronchitis and recurrent chest
illness, right ventricular hypertrophy, and episodes of right heart failure [Cotes and Steel 1987].
Coal miners with silicotic lesions or PMF have an increased risk of tuberculosis and other
mycobacterial infections [Petsonk and Attfield 1994]. PMF may progress, even in the absence of
further dust exposure [Stewart 1948; Parkes 1982; Merchant et al. 1986]. This disease is also
associated with increased mortality [Atuhaire et al. 1985; Miller and Jacobsen 1985].

4.1.2.1 Radiographic Classification of Simple CWP and PMF

The opacities on the chest X-ray are classified according to their size, shape, profusion, and extent
[ILO 1980] (Table 4-1). These classifications are used in the diagnosis of simple CWP and PMF.

4.1.2.1.1 Simple CWP

Simple CWP is characterized by the presence of small opacities <10 mm in diameter on the chest
X-ray. These opacities are usually seen first in the upper lung zones, but the middle and lower zones
may become involved as the disease progresses [Balaan et al. 1993]. The profusion of small
opacities is classified as major category 1, 2, or 3. Category 0 is defined as the absence of small
opacities, or as small opacities that are less profuse than the lower limit of category 1 [ILO 1980].
Within the 12-point profusion scale, each major category may be followed by a subcategory if an
adjacent main category was seriously considered during the classification process (e.g., 1/2 was
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Table 4-1. Summary of ILO classification of radiographs pertaining to simple CWP and PMF

Features Codes Definitions
Technical quality 1 Good
of radiographs
2 Acceptable (with no technical defect likely to impair classification
of the tadiograph for pneumoconiosis)
3 Poor (with some technical defect but still acceptable for
classification purposes)
4 Unacceptable
Parenchymal
abnormalities:
Small opacities:

Profusion The category of profusion is based on assessment of the
concentration of opacities by comparison with the standard
radiographs.

o/- 0/0 01 Category 0: Small opacities are absent or are less profuse than the

10 111 12 lower limit of category 1.

2/1 212 213 Categories 1, 2 and 3: These reptesent increasing profusion of

32 3/3 3+ small opacities as defined by the corresponding standard
radiographs.

Extent RU RM RL The zones in which the opacities are seen are recorded. The right

LU LM LL (R) and left (L) thorax are both divided into three zones—upper
(U), middle (M), and lower (L).

The category of profusion is determined by considering the
profusion as a whole over the affected zones of the lung and by
comparing this with the standard radiographs.

Shape and size:

Round plp afq 1r The letters p, g, and r denote the presence of small, rounded
opacities. Three sizes are defined by the appearance on standard
radiographs:

p = diameter up to about 1.5 mm
q = diameter exceeding about 1.5 mm and up to about 3 mm
r = diameter exceeding about 3 mm and up to about 10 mm

Irregular sfs it uu The letters s, t, and u denote the presence of small, irregular
opacities. Three sizes are defined by the appearances on
standard radiographs:

s = width up to about 1.5 mm

t = width exceeding about 1.5 mm and up to about 3 mm

u = width exceeding 3 mm and up to about 10 mm

Mixed p/s pit puw plq pir For mixed shapes (or sizes) of small opacities, the predominant

/s qft gfu gqlp gfr shape and size is recorded first; the presence of a significant
/s it rtu tfp 1/q number of another shape and size is recorded after the oblique
sp slq st st s stroke.
tp Yq Yr s tu
uwp wq ur us ut

34

(Continued)



4 Health Effects of Exposure to Respirable Coal Mine Dust

Table 4-1 (Continued). Summary of ILO classification of radiographs pertaining to simple CWP and PMF

Features Codes Definitions

Parenchytnal abnormalities (continued):

Large opacities The categories are defined in terms of the dimensions of the
opacities.

A Category A: An opacity having a greatest diameter exceeding
about 10 mm and up to and including 50 mm, or several opacities
each greater than about 10 mm, the sum of whose greatest
diameters does not exceed about 50 mm,

B Category B: One or more opacities larger or more numerous than
those in category A whose combined area does not exceed the
equivalent of the right upper zone.

C Category C: One or more opacities whose combined area exceeds
the equivalent of the right upper zone.
Symbols” ax Coalescence of small pneumoconiotic opacities
bu Bulla(e)
ca Cancer of lung or pleura
cn Calcification in small pneumoconiotic opacities
co Abnormality of cardiac size or shape
cp Cor pulmonale
cv Cavity
di Marked distortion of the intrathoracic organs
ef Effusion
em Definite emphysema
es Eggshell calcification of hilar or mediastinal lymph nodes
fr Fractured rib(s)
hi Enlargement of hilar or mediastinal lymph nodes
ho Honeycomb lung
id Mli-defined diaphragm
ih Ill-defined heart outline
ki Septal (Kerley) lines
od Other significant abnormality
pi Pleural thickening in the intetlobar fissure or mediastinum
px Pneumothorax
P Rheumatoid pneumoconiosis
tb Tuberculosis
Comments:
Presence Y N Comments about the classification should be recorded—especially

if some cause other than pneumoconiosis is thought to be
responsible for a shadow that could be interpreted by others as
pheumoconiosis; comments should also be recorded to identify
radiographs whose technical quality may materially affect the
reading.

Adapted from ILO [1980].
The definition of each of the symbols is preceded by an appropriate word or phrase such as “suspect,” “changes suggestive
of,” or “opacities suggestive of,” etc.

judged as category 1, but category 2 was seriously considered; 2/1 was judged as category 2, but
category 1 was seriously considered). The shape of the small opacities is recorded as rounded (p,
q, r) or irregular (s, t, u). The diameters of these opacities are 1.5 (p ors), 1.5to 3 mm (q or t), or
3 to 10 mm (r or u).
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4.1.2.1.2 PMF (complicated CWP)

PMEF (or complicated CWP) is classified radiographically as category A, B, or C when large opacities
with a combined area of 1 cm or larger are found on the chest X-ray. PMF usually develops in
miners already affected by simple CWP, but it may also develop in miners with no previous
radiographic evidence of simple CWP [Hodous and Attfield 1990; Hurley et al. 1987].

Anunusual presentation of PMF or Caplan’s nodule(s) may be difficult to distinguish from a primary
or metastatic neoplasm [Lapp and Parker 1992]. When large opacities occur bilaterally on a
background of simple CWP, a diagnosis of PMF is reasonably certain; however, when the
radiographic background of simple CWP is sparse or absent, or when there are multiple crops of
peripherally situated nodules (Caplan’s syndrome), it may be difficult to differentiate between PMF
and neoplasm [Lapp and Parker 1992].

4.1.2.1.3 Pleural abnormalities

Pleural abnormalities on the chest X-ray (including pleural thickening of the chest wall or
diaphragm, obliteration of the costophrenic angle, and pleural calcification) should also be recorded
according to the International Labour Office (ILO) classification [ILO 1980].

4.1.2.1.4 Interpretation of chest X-rays

Individuals who interpret chest X-rays under the Federal Mine Safety and Health Act of 1977 [30
USC 843] must be either an A or B reader [42 CFR Part 37]. A person can become an A reader by
attending a NIOSH-approved course on interpretation of chest X-rays for pneumoconioses. Certifi-
cation as a B reader requires passing an examination that tests proficiency in interpretation of chest
X-rays for pneumoconioses [Wagner et al. 1992; Morgan 1979]. B readers are therefore considered
to have more expertise than A readers in interpreting chest X-rays. Several studies have examined
the variability between readers in interpreting radiographic appearances of pneumoconioses
[Collins and Soutar 1988; Attfield et al. 1986; Felson et al. 1973; Fletcher and Oldham 1949].
Attfield and Wagner [1992a] discuss training, certification, and quality assurance.

4.1.2.2 Pathological Classification of CWP and PMF

The primary histopathological lesion of CWP is the coal macule [Cotes and Steel 1987]. The
macular lesion of CWP has been defined as “a focal collection of coal-dust-laden macrophages at
the division of respiratory bronchioles that may exist within alveoli and extend into the peribronchio-
lar interstitium with associated reticulin deposits and focal emphysema” [Kleinerman et al. 1979].
The primary lesion of CWP is focal, like that of silicosis; but it differs in the amount and nature of
dust, the quantity and disposition of fibrous tissue, and the presence of focal emphysema
[Heppleston 1992]. Coal macules range in size from 1 to 5 mm and may be rounded, irregular, or
stellate [Attfield and Wagner 1992b]. Macular lesions are usually symmetrically distributed in both
lungs, with a greater concentration in the upper lobes [Merchant et al. 1986]. Dust-laden macules
occur in the region of the first-, second-, and third-order respiratory bronchioles [Attfield and
Wagner 1992b]. Macrophages found in both the air spaces and the connective tissue around the
respiratory bronchioles may contain dust [Merchant et al. 1986]. The proportion of dust, cellular
material, or collagen varies depending on the rank of coal dust inhaled [Cotes and Steel 1987].
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Focal emphysema has been defined as the emphysematous changes that are focal in nature and
consist of dilation and destruction of alveoli adjacent to the respiratory bronchioles where dust has
aggregated [Kleinerman et al. 1979]. Focal emphysema usually involves a region of 1 to 2 mm
around the dust-laden macule [Merchant et al. 1986; Attfield and Wagner 1992b].

The macule is a discrete lesion of connective tissue and dust, but it is not necessarily palpable
[Kleinerman et al. 1979]. In addition to macules, a variety of nodular lesions are found in coal
miners’ lungs; these may or may not be related to occupational exposures [Kleinerman et al. 1979].
These nodules are classified according to size and etiology and include the following categories:
micronodular CWP (up to 7-mm diameter), macronodular CWP (7- to 20-mm diameter), silicotic
nodule, PMF, Caplan’s lesion, and infective granuloma (histoplasmosis, tuberculosis) [Kleinerman
et al. 1979]. The nodular lesions of simple CWP are palpable because they contain collagen and
are sometimes calcified [Merchant et al. 1986].

The National Coal Workers® Autopsy Study [30 CFR 37 Subpart— Autopsies] uses lesions 21 cm
as the anatomical definition of PMF—a definition consistent with the radiographic definition of
opacities >1 cm [ILO 1980]. The American College of Pathologists has recommended using lesions
22 cm as a more appropriate anatomical definition of PMF for pathological studies [Kleinerman et
al. 1979]. The lesions of PMF are solid, heavily pigmented, and rubbery to hard; a PMF lesion may
also contain a cavity containing opaque black liquid [Kleinerman et al. 1979; Merchant et al. 1986].
PMF lesions usually occur in the apical posterior portions of the upper lobes or the superior segments
of the lower lobes [Kleinerman et al. 1979]. Histologically, the periphery is composed of irregular
reticulin and collagen interspersed with black pigment [Merchant et al. 1986]. Blood vessels and
airways transversing the lesion are destroyed [Merchant et al. 1986]. PMF generally occuts on a
background of simple CWP, and lesions of simple CWP in this case are usually nodular rather than
macular [Merchant et al. 1986]. PMF is asymmetrical, in that one lung may be more severely
affected than the other [Kleinerman et al. 1979].

4.1.2.3 Relationship Between Chest X-rays, Pathology, and Lung Dust Content

Rossiter [1972a,b] reported a correlation between the radiographic category of simple CWP and the
weight of the dust in the lungs of coal miners. Later studies provided information about the types
of radiographic opacities and particles in the lungs. Ruckley et al. [1984] reported that the size
(radiographic type) of opacity was related to the lung dust weights (see Section 4.1.2.1 for a
discussion of radiographic opacities). Miners with the smallest opacities (p) had greater lung dust
weights than miners with the largest opacities (r) [Ruckley et al. 1984]. The relationship between
the profusion of r-type opacities and lung dust weight was poor, although few cases were examined
[Fernie and Ruckley 1987]. Among miners with predominantly p-type opacities, total lung dust
provided the best correlation with radiographic profusion; of the pathologic lesions, the number of
pinhead nodules (<1-mm diameter) correlated with radiographic profusion [Fernie and Ruckley 1987].

Several investigators have reported a relationship between increasing severity of pathological
lesions and increasing mean weight of lung dust [King et al. 1956; Nagelschmidt 1965; Douglas et
al. 1986]. However, the percentage of quartz in the total dust was similar (about 6%) for most
lesions [King et al. 1956; Nagelschmidt 1965]. These findings suggest that coal dust is more closely
associated than silica with the development of simple CWP and PMF. An exception to the above
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pattern—a decreased amount of total dust and increased amount of silica found in the most severe
pathological lesion [King et al. 1956]—might have been related to the additional factor of
tuberculosis infection [King et al. 1956]. Douglas et al. [1986] found that miners with PMF had
retained more dust in their lungs per unit of dust exposure (during life) than miners without PMF.
This finding suggests greater deposition and/or less clearance of dust in the lungs of miners who
developed PMF. Among miners of high-rank coal (88.8% to 94% carbon), the composition of lung
dust was similar for different pathological lesions [Douglas et al. 1986; 1988]. But among miners
of low-rank coal (81.1% to 87% carbon), the proportion of ash® in retained dust was higher than
that in the aitborne dust to which they had been exposed—and this proportion increased with
increasing severity of pathological lesions.

Gough et al. [1950] reported that chest X-rays did not always detect slight pathological grades of
pneumoconiosis (see Sections 4.1.2.1. and 4.1.2.2 for discussions about radiographic opacities and
pathological lesions). More recently, Attfield et al. [1994] reported that increasing pathological
grade of coal macules was associated with a greater likelihood of detecting an abnormality on
the chest X-ray (predominant types of opacities were m [mixed], p, and q) [Attfield et al. 1994].
However, there was also a probability (up to 33%) that the chest X-ray would indicate no
abnormality (category 0), even when moderate and severe grades of macules were present [Attfield
et al. 1994]. Caplan [1962] reported that radiographic appearances were more closely associated
with the profusion of nodules than with other types of dust foci. Similarly, Attfield et al. [1994]
found better association between the presence of micro- and macro-nodules and the detection of
radiographic abnormality: only 0% to 9% of the cases with moderate and severe grades of micro-
and macro-nodules had a normal chest X-ray (category 0). Micro- and macro-nodules tended to be
associated with the appearance of q- and r-type opacities on the chest X-ray [Ruckley et al. 1984;
Attfield et al. 1994]. Douglas et al. [1988] found that three types of PMF lesions were equally
associated with the radiographic appearance of large opacities.

4.1.3 Silicosis

Silicosis may develop when inhaled respirable crystalline silica is deposited in the lungs. The
disease may be chronic, complicated, accelerated, or acute. The clinical diagnosis of silicosis is
based on (1) recognition by the physician that the silica exposure is adequate to cause the disease,
(2) the presence of chest radiographic abnormalities consistent with silicosis, and (3) the absence
of other illnesses (e.g., tuberculosis or pulmonary fungal infection) that may mimic silicosis [Balaan
and Banks 1992].

4.1.3.1 Chronic Silicosis

Chronic silicosis commonly involves 15 or more years of exposure to silica [Parker 1994]. The
characteristic microscopic feature is the silicotic nodule, which can be divided into three zones
[Silicosis and Silicate Disease Committee 1988]. The central zone is composed of whorls of dense,
hyalinized fibrous tissue. The midzone is made up of concentrically arranged collagen fibers that
often exhibit a feature known as onion skinning. The peripheral zone consists of more randomly
oriented collagen fibers mixed with dust-laden macrophages and lymphoid cells. Chronic silicosis

*Ash is the solid residue remaining after coal is burned; quartz, kaolin, and mica are common constituents of ash.
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is often asymptomatic and may manifest itself as a radiographic abnormality with small, rounded
opacities of less than 10 mm in diameter, predominantly in the upper lobes [Parker 1994]. Lung
function may be normal or show mild restriction [Parker 1994]. Chronic silicosis is associated with
a predisposition to tuberculosis and other mycobacterial infections and with progression to compli-
cated silicosis [Balaan and Banks 1992].

4.1.3.2 Complicated Silicosis

Complicated silicosis, or PMF, occurs when the nodules coalesce and form large conglomerate
lesions [Weber and Banks 1994]. Complicated silicosis is characterized radiographically by the
presence of nodular opacities >1 cm in diameter on the chest X-ray [Parker 1994]. Complicated
silicosis typically causes respiratory impairment that may first manifest itself as exertional dyspnea;
this disease commonly involves reduced carbon monoxide diffusing capacity, reduced arterial
oxygen tension at rest or with exercise, and marked restriction on spirometry or lung volume
measurement {Parker 1994; Balaan and Banks 1992]. Recurrent bacterial infection may occur, and
tuberculosis is a concern. Distortion of the bronchial tree may lead to airway obstruction and
productive cough. Pneumothorax, a life-threatening complication, may occur because the fibrotic
lungs may be difficult to re-expand [Parker 1994; Balaan and Banks 1992). Hypoxemic respiratory
failure with cor pulmonale is a common terminal event [Parker 1994].

4.1.3.3 Accelerated Silicosis

In accelerated silicosis, the duration of exposure is usually 5 to 10 years [Parker 1994]. The lung
nodules seen are at an earlier stage of development than those in chronic silicosis [Silicosis and
Silicate Disease Committee 1988]; but otherwise, the lung nodules in accelerated silicosis have no
specific distinguishing morphologic feature. Symptoms, radiographic findings, and physiologic
measurements are similar to those seen in the chronic form [Parker 1994]. Disease progression is
likely even if the worker is removed from the workplace [Balaan and Banks 1992]. Autoimmune
diseases, including scleroderma and rheumatoid arthritis, are commonly associated with accelerated
silicosis [Parker 1994; Balaan and Banks 1992].

4.1.3.4 Acute Silicosis

Acute silicosis may develop within 6 months to 2 years of intensive exposure to fine particles of
neatly pure silica—such as those present during sandblasting or drilling. Because acute silicosis is
characterized by the filling of lung alveoli with lipoproteinaceous material, it is also known as
silicotic alveolar proteinosis [Silicosis and Silicate Disease Committee 1988]. Microscopically, the
material in the alveolar air spaces consists of an amorphous, finely granular eosinophilic substance
that stains by the periodic acid-Schiff reaction but is resistant to diastase digestion and nonreactive
to traditional mucin stains [Silicosis and Silicate Disease Committee 1988]. The risk of tuberculosis
or other mycobacterial infection is greater in acute silicosis than in the chronic or accelerated forms
[Parker 1994; Weber and Banks 1994].

4.1.4 Mixed-Dust Pneumoconiosis

In coal mining, particularly surface coal mining, the typical worker is exposed to a mixture of dusts
over a working lifetime rather than to silica alone or to carbonaceous dust alone. The term
“mixed-dust lesion™ has been used to describe pulmonary lesions where crystalline silica is deposited
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Table 4-2. Terms and diagnostic criteria for describing airways disease

Disease Diagnostic criteria Definition
Asthma Clinical features Acute, episodic alrflow limitation reversible spontaneously
or on treatment’ [Fletcher and Pride 1984; ATS 1987b;
Tecelescu 1990]
Chronic bronchitis Symptoms Chronic or recurrent bronchial hypersecretiont (ie., almost

daily sputum for 3 months of the year for at least 3 years)
[Fletcher and Pride 1984; ATS 1987b; Tecelescu 1990}

Emphysema Pathologic features Dilatation of air spaces distal to the terminal bronchiole with
destructive changes in the alveolar walls [Fletcher and
Pride 1984; ATS 1987b]

COPD Lung function deficit Main feature is chronic airflow limitation (largely irreversible)
with or without other that may, in certain circumstances, be primarily in peripheral
clinical features airways [Fletcher and Pride 1984; ATS 1987b; Snider 1989;

Tecelescu 1990]

Adapted from Becklake [1992].
*Based on definitions proposed by the 1959 Ciba Guest Symposium [Ciba 1959; Fletcher and Pride 1984], the American
Thoracic Society [ATS 1987b], and other commentators [Snider 1989; Tecelescu 1990].
1Smm: definitions included the feature of airway hyperresponsiveness [ATS 1987b).
$Assessed by clinical history or respiratory symptoms questionnaire.

deposited in combination with less fibrogenic dusts such as iron oxides, kaolin, mica, and coal.
Typically, the mixed-dust lesion has a stellate “medusa head” configuration. This lesion has a
central zone of collagen that is often hyalinized and surrounded by linearly and radially arranged
collagen and reticulin fiber strands mixed with dust-containing macrophages [Silicosis and Silicate
Disease Committee 1988].

The knowledge that mixed-dust lesions may occur in coal miners is important in the context of
screening for adverse respiratory health effects. Except in the case of acute silicosis (which has a
distinctive radiologic presentation similar to pulmonary edema and other diseases that fill air space
with fluids and cells), the chest X-ray alone cannot indicate whether changes consistent with
pneumoconiosis have resulted from carbonaceous dust or silica dust. That is, in the absence of lung
tissue examination or knowledge of the exposure history, a chest X-ray showing pneumoconiosis
in a coal miner may represent CWP, silicosis, or mixed-dust pneumoconiosis [Cotes and Steel 1987].

4.1.5 COPD

COPD refers to three disease processes—chronic bronchitis, emphysema, and asthma—that are all
characterized by airway dysfunction [Barnhart 1994; Becklake 1992]. Airflow limitation (of
varying degree and reversibility) and shortness of breath (nonspecific symptom) are underlying
features of COPD [Becklake 1992]. Asthma is characterized by reversible airflow obstruction;
chronic bronchitis and emphysema may have partially reversible airflow limitation [Barnhart 1994].
Lung function tests are used to establish the presence of COPD [Becklake 1992]. Table 4-2 lists
definitions and diagnostic criteria for COPD and other airways diseases. A major cause of COPD
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is cigarette smoking; but air pollution and occupational exposure to dust, particularly among
smokers, can also cause COPD [Samet 1989; Fletcher et al. 1976]. Chronic bronchitis is charac-
terized by symptoms of chronic mucus hyper-secretion [Becklake 1992}. Chronic bronchitis can also
be associated with airflow obstruction and abnormalities in gas exchange [Barnhart 1994]. Pathologi-
cally, chronic bronchitis involves hypertrophy and hyperplasia of bronchial mucous glands and the lack
of cartilaginous support of the airways [Kilburn 1986]. Occupational or industrial bronchitis is chronic
bronchitis that is caused or aggravated by occupational exposure to dust [Morgan and Lapp 1976].

Emphysema is defined as the abnormal, permanent enlargement of air spaces [Bamnhart 1994] distal to
the terminal bronchiole, accompanied by destruction of their walls [ATS 1962]. Either pathological
features or computed tomography can be used to determine the presence of emphysema [Becklake
1992]. The several types of emphysema are classified in terms of lung structure [Thurlbeck 1976].

4.2 EPIDEMIOLOGICAL STUDIES
4.2.1 Studies of Simple CWP, PMF, and Silicosis

4.2.1.1 U.S. Studies from the 1960s

Before 1970, the average concentration of respirable dust for most job categories in underground
coal mines exceeded 2 mg/m3, and the average concentration for some jobs at the working face
(where the coal is extracted) exceeded 6 mg/m?3 [Attfield and Wagner 1992b) (Figure 4-1).
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Figure 4-1, Reported trends in dust concentrations for continuous miner operators, 1968-87. (Source: Attfield
and Wagner [1992b].)
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U.S. studies from the 1960s have reported prevalences of simple CWP category 1 or greater ranging
from 4% to 46% (Table 4-3). In these studies, the factors associated with the higher prevalences
of simple CWP and PMF wete (1) exposure to dust of higher-rank coal, (2) greater number of years
wotked in mining (especially years worked underground), and (3) increasing age of the miner.
Because the mean number of years worked in mining and the mean ages were similar across the
various studies (Table 4-3), these factors probably do not account for the different prevalences
observed among miners in different regions of the United States. Instead, these differences have
generally been attributed to the various ranks of coal mined in these regions.

Lainhart [1969] observed that the prevalence of pneumoconiosis’+ increased as coal rank increased.
He reported the following prevalences of pneumoconiosis among miners in the following regions
of increasing coal rank: Utah, 4.8%; Illinois and Indiana, 7.5%; and Appalachia, 11.1%. Miners
in each region had no significant differences in mean age or mean number of years werked
underground. The overall rate of participation in the study was also similar for each region, ranging
from 91.7% to 97.5%.

McBride et al. [1963, 1966] observed that the prevalence of pneumoconiosis’™# increased with
increasing number of years worked. Among working bituminous coal miners in western Pennsyl-
vania, the prevalence of pneumoconiosis was 3%, 8%, 14%, 18 %, and 26%, respectively, for groups
with <20, 20-24, 25-29, 30-39, and 240 years of experience [McBride et al. 1963]. Among working
anthracite coal miners in Pennsylvania, the prevalence of pneumoconiosis was 10%, 21%, 39%,
56%, and 50%, respectively, for the same years of experience.

The prevalence of pneumoconiosis was higher among retired coal miners than among working coal
miners with a similar number of years of experience. Among retired bituminous coal miners, the
prevalence of pneumoconiosis was 24%, 22%, and 32 %, respectively, among those with <30, 30-39,
and 240 years of experience. Among retired anthracite coal miners, the prevalence of pneumoco-
niosis was 52%, 80%, and 80%, respectively, for the same years of experience. McBride et al.
[1963, 1966] also observed increasing prevalence of pneumoconiosis with increasing age.

4.2.1.2 U.S. Studies from 1970 to Present

The National Study of Coal Workers’ Pneumoconiosis and the Coal Workers’ X-Ray Surveillance
Program were established in response to the Federal Coal Mine Health and Safety Act of 1969
(Public Law 91-73)."* The National Study of Coal Workers’ Pneumoconiosis is an epide-
miological research study [Attfield et al. 1984a,b], and the Coal Workers’ X-Ray Surveillance
Program is a medical screening and surveillance program [Althouse et al. 1986, 1992]. NIOSH
administers these ongoing programs, both of which began about 1970. Results from successive
cross-sectional surveys (or rounds) of these studies have shown general downward trends in the
prevalence rates of simple CWP among U.S. underground coal miners (Table 4-4 and Figure 4-2).

"Pneumoconiosis is defined here as simple CWP (category 1 or greater) or complicated CWP (PMF).
The 1959 International Radiological Classification of Chest Films was used [ILO 1959].
$The U.S. Public Health Service modification of the International Radiological Classification of Chest Films was used
[Ashford and Enterline 1966).
**This Act was later amended by the Federal Mine Safety and Health Act of 1977 [30 USC 801-962].
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Table 4-3. Prevalence of CWP (category 1 or greater) and PMF for some
U.S. studies undertaken between 1961 and 1970, in order of coal rank

Prevalence Mean tenure (years)
CWP Mean All work
Study (category 1 age in coal Work
(by coal rank) or greater) PMF  (years) mining  underground Comments
High rank:
Eastern Pennsylvania 2 9.6 55 26 —_ )
[McBride et al. 1966]
Eastern Pennsylvania 34 _ 45 — 22 -t
[Tokuhata et al. 1970]
Medium-high rank:
Central Pennsylvania 25 8.3 47 27 - ¥
[Lieben et al. 1961]
Southern West Virginia 46 72 52 _ 25 e
[Hyatt et al. 1964]
Southetn West Virginia 14 54 44 —_ — §
[Enterline 1967]
Medium rank:
Appalachia 10 3.0 47 —_ 22 -
[Lainhart 1969]
Eastern West Virginia 6 1.1 43 _ — §
[Enterline 1967]
Northern West Virginia 7 0.9 48 _ 19 o
[Higgins et al. 1968]
Western Pennsylvania 9 3.7 47 26 —_ *
[McBride et al. 1963)
Medium/low rank:
Tlinois/Indiana 6 1.5 48 —_ 20 "
[Lainhart 1969]
Utah 4 0.7 51 —_ 20 h
[Lainhart 1969]

Adapted from Attfield and Castellan [1992].
“The 1959 ILO classification was used.
Exact figure for average age is not given; figure given here has been estimated from age distribution data.
*Group contains both current miners and ex-minets and could not be subdivided [ILO 1959].
¥Radiographic classification is not stated but is probably the ILO 1959 scheme, given that the study was undertaken from
1963 to 1964.
**The classification used is not stated explicitly. The reading sheet shown in the report looks very similar to that of the ILO
1968 classification [ILO 1970], but Motgan [1968] states that the ILO 1959 classification system was used.
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Table 4-4. Adjusted summary prevalence estimates for combined small opacities
from the Coal Workers’ X-ray Surveillance Program and the
National Study of Coal Workers’ Pneumoconiosis

Adjusted summary prevalences (%)*

Category Study” Reader Roundl Round2 Round3 Round4

CWP category 1 or greater:

All participants CWXSP*  Fimst 22.4 7.1 6.0 55
Second 13.8 5.9 57 3.0
Tenure >4 years cwxsp? First 35.0 20.3 11.4 78
Second 221 18.2 9.2 4.0
Common tenure CWXSP™"  First 19.5 11.7 8.7 7.2
distribution Second 10.7 9.9 7.3 36
Epidemiological data, NSCWP 6.6 51 3.6 23
common tenure
distribution
CWP category 2 or greater:
All participants CWXSP*  Finst 6.5 1.8 1.1 0.8
Second 4.5 1.2 0.6 0.3
Tenure >4 years CWXSP®  Fimst 10.8 5.7 2.2 12
Second 15 3.8 13 0.5
Common tenure CWXSP™" First 4.0 2.0 1.2 1.0
distribution Second 24 1.2 0.7 0.4
Epidemiological data, NSCWP 1.5 1.2 0.5 0.3
common tenure
distribution

Source: Attfield and Althouse [1992].
Abbreviations: CWXSP: Coal Workers® X-ray Surveillance Program; NSCWP: National Study of Coal Workers® Pneu-
moconiosis.
*Dates for various reunds of the CWXSP ate as follows: round 1, 1970-73; round 2, 1973-78; round 3, 1978-81; round 4,
1981-86.
Dates for various rounds of the NSCWP are as follows: round 1, 1969-71; round 2, 1972-75; round 3, 1977-81; round
4, 1985-88.
$All participants = summary rates based on all mandatory and voluntary X-rays.
ITenute >4 years = summary rates based on all miners with more than 4 years of tenure in mining.
**Common tenure distribution = summary rates standardized to date in the far-right column of Table 2 of Attficld and Althouse
[1992].
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Figure 4-2. Prevalence of CWP category 1 or higher identified in the Coal Workers’ X-ray Surveillance Program
from 1970 to the present, by tenure in coal mining. The number of miners examined during each round is 71,446
{1970-73), 115,386 (1973-78), 58,294 (1979-81), 25,154 (1982-86), 13,920 (1987-91), and 11,678 (1992-95).
{Source: Althouse, unpublished data.)

Thirty-one mines were originally selected for inclusion in the National Study of Coal Workers’
Pneumoconiosis from the different mining regions across the continental United States, but many
of those mines are no longer in production. The original criteria for selecting mines in round 1
included an expected mine life of 10 years, a workforce of at least 100 miners, geographical and
geological spread, and accessibility to a field examination trailer [Attfield and Castellan 1992].
Rounds 1, 2, and 3 were conducted at nearly the same group of mines, but round 4 was organized
differently from the previous rounds. The objective of round 4 was a followup study of miners and
ex-miners who had participated in earlier rounds. Round 4 examinations were given at three of the
original mine sites and in 22 mining communities. Participation rates for the National Study of Coal
Workers’ Pneumoconiosis were 90%, 75%, 52%, and 70% for rounds 1, 2, 3, and 4, respectively.
Participation rates for the Coal Workers® X-ray Surveillance Program were 50%, 44%, 32%, and
30% for rounds 1, 2, 3, and 4, respectively. Recent improvements in the Coal Workers’ X-ray
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Surveillance Program have resulted in increased participation [Wagner et al. 1993a]. Because both
programs consisted of successive cross-sectional studies (rounds), discase prevalences for the
corresponding rounds of each study may not be strictly comparable because of differences in X-ray
standards, X-ray readers, groups of miners studied, and tenure distributions that occurred in
the successive rounds. The UICCTT/Cincinnati classification of radiographs for pneumoconioses
[Bohlig et al. 1970] was used for round 1 of the National Study of Coal Workers’ Pneumoconiosis.
The 1971 ILO U/C classification [TLO 1970] was used for rounds 2 and 3, and the 1980 ILO
classification [ILO 1980] was used for round 4. The 1980 classification is also currently used for the
ongoing Coal Workers’ X-Ray Surveillance Program. Although the UICC/Cincinnati [Bohlig et
al. 1970] classification included small rounded opacities (and excluded small irregular opacities),
the 1980 ILO classification [ILO 1980] recommends classification of the profusion of all small
opacities.

Mortgan et al. [1973b] reported prevalences of simple CWP and PMF among 9,076 U.S. coal miners
examined during round 1 of the National Study of Coal Workers’ Pneumoconiosis (1969-71). For
all regions combined, the prevalence of simple CWP category 1 or greater was 21.2%, and the
prevalence of PMF was 2.5%. Prevalences were higher among miners of high-rank coal. The
highest prevalence of PMF observed was 14% among miners of anthracite coal {Morgan et al.
1973a,b).

Analyses of round 4 of the National Study of Coal Workers’ Pneumoconiosis (1985-88) included
determining the prevalence of simple CWP and PMF among 3,194 underground miners and
ex-miners who had been previously examined in round 1 (1970-75) [Attfield and Seixas 1995;
Attfield 1992]. The prevalence of simple CWP category 1/0 or greater was 6.8% for the whole
cohort and less than 5% among miners with O to 19 years of experience working underground.
Among miners with 20 or more years of experience, the prevalence of category 1/0 increased
steadily, reaching about 25% among miners who hadworked 30 or more years (Figure 4-3). The
prevalence of simple CWP category 2 or greater increased gradually, reaching 2% among miners
with 25 to 29 years of experience, then rising to 10% among miners with 30 or more years of
experience (Figure 4-3). The prevalence of PMF was about 0.8%. Prevalences were higher among
miners of high-rank coal and among ex-miners who had left work for health reasons.

About one-third (1,206) of the miners who participated in round 4 had started mining after
1969, thus having worked under the conditions mandated by the Federal Coal Mine Health and
Safety Act of 1969 (P.L. 91-173). A respirable coal mine dust standard of 3.0 mg/m3 was in
effect until 1972, when it was reduced to 2.0 mg/m3. Of these miners, 2% (21/1,206) had chest
X-rays indicating simple CWP category 1 or greater (including 3 miners with category 2 or
greater) at round 4 (1985-88). In the logistic regression model used to investigate exposure-
response, sepatate coefficients were included for exposure both before 1970 and after.
These coefficients were similar in magnitude and statistically significant, indicating that
the influence on the development of simple CWP was similar per unit of dust exposure,
whether that exposure occurred before 1970 or after.

M International Union Against Cancer.
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Figure 4-3. Prevalences of simple CWP category 1 or greater (1+) and category 2 or greater (2+) as detected by
the median reading of chest X-rays for miners who worked in underground mines for various periods. (Adapted

from Attfield and Seixas {1995].)

Copyright 1995 by Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc. Used with permission by the U.S. Department of Health and Human
Services.

4.2.1.3 Studies Outside the United Stales
4.2.1.3.1 UK. studies

Several important factors in the development of PMF have been determined from studies of coal
miners in the United Kingdom. These factors include (1) cumulative dust exposure [Hutley et al.
1984, 1987]; (2) coal rank [Hurley and Maclaren 1987; Bennett et al. 1979; McLintock et al. 1971},
(3) residence time of dust in the lungs [Hurley et al. 1982; Maclaren et al. 1989]; and (4) radiographic
category of simple CWP at the beginning of the study interval [Hurley et al. 1987, Hurley and
Jacobsen 1986; Shennan et al. 1981; McLintock et al. 1971; Cochrane 1962]. The risk of PMF
among miners with initial simple CWP category 2 or 3 is three to four times that of miners with
initial simple CWP category 1 (Figure 4-4) [Hurley and Jacobsen 1986; Cochrane 1962].
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Figure 4-4. Relative risks of PMF over a 5-year period in miners with various cumulative exposures to respirable
coal mine dust and various radiographic categories of CWP at the beginning of the pericd (relative to a miner with
CWP category 1 and cumulative exposure to 200 gram hours per cubic meter {gh/ma]). (Source: Hurley et al. [1987].)

Copyright by British Journal of Industrial Medicine. Used with permission by the U.S. Department of Health and Human Services.

The incidence of PMF among ex-miners in the United Kingdom was about 2.5 times that of working
miners of similar ages [Maclaren and Soutar 1985]. However, miners and ex-miners had similar
incidences of either simple CWP or PMF when differences in the distributions of age, dust exposure,
simple CWP (at the beginning of the study), and mine (where employed) were considered [Soutar
et al. 1986; Hurley and Maclaren 1988]. Among 1,902 ex-miners who had not developed PMF
within 4 years of leaving mining, 172 (9%) developed PMF after leaving mining [Maclaren and
Soutar 1985]. Of those 172 miners with PMF, 32% had no evidence of simple CWP (category 0)
when they left mining.

Hurley and Maclaren [1987] investigated the risk of PMF among more than 30,000 U.K. coal miners
during 5-year intervals (representing 52,264 risk intervals). The probability of radiographic change
{(developing simple CWP or PMF, or progressing to a higher category) was determined using a
logistic regression model with covariates of age, cumulative exposure to respirable coal mine dust,
and initial CWP category (at the beginning of the study interval). The 5-year exposure intervals
occurred during the calendar years of 1953 through 1977, with a range of cumulative coal mine dust
exposure from 12 to >519 gh/m3,
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The 5-year incidences of PMF among working British coal miners (during the period 1952-77)
were 0.2%, 4.4%, 12.5%, and 13.9% for miners with CWP category 0, 1, 2, or 3, respectively, at
the beginning of a 5-year interval [Hurley et al. 1987]. The 4.4% incidence of PMF among miners
with initial CWP category 1 is three to four times higher than previous estimates [Maclaren and
Soutar 1985; Shennan et al. 1981; McLintock et al. 1971]. At the beginning of the 5-year study
intervals, most miners (47,087 of 52,264) were classified with CWP category O (i.e., no radiographic
evidence of CWP or PMF). Thus, although the incidence of PMF is reported to increase with
increasing category of CWP, the 0.2% incidence of PMF among miners with CWP category 0
constitutes 20% of the total cases of PMF in the study (94 of 462 cases) [Hurley et al. 1987].

4.2.1.3.2 German studies

In a study of German coal miners, Reisner [1971] reported a relationship between increasing
residence time of dust in the lungs and the development of pneumoconiosis (based on the 1930
Johannesburg radiographic classification). In this 10-year study (beginning in 1954) at 10 mines
in the Ruhr region, Reisner [1971] also reported an exposure-response relationship between
cumulative dust exposure (computed as the summation of the monthly products of average
workplace tyndallometric fine dust concentration and number of shifts worked) and the development
of pneumoconiosis. In a study of German miners who had worked at least 5 years underground and
had left mining in 1980 or 1985, Vautrin et al. [1990] reported a relationship between years worked
underground and increasing prevalence or incidence of simple CWP (radiographic classification
based on ILO [1980]). Among miners who worked 28 to 30 years, the cumulative incidence of
simple CWP category 1/1 or greater was 16.6%, and that of simple CWP category 2/2 was 2.7%
[Vautrin et al. 1990].

4.2.1.4 Studies of the Rapid Development of PMF

Researchers have known since the 1960s that the risk of PMF increases as the category of simple
CWP increases [Cochrane 1962]. The risk of developing PMF was shown to rise steeply among
miners with simple CWP category 2 [Cochrane 1962]. Therefore, a logical occupational health
strategy for the prevention of PMF (which was included in the Federal Coal Mine Health and Safety
Act of 1969 [Public Law 91-173]) was to identify miners who had sufficient dust exposure to
develop simple CWP category 1. These miners were then offered the option of working in a
low-dust environment (<1 mg/m3) with increased frequency of environmental monitoring in the
expectation that further disease progression would be prevented.

Studies from the 1970s and 1980s have confirmed that the risk of developing PMF increases as the
category of simple CWP increases [McLintock et al. 1971; Hurley and Jacobsen 1986; Hurley et
al. 1987; Hurley and Maclaren 1987; Hodous and Attfield 1990]. These studies have also shown
that even miners with minimal simple CWP (radiographic evidence of simple CWP category 1 at
the beginning of a 5-year interval) or without simple CWP (category 0) have a measurable risk of
having PMF detected on their chest X-rays by the end of the 5-year period. The risk of PMF among
miners without evidence of simple CWP (category 0) increased with increasing cumulative exposure
to respirable coal mine dust. Thus, reducing exposures to respirable coal mine dust is the key factor
in preventing PMF in all miners.
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Hurley et al. [1987] found that the cumulative exposure to respirable coal mine dust in U.K. coal
miners was the “most important single factor determining PMF risks” for two reasons. First, miners
with simple CWP (category 1 or greater) are at higher risk of developing PMF than those without
it, and the risk of developing simple CWP increases as exposure to respirable coal mine dust
increases. Second, miners without radiographic evidence of simple CWP (category 0) have a higher
risk of developing PMF with increased cumulative exposures to respirable coal mine dust [Hurley
et al. 1987].

Hodous and Attfield [1990] studied 5-year film pairs representing chest X-rays of U.S. coal miners
taken from 1969 through 1988 in the National Study of Coal Workers® Pneumoconiosis or the Coal
Workers' X-tay Surveillance Program. The objective was to identify X-rays that showed PMF on
the later but not the earlier film and to determine the category of simple CWP on the earlier film.
Although there were more than 1,300 films showing PMF, most had only one X-ray on file. Of the
69 confirmed PMF cases with two or more films on file, 14% (10 cases) had no evidence of simple
CWP (category 0) on the previous film, and 43% (30 cases) showed simple CWP category 1. Also,
the earlier films showed 33% (23 cases) of simple CWP category 2 and 9% (6 cases) of simple CWP
category 3. These findings in U.S. miners are consistent with the findings of the U.K. studies [Hurley
and Maclaren 1987; Hurley et al. 1987].

Pathology studies of coal miners have shown that chest X-rays do not always detect early stages of
pheumoconiosis, particularly when the lesions are macular [Gough et al. 1950; Ruckley et al. 1984;
Attfield et al. 1994]. Thus, it is possible that early stages of simple CWP may not have been detected
on the initial chest X-rays.

4.2.1.5 Studies of the Role of Silica

The composition and the amount of dust retained in the lungs influence the development of fibrotic
lung diseases such as pneumoconiosis and silicosis. Noncoal minerals (especially silica) are
associated with more severe lesions (i.e., examination of lesions in miners” lungs at autopsy indicate
that coal particles wete associated with soft macules, and quartz was associated more with PMF
lesions [Davis et al. 1977]). Among workers who had equal amounts of retained silica per 100 g
of dry tissue, those who had been exposed to coal mine dust with 4% to 5% ctystalline (free) silica
had less severe silicosis than mixed-metal miners and tunnel and quarry workers who had been
exposed to 20% to 25% crystalline (free) silica [Dobreva et al. 1977]. Possible explanations for the
differing severity of silicosis with equal amounts of retained silica include (1) the mitigating effects
of other coal mine dust components that might coat the silica particles and reduce their toxicity to
the alveolar macrophages, and (2) a greater rate of deposition (i.., higher doses in shorter periods)
in the workers exposed to dust with higher percentages of crystalline (free) silica.

Silica exposure may be a factor in the rapid development of PMF. In several U.K. studies, the rapid
progression of simple CWP (i.e., an increase of two or more CWP categories over an approximately
5-year period) was reported among miners who had been exposed to respirable coal mine dust with
a relatively high respirable silica content [Seaton et al. 1981; Jacobsen and Maclaren 1982; Hurley
etal. 1982; Robertson et al. 1987]. On 65% of the X-rays showing PMF in U.S. coal miners [Hodous
and Attfield 1990}, the r-type small opacities were predominant—a condition that may indicate
silicosis [Ruckley et al. 1984].
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In a study conducted under the National Coal Workers’ Autopsy Study [initiated under 30 USC 843
(d) (1970)], Green et al. [1989] reported that among the 3,365 underground coal miners autopsied,
the prevalence of silicosis was 12.5% for underground coal face workers and 6.4% for surface
workers at underground coal mines. The National Coal Workers’ Autopsy Study is a voluntary
program, and the cases are submitted by next-of-kin to determine eligibility for black lung benefits.

4.2.1.6 Radiographic Small Opacities Among Nonminers

In a study of 1,422 U.S. workers in nondusty jobs, Castellan et al. [1985] found a low prevalence
of radiographic small opacities, which is compatible with radiographic appearances of simple CWP.
Among workers with fewer than 5 years of experience in jobs with possible respiratory hazards, 3
of 1,422 workers (0.21%) showed radiographic evidence of category 1/0 or 1fi. The study
population consisted of 50.6% men and 49.4% women; 52.5% were whites, and 44.2% were blacks.
The mean age of the whole group was 33.8 years (range 16 to 70 years). The mean age of persons
with radiographic opacities was 47.5 years [Castellan et al. 1985]. By comparison, the mean age
of the coal miners who participated in round 1 of the National Study of Coal Workers® Pneumoco-
niosis was 44 years [Attfield and Motring 1992b], and the mean age of those who participated in
round 4 was 31 years [Attfield and Seixas 19935].

In a study of 200 hospitalized patients, Epstein et al. [1984] reported that 36 patients (18%) had
small opacities of profusion category 1/0 or greater by ILO standards [ILO 1980]. Of these 36
patients with positive X-rays, 22 patients had no known dust exposure or medical condition that
would explain the X-ray findings. The study population consisted of 64.5% males and 35.5%
females, with a mean age of 44.2 years (range, 15 to 84). The mean age of the 22 patients with
radiographic small opacities and without known dust exposure or medical conditions was 55.7 years
(compared with 41.5 years among patients with negative X-rays).

Because the Castellan et al. [1985] study was based on a worker population, the findings from that
study are probably more applicable to coal miners than the findings of the Epstein et al. [1984]
study. That is, the prevalence of small opacities expected among workers without exposures 1o
respirable dust is probably closer to those reported by Castellan et al. [1985]. A study population
of hospitalized patients (such as the one used in the Epstein et al. [1984] study) is likely to be a poor
representation of a current worker population (especially those working in strenuous jobs such as
coal mining). The study population in Castellan et al. [1985] was also larger (1,422 workers) than
in Epstein et al. [1984] (200 hospitalized patients).

4.2.2 Studies of COPD in Coal Miners

Occupational exposure to respirable dust has been shown to be associated with decrements in lung
function among coal miners [Attfield and Hodous 1992; Soutar and Hurley 1986; Attfield 1985;
Love and Miller 1982], grain dust handlers [Kauffmann et al. 1982], gold miners [Cowie and
Mabena 1991; Irwig and Rocks 1978], and other workers exposed to organic and inorganic particles

HTen percent of all coal miners who died during the period 1971-80.
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[Kilbumn 1980, 1984]. Nonoccupational factors that affect lung function include age, race, gender,
height, weight, physical activity, and altitude. Decrements in FEV, have been associated with
reduced life expectancy in studies of coal miners [Ortmeyer et al. 1974, 1973] and other populations
[Strachan 1992; Foxman et al. 1986; Peto et al. 1983; Fletcher and Peto 1977; Higgins and Keller 1970].

4.2.2.1 Chronic Bronchitis

Several cross-sectional studies from the United States and the United Kingdom have found that
respiratory symptoms (including cough, phlegm, wheezing, and breathlessness) are related to either
duration of exposure [Rom et al. 1981; Hankinson et al. 1977a; Kibelstis et al. 1973; Hyatt et al.
1964] or cumulative exposure to respirable coal mine dust [Seixas et al. 1992; Marine et al. 1988;
Rae et al. 1971]. Dust exposure and cigarette smoking each contribute to the development of
respiratory symptoms and decrements in lung function. Increasing severity of bronchitic symptoms
has been associated with loss in FEV | after accounting for dust exposure, smoking, age, height, and
weight [Rogan et al. 1973]. Rogan et al. [1973] suggest that once early bronchitic symptoms
develop, the disease may progress and ventilatory capacity may deteriorate independently of factors
initiating the disease process.

Rae et al. [1971] found a statistically significant association between increasing exposure to
respirable coal mine dust and increasing prevalence of bronchitis (based on symptoms of cough and
phlegm) among UK. coal miners; a twofold greater prevalence of bronchitis was found among
smokers than nonsmokers. A relationship between chronic bronchitis and dust exposure, smoking,
and alcohol consumption was reported in a cross-sectional study [Leigh et al. 1986] and a
longitudinal study [Leigh 1990] of Australian coal miners.

In an autopsy study of U.S. miners, Naeye and Dellinger [1972] found that the miners had more
bronchiolar goblet cells than the comparison group; yet the number of these cells did not correlate
with the miners’ radiographic category. Similarly, emphysema, dyspnea, and cor pulmonale did
not correlate with the radiographic category. In an autopsy study of U.K. coal miners, Douglas et
al. [1982] reported that the maximum mucous gland-wall ratio correlated with lifetime occupational
exposure to coal mine dust.

4.2.2.2 Emphysema

Autopsy studies of U.K. coal miners have shown a significant increase in emphysema among coal
minets compared with nonmining comparison populations [Ryder et al. 1970; Cockeroft et al.
1982b]. Ryder et al. [1970] found that emphysema was more frequent among coal miners with
either simple CWP or PMF. Cockcroft et al. [1982b] found that the severity of centrilobular
emphysema (the predominant type observed) was related to the amount of dust in the simple foci
in the lungs. Cockcroft et al. [1982b] attempted to overcome bias in case selection by using similar
methods to select coal miners and nonminers aged 50 to 70 who had died of ischemic heart disease;
furthermore, these investigators accounted for age and smoking habits by stratification. Irregular
opacities on chest X-rays have been associated with the pathological signs of emphysema and
interstitial fibrosis, and with reduced gas transfer factor and reduced total lung capacity [Cockeroft
et al. 1982a,b; Cockcroft and Andersson 1987].
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In a pathological study of 450 British coal miners, Ruckley et al. [1984] found a direct relationship
between exposure to respirable coal mine dust during life and the presence of centriacinar
emphysema at autopsy among miners with pathologically determined fibrotic lesions. The preva-
lence of any emphysema among miners studied was 47% in those with no fibrotic lesions, 65% in
those with simple CWP, and 83% in those with PMF. Both panacinar and centriacinar emphysema
occurred more frequently in smokers than in nonsmokers, but the relationship with dust exposures
was only apparent among those with centriacinar emphysema. The amount of dust in the lungs was
also associated significantly with the presence of centriacinar emphysema (P<0.05), regardless of
the composition of the retained dust.

In a pathology study of 886 Australian coal miners, Leigh et al. [1982, 1983] determined that
emphysema is related to coal dust exposure (using years of coal face work as a surrogate for
exposure). A recent study of Australian coal miners provides further evidence of an association
between emphysema and coal dust in the lungs of both smokers and lifelong nonsmokers [Leigh et
al. 1994]. The extent of emphysema in smokers was significantly related to both coal dust content
of the lungs and to smoking. In nonsmokers, the extent of emphysema was significantly related to
both the coal dust content of the lungs and age. There was no evidence of a relationship between
the silica content of the lungs and emphysema, though the silica content of the lungs was
significantly related to the degree of lung fibrosis.

4.2.2.3 Decreased Lung Function

Several studies have shown that coal miners reported more respiratory symptoms and had poorer
lung function than control groups [Enterline and Lainhart 1967; Higgins and Cochrane 1961;
Higgins et al. 1968; Higgins 1972; Higgins et al. 1981]. Exposure to respirable coal mine dust has
been associated with deficits in ventilatory function (including FEV, and vital capacity, VC)
whether or not simple CWP was present [Hankinson et al. 1977a; Morgan 1978]. The presence of
small, irregular radiographic opacities has been associated with deficits in FEV, and FVC among
U.K. coal miners—in addition to those deficits attributable to age, height, weight, smoking habits,
and dust exposure [Collins et al. 1988]. Complicated CWP (PMF) has been associated with
ventilatory impairment [Morgan et al. 1974] and with decreased resting arterial blood gas tension
(Pag,) [Rasmussen et al. 1968]. Maclaren et al. [1989] reported that miners with dyspnea had a
greater risk of developing PMF.

Other measures of lung function (i.e., residual volume [RV] and total lung capacity [TLC]) have
been shown to be elevated in miners with simple CWP [Morgan et al. 1971, 1974). Cigarette
stnoking and bronchitis were also found to be associated with increased TLC and RV, regardless
of the category of simple CWP [Hankinson et al. 1977b]. More recently, FEV, and maximum
expiratory flow rates were shown to be significantly lower, and RV was significantly higher among
nonsmoking coal miners than among nonsmoking steelworkers [Nemery et al. 1987]. These lung
function indices were similar among the coal miners, whether or not simple CWP was present

[Nemery et al. 1987].
Diffusing capacity has been shown to be either normal or slightly decreased among miners with

simple CWP [Cotes et al. 1971; Cotes and Field 1972; Ulmer and Reichel 1972]. Diffusing capacity
was reduced among coal miners who smoked, regardless of their duration of exposure to coal mine
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dust [Kibelstis 1973]. Diffusing capacity was reduced among nonsmoking miners with simple CWP
and p-type opacities [Seaton et al. 1972].

4.2.2.3.1 Quantitative estimates of dust-related loss of lung function

4.2.2.3.1.1 Cross-sectional studies

Decrements in FEV, and FVC have been shown to be related to coal mine dust exposure
(independent of the effects of smoking) in cross-sectional epidemiological studies [Attfield and
Hodous 1992; Seixas et al. 1992; Marine et al. 1988; Soutar et al. 1988; Rogan et al. 1973]. The
average decrement in FEV, from exposure to respirable coal mine dust has been estimated in
cross-sectional studies to be 0.6 to 0.76 ml per gh/m3 [Attfield and Hodous 1992; Soutar and Hurley
1986; Rogan et al. 1973]. A re-analysis of the Rogan et al. [1973] data by Marine et al. {1988]
showed a 36% greater loss for nonsmokers and a 56% greater loss for cigarette smokers than
originally estimated. Table 4-5 lists the estimated average losses of FEV; from coal mine dust
exposure reported in several studies.

Two studies of 4,059 British coal miners followed for 22 years indicated that exposure to coal mine
dust on pulmonary function can be clinically significant [Hurley and Soutar 1986; Soutar and Hurley
1986]. An “excess effect” of exposure to coal mine dust was observed in a subgroup of 199 miners
who had left the coal industry before normal retirement age, taken other jobs, and reported symptoms
of chronic bronchitis at the 22-year followup survey. The average loss of FEV, among the 199
miners was 600 ml, and the average cumulative exposure to respirable coal mine dust was
300 gh/m3. The 35 ex-smokers in the subgroup had the greatest loss in FEV; —an average of 942 ml.

Soutar et al. [1988] found that miners with the first level of breathlessness (troubled by shortness
of breath when hurrying on level ground or walking up a slight hill) had lower lung function than
predicted normal values in that region. Average decrements in FEV; among miners with the first
level of breathlessness were 422, 343, and 215 ml, respectively, for miners in South Wales,
Yorkshire, and Tyne and Wear. The second level of breathlessness (shortness of breath walking
with other people of the same age on level ground) was associated with average FEV,
decrements of 592, 491, and 386 ml, respectively, for the same regions. The third level of
breathlessness (needing to stop for breath when walking at one’s own pace on level ground) was
associated with average losses of 942, 812, and 800 ml, respectively.

Soutar et al. [1993] examined clinically important dust-related deficits in lung function of U.K.
coal miners analyzed previously [Soutar et al. 1988; Soutar and Hurley 1986]. Clinically
important deficits of FEV, were defined as the average deficit associated with a severe grade of
exertional dyspnea (having to stop for breath when walking at one’s own pace on level ground). In
two of the areas studied (Y orkshire and North East), no exposure-telated deficits were demonstrated;
however, age and cumulative dust exposure were highly correlated. In the third area (South Wales),
significant exposure-related deficits were observed. The mean FEV of miners in South Wales with
severe exertional dyspnea was 942 ml less than that predicted for nonsmokers of the same age and
stature. This deficit is close to the value of <65% of predicted normal FEV used by Marine et al.
[1988] to indicate a clinically important deficit.

34




4 Health Effects of Exposure to Respirable Coal Mine Dust

Table 4-5. Estimated average loss of lung function (FEV) associated with exposure to respirable coal mine dust

Loss of FEV)
per exposure unit Total loss of FEV
References (ml per gh]ms) {ml per 180 ghlms)*

Attfield and Hodous [1992]" 0.69 124
Seixas et al. [1992]F 3.39 610
Soutar and Hurley [1986]° 0.76 137
Marine et al. [1988] 0.94 (smokers) 169

1.02 (nonsmokers) 184

“Note: Cumulative exposure of 180 ghjm3 corresponds to 45 years (2,000 hrfyear) at a mean concentration of 2 mg/m3 of
mplmble coal mine dust.
U S. miners working before 1970; average of 18 years underground.
U S. miners new to mining since 1970; average of 13 years underground.
Brmsh miners working during the 1950s; 22 years of followup.
**British miners working during the 1950s; 10 years of followup.

4.2.2.3.1.2 Longitudinal studies

Longitudinal studies have demonstrated an association between cumulative exposure to respirable
coal mine dust and the rate of decline in FEV [Seixas et al. 1993; Leigh 1990; Attfield 1985; Love
and Miller 1982]. In a study of 1,677 British coal miners, Love and Miller [1982] found that the
loss of FEV in 11 years increased with increasing previous cumulative dust exposure (i.e., exposure
occurring before the period of study). Miners with the average previous cumulative exposure of
117 gh/m3 had an FEV| loss of 42 ml in 11 years, with an additional FEV loss of 122 ml among
smokers. In a study of 1,470 U.S. coal miners, Attfield [1985] found that the dust-related FEV
loss was 36 to 84 ml over 11 years, with an additional FEV loss of 100 ml among smokers.

In a longitudinal study of new coal miners (those who began working in mining since 1970), the
average loss related to dust exposure was 13.8 ml per gh/m3 during the first 3 to 4 years of mining
(at round 2 of the National Study of Coal Workers’ Pneumoconiosis), with no additional exposure-
related loss over approximately the next 13 years (between rounds 2 and 4 of the National Study of
Coal Workers’ Pneumoconiosis) [Seixas et al. 1993]. Thus, the average exposure-related loss was
3.39 ml per gh/m3 over the 15- to 17-year period. Another U.S. study repotted an average FEV,
loss of 67 ml per year for the first 2 years of mining, with an average FEV | loss of 14.4 ml per year
for the next 5 years [Hodous and Hankinson 1990]. However, dust exposure estimates were not
provided. The results of the latter two studies suggest (1) a nonlinear relationship between the rate
of decline in FEV; and coal mine dust exposure, with the greatest rate of decline in FEV; occurring
during the first few years of mining, and (2) a reduction in the rate of decline associated with
subsequent coal mine dust exposures.

In a longitudinal study of lung function in 384 coal miners from France, the average rates of decline
for FEV, and FVC ranged from 47 ml/year for living nonsmokers to 78 ml/year (measured during
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life) for deceased smokers [Dimich-Ward and Bates 1994]. The rate of decline in FEV| after
retirement decreased among coal miners who had never smoked but increased among smokers
[Dimich-Ward and Bates 1994].

Such factors as past dust exposure, smoking, and alcohol consumption were associated with
decreased FEV, and chronic bronchitis in a longitudinal study of Australian coal miners [Leigh
1990]. The mean loss of FEV, in 15 years was 0.81 L [Leigh 1990].

4.2.2.3.2 Smoking

The roles of dust exposure and smoking in the development of COPD among coal miners has been
the subject of much debate [Attfield and Hodous 1992; Morgan 1986, 1983, 1980; Cochrane 1983;
Seaton 1983]. Morgan [1986] has suggested that the effects of smoking and dust exposure are
different in that smoking causes severe losses in lung function in a small percentage of individuals
and dust exposure causes small losses in lung function in the majority of individuals. Findings from
two exposure-response studies of lung function in U.S. miners [Attfield and Hodous 1992; Attfield
and Hodous 1989] did not support that suggestion.

Attfield and Hodous [1992] found that both dust exposure and smoking caused shifts in the
distribution of FEV, values. Loss of FVC was also related to cumulative dust exposure, although
the magnitude of the FVC loss was slightly smaller than that for FEV. In an earlier analysis of
lung function in the same coal miner population reported by Attfield and Hodous [1992] (but without
dust exposure data), Morgan et al. [1974] found that the number of years underground was associated
with similar losses in both FEV, and FVC. Thus, the number of years worked was not associated
with a reduction in the FEV,/FVC ratio [Morgan et al. 1974]. Attfield and Hodous [1992] found
an exposure-related loss of the FEV,/FVC ratio that was statistically significant but small in
magnitude.

Among U K. coal miners, Soutar and Hurley [1986] found that cumulative dust exposure was related
to losses in both FEV, and FVC. Smoking was associated with a reduction in the ratio of FEV,/FVC
(i.e., FEV was reduced more than FVC), but dust exposure was not related to this ratio (i.e., FVC
was reduced at least as much as FEV,) [Soutar 1987; Soutar and Hurley 1986].

4.2.2.3.3 Dust characteristics

Some studies have shown that the coal rank of the dust to which miners are exposed may affect lung
function. Morgan et al. [1974] reported greater decrements of FEV; and FVCand greater RV among
miners exposed to higher-rank coal (an effect observed in smokers, ex-smokers, and those who
never smoked). Because the study did not include dust exposure data, the results could reflect
differences in the extent of dust exposure. In a study that did include exposure data [Attfield and
Hodous 1992], miners exposed to higher-rank eastern coal had greater decrements in FEV, than
those with the same cumulative exposure to lower-rank western coal.

Some evidence suggests that exposure to coal mine dust of larger particle size than the respirable

fraction may affect the development of COPD. Potts et al. [1990] suggested that thoracic dust,
which is deposited primarily in the bronchial airways, may be important in the development of
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bronchitis and loss of lung function. Thoracic dust concentrations can vary by location in
underground coal mines, and thoracic dust concentrations may be five to seven times higher than
respirable dust levels [Potts et al. 1990; Burkhart et al. 1987]. Two U.K. studies investigated the
cotrelation between “total” or “inspirable” dust and respiratory disease [Cowie et al. 1981; Mark et
al. 1988]. Both studies found that estimated concentrations of the coarse fractions of dust provide
no better correlations with disease than concentrations of the respirable fraction.

4.2.3 Predicted Prevalence of Simple CWP, PMF, and Decreased Lung Function
Among U.S. and U.K. Coal Miners

In several epidemiological studies of U.S. and U.K. coal miners, statistical models (primarily linear
or logistic regression) have been used to estimate the prevalence of simple CWP, PMF, or specific
decrements in lung function. The models for simple CWP and PMF have generally included
covariates for age and coal rank, and the models for decreased lung function have generally included
covariates for age, height, and smoking.

4.2.3.1 Predicted Prevalence of Simple CWP and PMF

Both U.S. and U.K. studies indicate that the risk of developing PMF is greater than the previous
risk estimates that were used as a basis for the current U.S. standard for coal mine U.S. and U.K.
estimates indicate that 7/1,000 (0.7 %) to 89/1,0008% (8.9%) miners who were exposed to respirable
coal mine dust for 40 years at the current MSHA PEL of 2 mg/m3 will develop PMF by the age of
58 (Table 4-6); 65 to 316 miners/1,0008% will develop simple CWP category 1 or greater. The
range of estimates quoted reflect the higher risks predicted for exposure to dust of higher-rank coal
as well as possible variations in exposure conditions and differences between the populations of coal
miners studied. The risk estimates from the U.S. studies are consistently higher than those from the
U.K. studies, even though the various studies are similar in magnitude. However, the estimated
reductions in simple CWP or PMF are comparable in the U.S. and U.K. studies. Up to threefold
reductions in the prevalence of simple CWP and PMF are predicted if exposures are reduced from
a mean concentration of 2 to 1 mg/m3*** over a 40-year working lifetime (Table 4-6).

4.2.3.2 Predicted Prevalence of Decreased Lung Function

In addition to the risk of simple CWP and PMF, epidemiological studies have shown that coal miners
have an increased risk of developing COPD. COPD may be detected from decrements in certain
measures of lung function, especially FEV, and the ratio of FEV/FVC. Decrements in lung
function associated with exposure to coal mine dust are severe enough to be disabling in some
miners, whether or not pneumoconiosis is also present [Hurley and Soutar 1986; Soutar and Hurley
1986]. A severe or disabling decrement in lung function is defined here as an FEV,| <65% of
expected normal values; an impairment in lung function is defined as an FEV, <80% of predicted

“Range of mean prevalences.
"Measured usmg the current MSHA sampling method (Section 5.1 and Appendix J); 1 mg/m is equivalent to
0.9 mglm when measured using the NIOSH recommended sample criteria (Sections 5.2 and 5.4).
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Table 4-6. Predicted prevalence of simple CWP and PMF among U.S. or U.K. coal miners at
age 58 following exposure to respirable coal mine dust over a 40-year working lifetime

Mean concentration of
respirable coal mine dust Predicted prevalence (cases/1,000)
Study and coal rank (mg/m®) CWP:1* CWP22 PMF
Attfield and Seixas [1995]:"
High-rank bituminous 2.0 253 89 51
(204- 308): (60-130) (30-85)
1.0 116 29 16
(88-150) (16-51) (7-36)
Medium/low-rank bituminous 2.0 144 31 14
(117-176) (20-49) (7-27)
1.0 84 17 9
(64-110) 9-30) (4-19)
Attfield and Morring [1992b]:¥
Anthracite 2.0 316 142 89
(278-356) (118-172) (69-113)
1.0 128 46 34
(108-152) (35-60) (24-48)
High-rank bituminous 2.0 282 115 65
(89% carbon) (250-317) (94-141) (49-85)
1.0 119 41 29
(100-142) (31-54) (20-41)
Medium/low-rank bituminous 2.0 121 40 22
(83% carbon) (108-136) (33-49) (17-29)
1.0 74 24 17
(62-89) (18-31) (12-24)
Medium/low-tank bituminous 2.0 89 28 15*
(Midwest) (73-108) (20-39) (9-26)
1.0 63 20 14**
(52-77) (14-27) 9-21)
Medium/low-rank bituminous 2.0 67 15** 13*
{(West) (52-86) (8-26) (7-24)
1.0 55 14** 12**
(44-68) (10-21) (8-20)
Hurley and Maclaren [1987]:
High-rank bituminous 2.0 89 29 18
(89% carbon)
1.0 40 12 7
See footnotes at end of table. . {Continued)
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Table 4-6 (Continued). Predicted prevalence of simple CWP and PMF among U.S. or UK. coal miners
at age 58 following exposure to respirable coal mine dust over a 40-year working lifetime

Mean concentration of

respirable coal mine dust Predicted prevalence (cases/1,000)
Study and coal rank (mg/m®) CWP21* CWP:2 PMF
Medium/low-trank bituminous 2.0 65 16 7
(83% carbon)
1.0 28 7 3

* Abbreviations: CWPZ1 = simple pneumoconiosis category 1 ot greater; CWP22 = simple pneumoconiosis category 2 or
greater; PMF = progressive massive fibrosis.
tAttfield and Seixas [1995] define the coal rank groups as follows:
1. High-rank bituminous (89%-90% carbon): central Pennsylvania and southeastern West Virginia
2. Medium/low-rank bituminous (80%-87% carbon): medium-rank—western Pennsylvania, northern and southwest-
ern West Virginia, eastern Ohio, eastern Kentucky, western Virginia, and Alabama
3. Low-rank: western Kentucky, Illinois, Utah, and Colorado
¥The 95% confidence intetvals, where available, are given in parentheses under the point estimates for prevalence

(casesf1,000}.
¥In Attfield and Morring [1992b], the predicted prevalences for CWP category 1 or CWP category 2 did not include high
categories.
** Attfield and Morring [1992b] define the coal rank groups as follows:
1. Anthracite: two mines in eastern Pennsylvania (about 93% carbon)
2. Medium/low-volatile bituminous (89%-90% carbon): three mines in central Pennsylvania and three mines in
southeastern West Virginia
3. High-volatile “A” bituminous (80%-87% carbon): 16 mines in western Pennsylvania, north and southwestern West
Virginia, eastern Ohio, eastern Kentucky, western Virginia, and Alabama
4. High-volatile Midwest: four mines in western Kentucky and Illinois

normal values [Boehlecke 1986; Marine et al. 1988; ATS 1991; Soutar et al. 1993]. An exposure-
response relationship between respirable coal mine dust exposure and decrements in lung function
has been observed in cross-sectional studies [Attfield and Hodous 1992; Seixas et al. 1992; Marine
et al. 1988; Rogan et al. 1973] and confirmed in longitudinal studies [Seixas et al. 1993; Attfield
1985; Love and Miller 1982].

Table 4-7 presents the predicted prevalence of decreased lung function among miners at age 58
who have worked 40 years at a mean concentration of 2 or 1 mg/m? of respirable coal mine dust.
The predicted prevalences are based on studies of U.S. miners [Attfield and Hodous 1992] and U.K.
miners [Marine et al. 1988] and are reasonably consistent. These studies show that among miners
who never smoked and who were exposed for 40 years at the current MSHA PEL of 2 mg/m3 for
respirable coal mine dust, an estimated 16 to 63/1,00011T will have FEV <65% of predicted normal
values at age 58. Among smokers with the same exposures, an estimated 80 to 173/1,000 will
have FEV, <65% of predicted values at age 58. These predicted prevalences include the background
prevalence (predicted from the model at zero exposure). See Section 7.3.2.1 for further discussion
on background prevalence. Excess (i.e., exposure-attributable) risk estimates computed from these
studies are provided in Section 7.3.2.2.

TﬂRa.rlgt: of mean prevalences (range of point estimates).
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Table 4-7. Predicted prevalences of decreased lung function” among U.S. or UK. coal miners at age 58
following exposure to respirable coal mine dust over a 40-year working lifetime

Mean concentration Predicted prevalence
of respirable coal Lung function {casesf1,000)
mine dust decrement Miners who
Study and regionir (myms) (% FEV)) never smoked Smokers
Attfield and Hodous 1992:
East 20 <80 141 369
<65 22 102
1.0 <80 123 336
<65 18 87
West 20 <80 125 340
<65 16 30
1.0 <80 108 309
<65 13 68
Marine et al. 1988* 2.0 <80 153 372
<65 63 173
1.0 <80 125 314
<65 52 159

*Decteased lung function is defined as FEV <80% of predicted normal values. Clinically important deficits are FEV) <80%
(which approximately equals the lower limit of normal [LLN], or the 5th percentile) [Boehlecke 1986; ATS 1991} and
FEV, <65% (which has been associated with severe exertional dyspnea) [Soutar et al. 1993; Marine et al. 1988).

t Attfield and Hodous [1992] define the following coal ranks and regions:

East: Anthracite (eastern Pennsylvania) and bituminous (central Pennsylvania, northemn Appalachia [Ohio, northetn
West Virginia, western Pennsylvania), southern Appalachia [southern West Vitginia, eastern Kentucky, western
Virginia]}, Midwest [Mllinois, western Kentucky], and South [Alabamal].

West: Colorado and Utah.

Conversion from ghfyear to mg—yrfms; assumed 1,920 hrfyear for U.S. miners.

4.2.4 Surface Coal Miners

4.2.4.1 Health Hazard Evaluations Among Drillers at U.S. Surface Coal Mines

In 1980, NIOSH performed a health hazard evaluation (HHE) of a surface coal mine that had been
in operation in West Virginia since 1972 [Banks et al. 1983). This HHE was initiated in 1979
when a driller who had worked at this mine for 5 years was hospitalized and diagnosed as
having silico-proteinosis, a type of silicosis. Among the other nine miners evaluated in the HHE,
two cases of CWP category 1 were identified; both involved surface coal miners who had worked
as drillers—one for 4 years and the other for 6 years.

In 1982, MSHA requested that NIOSH conduct an HHE at three surface coal mines to evaluate the

respiratory status of surface coal miners who were drillers and driller helpers [Cornwell and Hanke
1983]. The study group of drillers included active miners who were current or former drillers and/or
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driller helpers. The comparison group consisted of workers who had never worked as drillers or driller
helpers. The study found one case of simple CWP category 2 in the driller group and one case of
simple CWP category 1 in the nondriller group. The mean length of employment on drill crews for
the driller group was 3.8 years, a period that may not have been sufficient to detect exposure-related
disease.

4.2.4.2 Medical Evaluations of Miners at U.S. Bituminous Surface Coal Mines, 1972-73

During 1972-73, NIOSH studied U.S. surface coal miners at seven bituminous mines and one anthra-
cite mine [Fairman et al. 1977]. A total of 1,438 miners were examined; the participation rate was
95.5%. Table 4-8 shows the prevalence of simple CWP among bituminous surface coal miners.
Miners who had previously worked in underground coal mines or who had worked on drill crews
at surface coal mines had higher prevalences of simple CWP than miners who had never worked
underground or on drill crews.

4.2.4.3 Medical Evaluations of Miners at U.S. Anthracite Surface Coal Mines, 1954-85

During 1984-85, NIOSH offered medical examinations to 1,348 miners employed at 31 surface
coal mines in the anthracite coal region of northeastern Pennsylvania [Amandus et al. 1989]; the
participation rate was 80% (1,073/1,348). Miners were grouped according to previous employment
in other jobs involving exposure to dust—including jobs in underground coal mining, noncoal
mining, construction, welding, sandblasting, manufacturing, steel mills, foundries, and shipbuild-
ing. Table 4-9 shows the prevalence of simple CWP among anthracite surface coal miners. The
results indicate a higher risk of developing simple CWP among miners who worked on drill crews
of anthracite surface coal mines. The results also suggest that surface coal miners at anthracite coal
mines are at greater risk of developing simple CWP than miners at bituminous surface coal mines.
These findings are consistent with studies of underground coal miners, which have shown higher
prevalences of pneumoconioses among anthracite coal miners than among biturninous coal miners
(see Sections 4.2.1.1 and 4.2.1.2). The results of the Amandus et al. {1989] study are consistent
with those of the Amandus et al. [1984] study. Both found an excess prevalence (relative to
“background” [Castellan et al. 1985]) of simple CWP among surface coal miners who never worked
in underground coal mines or on surface coal mine drill crews. Both studies also found that surface
coal miners who never worked underground coal but did work on surface drill crews were at risk
of developing CWP category 2 or higher.

4.2.4.4 Study of U.K. Surface Coal Miners

A recent study of surface (“opencast™) coal miners in the United Kingdom was performed to
determine miners” exposures to respirable dust and quartz and to assess their respiratory health
[Love et al. 1992]. Concentrations of respirable coal mine dust and respirable quartz were reported
to be generally below 1 and 0.1 mg/m3, respectively. The investigators found that the duration of
employment in the dustiest opencast jobs was significantly related to the probability of having
radiographic category 0f1 or greater. Age and smoking were controlled in the analyses. The relative
risk of category 0/1 doubled for every 10 years worked in those jobs compared with workers of the
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Table 4-8. Prevalence of simple CWP among bituminous surface coal miners

Prevalence
Number CWP1 CWP 22
Group of workers % Number % Number
Blue-collar workers with no
previous occupational dust
exposure [Castellan et al. 1983] 1,422 0.2 3 0.0 0
Surface coal miners:

Never worked underground or

on drill crew; <10 years on

surface coal mine jobs 516 0.8 4 0.0 0
Never worked underground or on

drill crew; >10 years on surface

coal mine jobs 486 35 17 04 2
Drill crew members for 1-10 years;

never worked in an underground

coal mine 82 3.7 3 0 0
Drill crew member for >10 years;

never worked in an underground

coal mine 49 14.3 6 23 1
Worked 1 year or more in an

underground coal mine 215 12.1 26 2.3 5

Total surface coal miners 1,348 42 56 0.6 8

Adapted from Amandus et al. [1984].
Of the original 1,438 X-rays, two or more readers determined that 90 were unreadable.

same age who were not exposed to dusty work. The relationship between years worked and category
0/1 or 1/0 remained after excluding 198 men with previous underground work experience. Duration
of employment was not associated with chronic bronchitis or measures of lung function (FEV,,
FVC, ot FEV/FVC). The relationship between years worked and small opacities on the chest X-ray
was similar for both rounded and irregular opacities.

4.2.5 Studies of Mortality Among Coal Miners

Studies from the United States [Attfield et al. 1985; Ortmeyer et al. 1973, 1974], the United Kingdom
[Miller and Jacobsen 1985; Atuhaire et al. 1985; Cochrane et al. 1979], and the Netherlands [Meijets
etal. 1991] indicate that mortality from occupational respiratory diseases (PMF, chronic bronchitis,
or emphysema) and accidents is elevated among coal miners relative to the general population.
Miners with radiographic evidence of PMF had higher mortality rates than miners with or without
simple CWP [Atuhaire et al. 1985; Cochrane et al. 1979; Ortmeyer et al. 1974; Cochrane 1973].
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Table 4-9. Prevalence of simple CWP among anthracite surface coal miners

Prevalence
Number .t CWP1 CWP >2
Group of workers % Number % Number
Surface miners with
previous dust exposure 537 7.1 38 11 6
Surface miners with no
previous dust exposure 516 3.5 18 1.0 5

Never worked on surface
coal mine drill crew 448 2.7 12 0 0

Worked 1-9 years on
surface coal mine

drill crew 46 43 2 22 1
Worked >10 years on

surface coal mine

drill crew 22 18.2 4 18.2 4

Adapted from Amandus et al. [1989].
"Of the 1,073 workers who originally participated, 20 were not included in the analyses.

Regional or coal rank differences have also been reported, with higher standardized mortality ratios
(SMRs) for all-cause mortality among minets in the anthracite coal regions of the United States
[Ortmeyer et al. 1974]. Miners with decreased lung function (FEV{/FVC <70% of predicted normal
values) had elevated mortality [Ortmeyer et al. 1974]. Mortality rates for ischemic heart disease
were lower in coal miners than in the general population [Costello et al. 1975].

4.2.5.1 Mortality Related to Exposure to Respirable Coal Mine Dust

Most studies of mortality in U.S. coal miners did not include exposure information [Rockette 1977;
Costello et al. 1974; Enterline 1972]. Attfield et al. [1985] and Ortmeyer et al. [1974] included
surrogate indices of coal mine dust exposure by comparing SMRs for miners with more than or less
than 30 years of experience. Amandus [1983] used years of underground mining experience as a
surrogate for dust exposure in a regression model; however, it was not statistically significant and
was removed from the final model.

Mortality attributed to pneumoconiosis, chronic bronchitis, or emphysema has been related to
cumulative exposure to respirable coal mine dust in both U.S. and U.K. coal miners [Miller and
Jacobsen 1985; Kuempel et al. 1995]. In the UK. study [Miller and Jacobsen 1985], 22-year
survival rates were determined for 19,500 coal miners who were medically examined between 1953
and 1958. Within 10-year age categories, significant relationships were observed between increas-
ing cumulative exposure category and increasing mortality from all nonviolent causes, pneumoco-
niosis, chronic bronchitis, or emphysema as the underlying cause of death. Mortality from all
nonviolent causes was significantly elevated among miners with PMF compared to miners without
radiographic evidence of pneumoconiosis. Survival was also slightly decreased (2% to 3%) among
miners with simple CWP category 1 compared to those without pneumoconiosis.
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In the U.S. study [Kuempel et al. 1995], significant exposure-response relationships were observed
between cumulative exposure to respirable coal mine dust and mortality from pneumoconiosis,
chronic bronchitis, or emphysema as an underlying or contributing cause of death. The study
included 8,878 miners who were medically examined during the period 1969-71 and followed
through 1979. SMRs for pneumoconiosis mortality increased with increasing cumulative exposure
category. The effects of age and smoking were controlled by inclusion of these factors as covariates
in the proportional hazards models. Pneumoconiosis mortality was significantly elevated among
miners with either simple CWP or PMF and among miners exposed to dust of higher-rank coals.
On the basis of these analyses, miners with working lifetime exposures to respirable coal mine dust
at a mean concentration of 2 mg/m3 have an increased risk of dying from pneumoconiosis, chronic
bronchitis, or emphysema.

4.2.5.2 Studies of Lung Cancer and Stomach Cancer Among Coal Miners

Most studies have reported that mortality from lung cancer is lower than expected among coal miners
when compared with general population rates [Liddell 1973; Costello et al. 1974; Armstrong et al.
1979; Rooke et al. 1979; Ames and Gamble 1983; Atuhaire et al. 1985; Miller and Jacobsen 1985;
Kuempel et al. 1995], although some studies have reported elevated lung cancer mortality among
coal miners [Enterline 1972; Rockette 1977]. Mortality from lung cancer was not associated with
cumulative exposure to respirable coal mine dust in the two studies that evaluated this relationship
[Miller and Jacobsen 1985; Kuempel et al. 1995]. In a study of lung cancer by histologic type,
Vallyathan et al. [1985] found little difference in the pathologic features of lung cancer in coal
miners and in men from the general population who smoke cigarettes. Vallyathan et al. [1985] also
found no relationship between lung cancer and years in coal mining.

Some studies have reported that mortality from stomach cancer is elevated among U.S. coal miners
when compared with general population rates [Stocks 1962; Enterline 1964; Matalo et al. 1972;
Rockette 1977]. Miller and Jacobsen [1985] found a marginally significant relationship between
cumulative exposure to respirable coal mine dust and mortality from cancers of the digestive system
among U.K. coal miners.

Factors including diet, cigarette smoking, chewing tobacco, and coal dust exposure may play a role
in the development of stomach cancer [Wu 1990; Ames and Gamble 1983; Ong et al. 1983; Whong
et al. 1983; Ames 1982]. Coal dust cleared from the lungs via mucociliary clearance may enter the
stomach, where it undergoes nitrosation or other chemical interactions and forms carcinogenic
compounds [Ong et al. 1983; Meyer et al. 1980]. The nitrites and nitrates may enter the stomach
from diets containing preserved meats or vegetables, or from the use of tobacco. Laboratory studies
have shown that nitrosated extracts of coal dusts and tobacco are mutagenic in the Ames assay
[Stamm et al. 1994], induce sister-chromatid exchanges in human peripheral lymphocytes [Tucker
et al. 1984; Tucker and Ong 1985], and cause transformation of mouse fibroblasts [Wu et al. 1990].
Reduction in exposures to respirable coal mine dust, tobacco, and foods containing nitrites and
nitrates may help reduce the risk of gastric cancer among coal miners.

SMRs for lung cancer [Liddell 1973; Costello et al. 1974; Armstrong et al. 1979; Rooke et al. 1979,

Meijers et al. 1991] and heart disease [Costello et al. 1975] have generally been lower than expected
among coal miners. Stomach cancer mortality rates were elevated among coal miners in some
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studies in the United States [Stocks 1962; Enterline 1964; Matalo et al. 1972; Rockette 1977]. Miller
and Jacobsen [1985] found an association between cancers of the digestive organs and coal mine
dust exposure in U.K. coal miners, but the effect was not observed independently of pneumoconiosis.

4.3 ANIMAL AND HUMAN STUDIES OF LUNG DUST BURDEN AND
CELLULAR MECHANISMS

Although researchers have conducted extensive epidemiological studies of coal miners (including
determination of exposure-response relationships), animal and cellular studies have provided
additional useful information on the toxicity of respirable coal mine dust and components of that
dust (e.g., silica or diesel exhaust). The animal studies of particle deposition and lung clearance
have provided information on dose-response relationships. These studies have enhanced our
understanding of disease mechanisms. Further research may provide the methods for earlier
identification of disease and more effective medical intervention and treatment.

4.3.1 Alveolar Clearance Mechanisms

Both a sequestration and an overload hypothesis have been proposed to model the accumulation of
dust in lungs following continuous exposure to particulates. The sequestration hypothesis was first
proposed by Soderholm [Soderholm 1981; Vostal et al. 1982]. Later studies by Vincent et al. [1985,
1987] provided support for this model. The sequestration model predicts that some fraction of dust
is sequestered or retained in the lungs even at low exposures. This sequestered dust is unaffected
by clearance mechanisms and may be trapped in lymphatic tissue, in the interstitial spaces of alveolar
walls, or within macules. Sequestration of dust does not necessarily render it nontoxic. Indeed,
some proposed models assume that once particulates have entered the alveolar wall, they exhibit
greater fibrogenicity than dust in the alveolar spaces.

The normal clearance of particles from the alveolar or pulmonary region of the lungs by alveolar
macrophages is regarded as a first-order process [Task Group on Lung Dynamics 1966; Vincent et
al. 1985; Morrow 1992]. However, first-order clearance models do not adequately represent the
clearance kinetics under the following conditions: (1) when clearance is by dissolution, (2) when
the lung is overloaded with particles, or (3) when cytotoxic dust is cleared [Morrow 1992]. Atinitial
dust exposure, deposition exceeds clearance and the lung burden rises. As clearance increases in
response to the added burden, the mode! from the Task Group on Lung Dynamics [1966] predicts
that the lung burden begins to level off to a constant, steady-state value, and eventually clearance
equals deposition. Recent studies have shown that the pulmonary clearance of retained particles by
alveolar macrophages becomes progressively reduced until it essentially ceases; then the lung
burden increases linearly at a rate approximately equal to the rate of deposition [Morrow 1988].

The phenomenon of overloading of lung clearance is consistent with overloading or saturation in
other biological systems [Witschi 1990]. The overloading of lung clearance has been observed in
studies of several animal species (including rats, mice, and hamsters) exposed to various insoluble,
respirable particles, including diesel exhaust [Strom et al. 1988; Wolff et al. 1987], carbon black
[Strom et al. 1989; Muhle et al. 1990a,b], test toner (polymer pigmented with carbon black)
[Bellmann et al. 1991; Muhle et al. 1990c, 1991], titanium dioxide [Muhle et al. 1990a,b], mineral
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dusts [Vincent et al. 1985], and amosite fibers [Bolton et al. 1983]. The exposure-dose-response
relationships for inhaled respirable particles have been investigated through the development of
physiologically based toxicokinetic models to describe the retention and clearance kinetics in the
alveolar region of the lungs of rats [Stober et al. 1990; Yu et al. 1988].

As the lung burden increases, alveolar macrophages become activated and release reactive oxygen
species and cellular factors that stimulate pathogenic events [Driscoll et al. 1990a). Activated or
overloaded alveolar macrophages may release the following cellular factors: arachidonic acid
metabolites [Demers et al. 1988], superoxide anion (O,-) [Wallaert et al. 1990], platelet- activating
factor [Kang etal. 1991], interleukins [Lapp and Castranova 1993], fibronectin, and tumor necrosis
factor (TNF) [Vilcek et al. 1986; Driscoll et al. 1990b]. Coal dust-exposed alveolar macrophages
from coal miners released significantly increased concentrations of TNF and interleukin-6 after
24-hr culture [Gosset et al. 1991].

Leukotriene B, interleukin-8, platelet-activating factor, and platelet-derived growth factor all
enhance chemotaxis. In addition, platelet-activating factor and platelet-derived growth factor
enhance the production of reactive oxygen species and increase the release of lysosomal enzymes
from pulmonary phagocytes [Lapp and Castranova 1993). Thus, these mediators may play an
important role in dust-related inflammation and pathogenesis.

TNF has been the subject of much research. Its functions include (1) stimulating adhesion of
polymorphonuclear leukocytes (PMNs) to endothelial cell surfaces (which induces chemotaxis and
direct activation of PMNs), (2) indirectly activating fibroblast growth, and (3) inducing mononu-
clear phagocytes to produce and release cytokine interleukin-1 (IL-1) (which has been suggested to
cause fibroblast proliferation and collagen synthesis) and induce the production of reactive oxygen
species that cause lung tissue damage [Borm et al. 1988]. Individuals with greater TNF release in
response to coal mine dust may be more susceptible to fibrogenesis, and such differences in the
release of TNF and/or other indicators could be acquired or genetically controlled [Borm et al. 1988;
Schraufnagel et al. 1987].

Ovetloading of alveolar clearance has been observed in animal studies to be characterized by the
following responses, which may also be relevant in the pathogenesis of dust-related lung diseases:
accumulation of dust-laden macrophages, increased lung weight, persistent inflammation, increased
epithelial permeability, elevated infiltration of neutrophils, septal thickening, lipoproteinosis,
increased transfer of material to lymph nodes, decreased or obliterated alveolar clearance, changes
in pulmonary mechanics, impaired pulmonary function, and the onset of fibrosis after a critical dose
(time-integrated concentration) and a sufficient time interval [Morrow et al. 1991; Muhleet al. 1991;
Bowden 1987; Campbell and Senior 1981].

The composition of the dust and the surface properties of the particles influence the cellular response.

Kuhn and Demers [1991] reported that rat alveolar macrophages exposed to freshly fractured coal
dust}f produced markedly increased levels of prostaglandin E, and thromboxane B,, whereas those

:nFreshly-fractured silica particles in the coal mine dust produce increased levels of silicon-based radicals
[Dalal et al. 1988, 1989b].
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exposed to aged coal dust did not. The harmfulness of the coal dust has been attributed to the
proportion of clean silica surface area [Kriegseis and Scharmann 1982; Le Bouffant et al. 1988,
1982]. The cytotoxicity (as assayed by erythrocyte hemolysis) of the silica has been shown to
decrease after the particles are incubated in dipalmitoyl lecithin, which is a major component of
lung surfactant coating alveoli surfaces [Wallace et al. 1988; Cilento and Georgellis 1991].

Relatively innocuous dusts can stimulate chronic inflammation and fibrosis when pulmonary dust
burdens are high enough to overload the normal particle clearance mechanisms [Morrow 1988].
For example, in a chronic inhalation study of respirable test toner (a dust with low solubility and
low acute toxicity that is used in photographic processes) in rats, retardation of particle clearance
progressively increased with lung burdens of toner above approximately 1.0 mg/g of lung [Muhle
et al. 1991; Mermelstein and Kilpper 1990]. A mild to moderate degree of lung fibrosis was
observed in all of the rats exposed at 5.6 mg/m3 respirable dust (16 mg/m3 total dust), and a very
slight degree of fibrosis was seen in 25% of the rats exposed at 1.4 m g/m3 respirable dust (4 mg/m?3
total dust) (Table 4-10). Signs of lung overloading persisted 15 months after cessation of exposure
[Muhle et al. 1990b].

4.3.2 Studies of Alveolar Clearance in Animals and Relevance to
Dust-Exposed Workers

The finding from animal studies that alveolar-macrophage-mediated clearance can become saturated
following long-term exposure to insoluble particles may be relevant to working lifetime exposures
of coal miners. Coal miners may accumulate lung dust burdens of more than 10 mg/g of lung over
a working lifetime under the current MSHA PEL of 2 mg/ m3 for respirable coal mine dust [Pritchard
1989). Table 4-11 shows that 5 to 15 mg of dust/g of lung was retained in the lungs of British coal
miners with cumulative exposures similar to those of U.S. miners exposed for 40 to 45 years at
about 2 mg/m3 of respirable coal mine dust. At 15 mg of retained dust/g of lung, slight to moderate
fibrosis occurred in all animals in the chronic inhalation study (Table 4-10). With 15 mg of retained
dust/g of lung, coal minets had developed PMF; and with 5 mg/g, coal miners had developed
minimal fibrosis (Table 4-11).

A comparison of the lung dust burdens that caused overloading of alveolar clearance in animal
studies and the lung dust burdens found in coal miners suggests that overloading may occur in the
lungs of coal miners exposed at the current PEL of 2 mg/m3 for respirable coal mine dust. However,
these comparisons do not take into account additional factors that may be important—such as
duration of exposure, dust composition (e.g., silica content), or differences in clearance rates or lung
morphology of animals and humans.

4.3.3 Biological Factors in Individual Susceptibility to Fibrosis

The process of lung fibrosis is a multi-faceted, cascading process involving various inflammatory
cells (e.g., macrophages, polymorphonuclear leukocytes, and lymphocytes) and distinct mediators
[Lehnert 1990; Bowden 1987]. Thus, it is not known why some coal miners develop simple CWP
or PMF and others with similar exposures do not [Lassalle et al. 1990]. Differences in individual
susceptibility probably play a role [Borm et al. 1992, 1988].
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Table 4-10. Findings of chronic inhalation study* of test toner in F-344 rats

Mean
concentration Mean dust retained
(mg}'m3) in lungs (mg/g lung) Pulmonary response at end of study
0.35 0.21 No evidence of overloading
1.43 1.80 Symptoms of overloading: slight decrease in clearance/
increase in retention; slight chronic inflammation
Limited, very slight fibrosis in 25% of animals
5.63 15.0 Extensive symptoms of overloading: decrease in clearancef

increase in retention; chronic inflammation; decrease in
pulmonary function; increase in lung weight
Slight to moderate fibrosis in all animals

Adapted from Mermelstein and Kilpper [1990].
Study duration was 24 months (6 hr/day, 5 days/week).

Table 4-11. Cumulative exposure, retained dust levels, and disease in British coal miners

Mean Mean dust

Coal Number cumulative retained

rank of exposure in lungs Pathology
(% carbon) miners (ghlm3) (mg/g lung) groupT
91.4-94.0 31 136.9 54 M
88.8-90.6 26 192.1 58 M
81.1-85.5 26 140.6 7.0 M
81.1-85.5 43 194.6 11.3 F
81.1-855 41 184.8 15.0 PMF

Based on data from Douglas et al. [1986].

*In U.S. coal miners, estimates of cumulative exposure to respirable coal mine dust range from 122 to 180 gh/m? (i.e., 35
years of exposure at 2 mgfm3 and 1,740 hr/year equals 122 gh/m?; or, 45 years of exposure at 2 mgjrn:1 and 2,000 hrfyear
equals 180 gh,im3).

™: Focal dust deposits (macules) with minimal evidence of fibrosis (rately had radiographic evidence of CWP).

F: M + one or more fibrotic dust lesions between ! and 9 mm in diameter.
PMF: Fibrotic dust lesions 10 mm or more in diameter.

Bronchoalveolar lavage in humans has been used to recover alveolar macrophages to study the
differences in factors released from alveolar macrophages of dust-exposed miners and unexposed
controls. In coal miners who worked underground for a mean of 17 years and had no clinically
detectable pneumoconiosis, a statistically significant increase in alveolar macrophages with surface
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ruffling (an indicator of alveolar macrophage activation) was observed [Lapp et al. 1991]. Signif-
icant increases in surface ruffling were also observed in alveolar macrophages from coal miners
with pneumoconiosis [Takemura et al. 1989] and in rats chronically exposed to coal dust
[Castranova et al. 1985; Lewis et al. 1989]. Coal miners with pneumoconiosis [Takemura et al.
1989] (but not those without pneumoconiosis [Lapp et al. 1991]) also had significantly larger
numbers of lysosomes and significantly higher frequencies of multinucleated alveolar macrophages
than comparison workers [Takemura et al. 1989].

Lassalle et al. [1990] compared the secretion of the cytokines TNF-alpha and IL-1 by alveolar
macrophages from French coal miners and control subjects (11 nonminers living in the same area).
A total of 40 coal miners were studied— 19 with simple CWP; 11 with PMF; and 10 without CWP,
including 5 retired coal miners. Alveolar macrophages were harvested by bronchoalveolar lavage.
The investigators found that the alveolar macrophages from patients with CWP spontaneously
secreted higher levels of TNF-alpha and IL-1 than did alveolar macrophages from controls. Among
miners without radiographic evidence of simple CWP or PMF, high levels of both TNF-alpha and
IL-1 were secreted from alveolar macrophages of working miners—but not from those of retired
miners. Kuhn et al. [1991] also found that the alveolar macrophage production of eicosanoids and
cytokines was lower in former U.S. coal miners than in working miners.

Rom [1991] reported that among individuals exposed to inorganic dust (including some coal
miners), only those with respiratory impairment had alveolar macrophages that released signifi-
cantly increased amounts of the oxidants superoxide anion and hydrogen peroxide. Furthermore,
occupational exposures were similar among individuals with or without impairment, which indicates
possible differences in individual susceptibility.

Chronic smokers may have impaired clearance of particles deposited in the lungs and persistent
inflammatory responses [Mauderly et al. 1990; Bohning et al. 1982]. The slowing of particle
clearance from the alveolar region of the lung would promote sequestration of larger lung dust
burdens in smokers than in similarly exposed nonsmokers. Inflammatory and epithelial changes in
smokers are centered primarily in conducting airways rather than the alveolar lung. Rats chronically
exposed to cigarette smoke had impaired alveolar clearance of tracer particles; the magnitude of
this impairmant was similar to the magnitude of impairments reported for human smokers [Bohning
et al. 1982). However, epidemiological studies of coal miners have found that the development of
CWP was correlated with dust exposure and was not modified by smoking history [Jacobsen et al.
1977; Muir et al. 1977).

Lung dust burdens may not be a simple reflection of dust exposure: patterns of deposition or
clearance may differ between miners who develop pneumoconiosis and those who do not. Patho-
logical studies have shown that miners with PMF (or complicated CWP) accumulated more dust in
their lungs and more dust per unit of dust exposure than miners without PMF [Douglas et al. 1986].
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5.1 CURRENT SAMPLING CRITERIA

5.1.1 Characteristics of the Currently Approved Sampling Device

The Federal Mine Safety and Health Act of 1977" defines respirable dust as dust measured with
a device approved by the Secretary of Labor and the Secretary of Health and Human Services
[30 USC 842(e)]. The approved sampler for respirable coal mine dust is the coal mine dust
personal sampler unit (CPSU) [30 CFR 74; Jacobson 1971; Jacobson and Lamonica 1969]. The
CPSU is generally called the 10-mm nylon cyclone, although the 10-mm nylon cyclone is actually
just one component of the CPSU. The CPSU may either be mounted on a worker (with the
sampling head positioned in the breathing zone for personal exposure monitoring) or in a fixed
location for area sampling [Tomb 1990].

The CPSU consists of a pump unit, a sampling head assembly, and a battery charger if
rechargeable batteries are used in the pump unit [30 CFR 74.2]. The sampling head assembly
contains two stages. The first stage is a 10-mm nylon cyclone, which has collection charactetistics
similar to an elutriator. The amount of dust penetration depends on the flow rate [Jacobson and
Lamonica 1969]. The second stage is a membrane filter (vinyl, pore size 5 pm) that collects the
dust passing through the cyclone. The dust collected on the membrane filter is weighed to a
precision (standard deviation) of 81 pg [Parobeck et al. 1981], and the respirable dust concentra-
tion in the mine atmosphere is then determined from the mass of dust collected and the volume
of air sampled [Tomb 1990].

5.1.2 Current Regulations for Sampler Certification

The specifications for the design and performance of the CPSU are listed in 30 CFR 74. NIOSH
is responsible for conducting tests for the certification of the CPSU according to the requirements
in 30 CFR 74.4. MSHA is responsible for conducting tests for the intrinsic safety of the pump
unit of the CPSU.

Current regulations require that sampling devices be approved in accordance with 30 CFR 74 and
calibrated in accordance with MSHA criteria [MSHA 1992a] by a certified person. Approved
samplers must be calibrated and operated at the flowrate of 2.0 L of air/min, or at a different
flowrate as prescribed by the Secretary of Labor and the Secretary of Health and Human
Services [30 CFR 70.204(b)]. To convert a respirable dust concentration measured with an approved

“This Act amended the Federal Coal Mine Health and Safety Act of 1969 (P.L. 91-173).
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sampling device to an equivalent concentration measured with an MRE' instrument, current
regulations require that the concentration measured with the approved sampling device be
multiplied by the constant factor prescribed by the Secretary of Labor [30 CFR 70.206].

A constant factor of 1.6 was originally used to convert concentrations measured with the CPSU
to the equivalent MRE concentration. The 1.6 factor was based on dust measurements taken by
the U.S. Bureau of Mines (BOM) with an earlier version of the CPSU {Jacobson 1970]. Another
study had reported a conversion factor of 1.88 [Doyle 1970]. In a subsequent study, it was
determined that the collection characteristics of the 10-mm nylon cyclone potrtion of the CPSU
depended on the inherent pulsations of the pump [Lamonica and Treaftis 1971]. Thus, the
specifications of the approved CPSU were modified to require pulsation damping of at least 80%,
which would result in measured concentrations within 5% of those obtained using a sampling
unit with constant flow. A new conversion factor of 1.38 was established for converting CPSU
dust concentrations to MRE concentrations [Tomb et al. 1973].

5.1.3 Construction of the Sampling Device

Three studies have reported that charge effects on particles passing through the nylon cyclone
can lead to bias in the collection of dust by nonconducting samplers [Briant and Moss 1984,
Knight and Kirk 1982; Almich and Carson 1974]. Localized sources of electric field occur in
nonconducting samplers, which influence the collection of charged aerosol particles in the air
near the sampler. Briant and Moss [1984] reported a 40% reduction in the collection efficiency
of a moderately-charged aerosol with a nonconducting, charged sampler. Knight and Kirk [1982]
reported a 25% reduction in aerosol collection caused by charge effects of the filter holder of
CPSUs. Almich and Carson [1974] reported a 10% variability associated with charge effects.
Additional studies have reported charge effects during sampling with nonconductive filter
cassettes [Puskar et al. 1991; Demange et al. 1990; Mark 1990; Liu et al. 1985; Turner et al.
1984]. Current specifications for the CPSU state that the cyclone must be constructed of nylon
or a material equivalent in performance [30 CFR Part 74.3(b)(1)]. However, other available
samplers are constructed of metal and are less sensitive to charge effects than the nylon CPSU
(e.g., the Higgins-Dewell cyclone with a 37-mm filter cassette made of conductive material such
as graphite-filled plastic) [Higgins and Dewell 1968].

5.2 RECOMMENDED SAMPLING CRITERIA

NIOSH recommends a revision of the current MSHA definition of respirable coal mine dust,
which is the mass fraction of dust collected with the CPSU when operated at 2.0 L/min (and
multiplied by 1.38 for the MRE equivalent concentration). Instead, NIOSH recommends the
recently developed international definition of respirable dust, which represents a compromise
between previous definitions of particle-size-selective sampling by the International Standards
Organization (ISO), the Comité Européen de Normalisation (CEN), and the American Conference
of Governmental Industrial Hygienists (ACGIH) [ACGIH 1984, 1994; CEN 1993; ISO 1993;
Soderholm 1989, 1991a,b]. Table 5-1 presents the collection efficiencies for sampling devices
that operate in accordance with the international definitions of either respirable, thoracic, or inhalable

TMining Research Establishment of the National Coal Board, London, England.
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Table 5-1. Collection efficiencies for particle-size-selective sampling

Respirable dust” Thoracic dust Inhalable dust
Particle Respirable Particle Thoracic Particle Inhalable
aerodynamic particulate aerodynamic particulate aerodynamic particulate
diameter mass diameter mass diameter mass
(um) (%) (um) (%) (um) (%)
0 100 0 100 0 100
1 97 2 94 1 97
2 91 4 89 2 94
3 74 6 80.5 5 87
4 50 8 67 10 717
5 30 10 50 20 65
6 17 12 35 30 58
7 9 14 23 40 54.5
8 5 16 15 50 525
10 1 18 9.5 100 50
20 6
25 2

Source: ACGIH [1994].
The tnedian cut point for a respirable dust sampler (4.0 mm) is in accordance with the international definition [ISO 1993].

dust. The respirable convention (ER) is the target sampling curve for instruments approximating
the respirable fraction. Eg is defined at aerodynamic diameter D by ISO [1993], CEN [1993], and
ACGTH [1994] in terms of the cumulative normal function ¢ as:

Eg = E; @[In[Dg / D]/ or]

where the indicated constants are Dg = 4.25 um and og = In[1.5], and where the inhalable
convention Ej is defined by:

E; = 0.50 (1 + exp[-0.06 D]), D <100 pm.

Two approaches to the approval of samplers may be considered: (1) the testing and approval of
a single sampling device (e.g., the CPSU), or (2) the performance-based approval of a variety of
sampling devices according to international criteria. Advantages of the single-sampler approach
are that it provides consistency in sampling and avoids the potential for intersampler bias in the
measurements. A disadvantage of the single-sampler approach is that it creates a disincentive for
the development of improved samplers. Advantages of the performance-based sampler approach
are that it stimulates the development of improved samplers and facilitates comparison to world
exposure and effects data. A disadvantage of the performance-based approach is the extensive
and expensive testing that would be required before samplers could be approved.

NIOSH recommends use of the international definition of respirable dust for sampling respirable
coal mine dust for the following reasons:
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® The particle size distributions reported for respirable dust in U.S. underground coal mines
are within the approximate 2- to 10-um range in which the collection efficiency of the
sampler (operated in accordance with the international definition of respirable dust) is
reasonably consistent with the fractional deposition of particles in the alveolar region of
the human respiratory tract of healthy persons (Figure 5-1).

® The international definition of respirable dust better approximates the fraction of particles
deposited in the alveolar region of the human respiratory tract than does the British Medical
Research Council (BMRC) definition (see Figure 5-1).

¢ Respirable coal mine dust concentrations measured according to the current sampling
criteria have been compared with those expected to be measured according to the interna-
tional definition (see Section 5.7).

® Consistency with international standards for respirable dust sampling would be attained.
This consistency would facilitate comparisons of the world literature about the health
effects of exposure to respirable coal mine dust.

NIOSH recognizes the need to resolve the remaining technical questions associated with the
recommended move to samplers that meet the international definition of respirable dust. In the
interim, NIOSH recommends the use of the CPSU at a flow rate of 1.7 L/min without MRE
conversion (versus 2.0 L/min with MRE conversion currently used by MSHA) for sampling
respirable coal mine dust in accordance with the international definition of respirable dust. This
NIOSH recommendation should be followed until acceptable criteria are developed for the
performance-based approval of alternative samplers that also operate in accordance with the
international definition of tespirable dust. For example, the Higgins-Dewell sampler [Higgins
and Dewell 1968] has been evaluated for performance according to the international definition
[Bartley et al. 1994]. An additional advantage of using the flow rate of 1.7 L{min for the CPSU
is that it would facilitate the use of a single sample for determining both respirable coal mine dust
and respirable crystalline silica (which is currently sampled at 1.7 L{min).

The British MRE factor of 1.38 would not be applied to the values of respirable coal mine dust
obtained from sampling according to the international definition. When the REL was derived
from data based on the current MSHA sampling method, a conversion factor (Section 5.4) was
used to compare the current method with the recommended sampling criteria. Thus, concentra-
tions measured according to the recommended sampling criteria (international definition) do not
require the use of a conversion factor.

5.3 BASIS FOR PARTICLE-SIZE-SELECTIVE SAMPLING

5.3.1 Early Definitions of Particle-Size-Selective Sampling

The concept of the CPSU and similar sampling devices (including those operating in accordance
with the international particle-size-selective sampling definitions) is based on the following
experimental evidence:
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Figure 5-1. Comparison of the particle fraction deposited in the alveolar region of the lungs of healthy subjects
[Heyder et al. 1986; Chan and Lippmann 1980; Lippmann and Albert 1969] with the ACGIH [1985], BMRC
[Orenstein 1960], and international [ISO 1993] definitions of respirable dust. (Adapted from Soderholm [1989].)

Copyright by The British Occupational Hygiene Society. Used with permission by the U.S. Department of Health and Human Services.
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® The deposition of particles in the respiratory tract depends on the size and shape of the
particles (i.e., the acrodynamic diameter) [Chan and Lippmann 1980; Lippmann and Albert
1969; Task Group on Lung Dynamics 1966].

® The adverse health effects of inhaled particles depend on where the particles are deposited
within the respiratory tract [Lippmann 1985; Nagelschmidt 1965].

As stated by Schlick and Peluso [1970], “. . . the instruments used to evaluate the atmosphere
should simulate the respiratory tract in selecting the dust particles.” The three major regions of
the respiratory tract include the head airways region, the tracheobronchial region (including the
trachea and ciliated airways in the lungs), and the alveolar region (including nonciliated airways
and alveolar sacs in the lungs) [Soderholm 1989].

Early definitions for sampling respirable dust were developed by the U.S. Atomic Energy
Commission (AEC) [Lippmann and Harris 1962] and by the BMRC. The BMRC definitions were
adopted by the Johannesburg Pneumoconiosis Conference [Orenstein 1960]. The AEC curve has
a sampling efficiency of 50% at a particle diameter of 3.5 pm (unit density, sphere), and the
BMRC curve has a 50% sampling efficiency at 5 pm. An objective of particle-size-selective
sampling has been to exclude from sampling those particles that are too large to enter the region
of the lungs where the particles exert adverse health effects.

5.3.2 Deposition and Clearance of Particles in the Human Respiratory Tract

Data on the deposition of particles in various regions of the human respiratory tract are based on
the use of radiotracer techniques [Emmett et al. 1982; Chan and Lippmann 1980; Lippmann and
Albert 1969; Albert and Arnett 1955]. Deposition of particles in the small bronchi, bronchioles,
and the parenchymal (gas exchange) region of the lung usually occurs by sedimentation for
particles as small as 0.5 to 1.0 um (aerodynamic diameter) [Stuart et al. 1984]. For particles
smaller than 0.5 um, deposition by diffusion occurs in small airways and gas exchange regions.
Nonspherical shape of particles such as fibers may alter the deposition pattern. The electrical
charges on particles also influence the fraction that is deposited. Freshly generated particles may
be highly charged [Mercer 1973], and respiratory tract deposition can increase by 30% after
inhalation of highly charged particles [Melandri et al. 1977].

Studies have been conducted on the clearance of particles from the lungs using radioactive
patrticles to noninvasively determine the amount of material retained in the respiratory tract
following aerosol exposure [Philipson et al. 1985; Bohning et al. 1982; Stahthofen et al. 1981;
Morrow et al. 1967; Albert and Amett 1955]. Clearance of particles deposited in the respiratory
tract is a continuous process that begins immediately after deposition [Stuart et al. 1984]. For
insoluble particles such as coal mine dust, clearance is determined by the mechanical removal of
particles by mucociliary transport from the airways. The phases of particle removal include a
very rapid phase from extrathoracic airways, a fast phase from ciliated thoracic airways, and a
slow phase from nonciliated thoracic airspaces [Stahlhofen et al. 1989; Heyder et al. 1986].
Clearance from ciliated portions of the lungs is called bronchial clearance, and clearance from
nonciliated portions is called alveolar clearance [Heyder et al. 1986]. Thus, the partitioning of
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the lungs into bronchial and alveolar regions is based on the behavior of material deposited in
the lungs and not on anatomical or physiological characteristics [Heyder et al. 1986]. The inhaled,
insoluble particles that are deposited beyond the ciliated epithelium (i.e., in the respiratory
bronchioles, alveolar ducts, and alveoli) can be phagocytized by alveolar macrophages and then
cleared to the gastrointestinal tract or gradually dissolved [Phalen 1984; Stuart et al. 1984].

For the quantitation of risk from inhaled particles, the quantity of material deposited in a specified
region of the respiratory tract and the amount remaining after physiological clearance from that
region must be known [Stuart et al. 1984, 1986]. The amount of retained material may determine
the effective dose of a contaminant that can produce acute or chronic pulmonary disease [Phalen
et al. 1988]. Factors that affect particle deposition and retention include characteristics of the
particles (size, shape, solubility), breathing rates and patterns, health status, and morphology of
the respiratory tract [Miller et al. 1988; Phalen et al. 1986; Phalen 1984].

5.3.3 Deposition-Based and Penetration-Based Sampling Criteria

The design of the CPSU and similar sampling devices is based on the concept of the penetration
of particles in the lungs (i.e., the ability of a particle to reach but not necessarily be deposited in
a region of the lung [Soderholm and McCawley 1990]). Similarly, the international definition of
respirable dust is based on the size of particles that enter the alveolar region of the human lungs
(i.e., particle penetration, but not necessarily particle deposition or retention) (Figure 5-1). The
international definitions of respirable, thoracic, and inhalable dust were influenced, in part, by
the status of existing sampler technology and by the need to retain continuity with historical data
bases (including respirable coal mine dust data collected according to the BMRC definition). The
CEN working group has proposed that samplers purported to meet the international definition of
respirable dust should be shown to be effective when sampling particle size distributions that
have a median aerodynamic diameter between 1 and 25 um and a geometric standard deviation
between 1.5 and 3.5 [Kenny 1992].

The particle size distributions reported for respirable dust in U.S. underground coal mines are
within the approximate 2- to 10-um range in which the collection efficiency of the sampler
(operated in accordance with the international definition of respirable dust) is reasonably
consistent with the fractional deposition of particles in the alveolar region of the human
respiratory tract (Figure 5-1). Figure 5-1 illustrates the fraction of particles that are deposited in
the alveolar region of the human respiratory tract compared with the BMRC, ACGIH, and
international definitions of respirable dust. Figure 5-1 also illustrates that although dust samplers
conforming to these definitions collect up to 100% of the particles below approximately 2 pm,
the alveolar deposition of particles below 2 um in the human lungs is only about 20%. The
deposition-based, size-selective sampling criteria are in better agreement with the deposition of
patticles in the human respiratory tract [Soderholm and McCawley 1990]. However, this approach
would require more complicated size-selective samplers using several substrates. A deposition
curve would also need to be determined based on the mean fraction of particles deposited in the
respiratory tracts of a given human population. Because of the large variability among individuals
in the particle deposition fraction, the deposition curve of the population would not necessarily
provide a reasonable approximation of deposition in an individual. Thus, for occupational
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exposures (including respirable coal mine dust) in which the penetration curves provide a
reasonable approximation and are proportional to deposition curves, there is little justification
for using the more complicated deposition samplers for routine sampling. However, it is important
to determine that the particle size distributions to be sampled lie within the measurable range of
the sampler [Liden and Kenny 1991]. This determination should be repeated at periodic intervals
because changes in working conditions may alter particle size distributions [Soderholm and
McCawley 1990].

The criteria for sampler performance based on particle penetration into the lungs are protective
for workers because it is unlikely that penetration-based samplers would underestimate the
amount of material that could be deposited [Soderholm and McCawley 1990]. However, the effect
of systematically over-estimating the dust deposition is to weaken the exposure-response rela-
tionship and potentially to overlook the need to develop appropriate exposure standards [Hewett
1991; Soderholm and McCawley 1990]. Despite this possible limitation, epidemiclogic studies
have found significant exposure-response relationships based on dust measurements collected
with these penetration-based sampling devices (see Chapter 4).

5.4 CONVERSION FACTOR FOR COMPARING CURRENT AND RECOMMENDED
SAMPLING CRITERIA

The international definition of respirable dust is shown in Figure 5-2 in terms of sampling
efficiency at a given aerodynamic diameter. A quantitative description of the curve is given in
CEN [1993]. Figure 5-2 also depicts recently measured sampling efficiencies for the CPSU at
2.0 L/min and at 1.7 L{min and for the Higgins-Dewell sampler at 2.2 L/min [Maynard 1993;
Bartley et al. 1994]. These flow rates were chosen to match as closely as possible the international
definition of the diameter at which the sampling efficiency equals 50% [Liden and Kenny 1993;
Bartley et al. 1994]. This “cut-diameter™ has been shown to dominate other cyclone parameters
(such as the sampling efficiency sharpness) in characterizing the sampling of dusts distributed
over diameters [Bowman et al. 1984] The data presented in Figure 5-2 are consistent with data
from earlier studies {Caplan et al. 1973; Blachman and Lippmann 1974; Chan and Lippmann
1977; and Bartley and Breuer 1982].

To calculate a conversion factor for comparing current sampling criteria (Section 5.1) and
recommended sampling criteria (Section 5.2), sampling efficiency curves are combined numer-
ically with the aerosol size distributions (mass per unit particle diameter interval) measured in
coal mines using data from Mutmansky and Lee [1987]. Liden and Kenny [1991] have docu-
mented that computed respirable mass concentrations are equivalent to measured concentrations
in assessing distributed aerosol sizes.

Mutmansky and Lee [1987] provide detailed data about the measured concentrations of coal mine
dust at various locations within 11 underground coal mine sections using continuous mining
machines. The data in Mutmansky and Lee [1987] are consistent with other data on the particle
size distributions measured in coal mines [Hinds and Bellin 1988; Bowman et al. 1984]; however,
these studies present only a summary of data for each size distribution. The data from Mutmansky
and Lee [1987] in Appendix 5 are suitable for accurately estimating the respirable fractions that
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Figure 5-2. Respirable aerosol collection efficiencies.

would be obtained using any of the respirable dust definitions or various sampling systems.
Hence, conversion factors can be obtained. The data are presented as cumulative fractions of the
dust mass sampled (using the cascade impactor, Sierra Model 298) at diameters smaller than 0.5,
0.9,2.0, 3.5, 6, 10, 15, and 21 pm. Because the respirable sampling efficiencies are close to zero
at diameter D 10 pm, the two fractions of the largest size dust are not needed here. Similarly, the
contribution of the 0.5-um fraction to the total respirable mass is generally Iess than 10% and is
therefore ignored (except insofar as it is a part of the 2.0-um fraction).

To compute conversion factors, the remaining five cumulative fractions are modelled mathemat-
ically. The purpose is twofold: (1) uncertainty in the individual measurements is smoothed out
through linear regression, and (2) models are convenient for computation in which a smooth size
distribution is needed. Lognormal parameters consisting of mass median diameter (MMD) and
geometric standard deviation (GSD) are used. An inverse-lognormal transformation of the data
followed by simple linear regression provides two parameters (i.e., section or location). Note that

78



5 Environmental Monitoring

uncertainty in the total dust concentration leaves the cumulative (measured) fractions in error by
an unknown constant. Changes from the constant assumed by Mutmansky and Lee [1987] would
shift the MMD and GSD in a correlated manner. Insofar as lognormality is a good approximation,
however, such shifts are along curves of constant conversion factors and are therefore insignifi-
cant (Figures 5-3 and 5-4).

In Figures 5-3 and 5-4, the MMD and GSD for the size distribution of each patticular coal mine
section or location are shown as solid dots. Figures 5-3 and 5-4 also depict the factors for
converting (at any given values of MMD and GSD) from current MSHA sampling criteria
(including the 1.38 factor) to the international sampling criteria. The CPSU and the Higgins-
Dewell sampler are among those that have been shown to perform within the criteria required for
the international definition [Bartley et al. 1994]. Figure 5-3 provides the conversion factor for
the CPSU operated at 1.7 L/min, and Figure 5-4 provides the conversion factor for the Higgins-
Dewell sampler operated at 2.2 L/min. Both figures indicate the appropriate conversion factor
cotresponding to any given values of MMD and GSD. But because the size distribution to be
sampled is not fixed, the MMD and GSD cannot be specified, and an average conversion factor
must be calculated over a range of MMD and GSD values expected in U.S. coal mines.

On the basis of MMD and GSD values from the data of Mutmansky and Lee [1987], the following
average conversion factors can be applied to concentrations measured by the current MSHA
criteria (Section 5.1) to obtain the equivalent concentration measured according to the interna-
tional definition of respirable dust (Section 5.2):

CPSU operated at 1.7 L/min: 0.857
SD¥ = 0,029

Higgins-Dewell sampler operated at 2.2 L/min: 0.867
SD =0.028

The above GSD values indicate the size-distribution-induced component of the variability
expected in side-by-side sampling. This component is small relative to the spacial variability
estimated in Appendix K.

Thus, with a concentration of 1.00 mg/m> measured with the CPSU according to current MSHA
sampling criteria (Section 5.1), the corresponding concentration would be 0.86 mg/m3 with the
CPSU operated according to the recommended criteria, or 0.87 mg[m with the Higgins-Dewell
sampler operated according to the recommended criteria (Section 5.2). A separate preliminary
ana1y51s of particle size distributions collected over a 10-year period by different investigators
using similar methodology yielded a similar conversion factor of 0.85 for the CPSU operated
according to current versus recommended sampling criteria [Hewett 1993]. These conversion
factors are considered in the derivation of the REL (see Chapter 7).

$D = arithmetic standard deviation.
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Figure 5-3. Conversion factor; MSHA standard to CPSU at 1.7 L/min.
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Figure 5-4. Conversion factor: MSHA standard to Higgins-Dewell sampler at 2.2 L/min. Excluded are points from
a diesel-operated mine where the size distribution is clearly bimodal over the respirable region. Also, & points with

GSD >3.5 um are not plotted (yet fall within the iso-factor curves of the points shown).

81



Coal Mine Dust

5.5 CURRENT SAMPLING PROGRAM

5.5.1 MSHA Inspector Sampling

MSHA inspectors sample at least five occupations in each mechanized mining unit (MMU),
including the designated occupation and any roof bolter occupations on the MMU that were not
established as designated areas [MSHA 1989a]. MSHA inspectors collect one designated area
sample per year at the location specified in the operator’s Ventilation System and Methane and
Dust Control Plan [30 CFR 75.316]. MSHA inspectors may also collect full-shift respirable dust
samples from nondesignated entities (which represent either nondesignated areas or non-
designated occupations) if an inspection is requested by a miner or a miner’s representative
[according to 30 USC 813(g)] or if the inspector suspects that the concentrations of respirable
coal mine dust or respirable quartz exceed the PEL. MSHA inspectors collect one personal sample
per year from the environment of all underground and surface coal miners who are designated as
“Part 90 miners” [MSHA 1989a). At surface coal mines or surface work areas of underground
coal mines, MSHA inspectors collect one sample per year from all designated work positions and
at least three other occupations, if available, at these sites. MSHA inspectors also collect full-shift
respirable dust samples of the intake air, with placement of the sampling device in the intake
airway within 200 ft outby a working face [30 CFR 70.100(b)].

MSHA inspectors determine which entities to sample based on the following: (1) the compliance
record of the mine, (2) the adequacy of the dust control parameters, (3) the number of entities
being sampled by the operator as designated occupations or areas, Part 90 miners, or designated
work positions, (4) the number of entities available for sampling, and (5) changes in mining
conditions (since the last inspection) that may affect the concentration of respirable coal mine
dust or respirable quartz [MSHA 1989a]. Designated area, nondesignated entity, and intake air
samples are area samples, and Part 90 samples are personal samples. Inspections are currently
required four times per year in underground coal mines to determine (among other safety and
health issues) whether the parameters of the approved dust control plan are being maintained.
However, exposure monitoring may be performed during just one of these inspections. Inspec-
tions are currently required at least twice per year in surface coal mines [30 USC 813(a)].

5.5.2 Coal Mine Operator Sampling

Current regulations require coal mine operators to take five valid respirable dust samples from
designated occupations in each MMU for each bimonthly sampling period; samples are to be
collected on consecutive normal production shifts [30 CFR 70.207]. Designated occupations for
sampling are listed by mining method [30 CFR 70.207(e)] in Table 5-2. One requirement of
designated-occupation sampling is that the sampling device must remain in the location of the
occupation being sampled [MSHA 1989a]. Thus, the sampler may be transferred from one miner
to another if the first miner moves to another location in the mine. Mine operators are also
required to take one valid respirable dust sample from each designated area on a production shift
during each bimonthly period [30 CFR 70.208]. The minimum production level required for
valid bimonthly operator-collected samples is currently 50% of the average production reported
for the last set of five valid samples [30 CFR 70.2(k)]. However, any sample with greater than
2.5 rng/rn3 of respirable coal mine dust is considered a valid sample, regardless of production
level [30 CFR Part 70.207(d)].
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Table 5-2. MSHA-required operator samplmg of desngnated occupations

in underground coal mines

Mining method
of section

Designated occupation
for section

Position of sampling devices
relative to designated occupation

Conventional

Conventional

Continuous mining
(other than auger
type)

Continuous mining
(auger type)

Scoop using cutting
machine

Scoop (shooting off
solid)

Longwall

Hand loading with
cutting machine

Hand loading (shooting
off solid)

Anthracite mine

Cutting machine

Loading machine operator

Continuous mining machine
operator

Jacksetter working nearest work-
ing face on return-air side of con-
tinuous mining machine

Cutting machine operator

Coal drill operator

Miner working nearest return-air
side of longwall working face

Cutting machine operator

Hand loader exposed to greatest
concentration of dust

Hand loader exposed to greatest
concentration of dust

On miner or on cutting machine within
36 in. inby normal working position

On miner or on loading machine
within 36 in. inby normal working
position

On miner or on continuous mining
machine within 36 in. inby normal
working position

On miner (as described) or at location
representing maximum concentra-
tion of dust to which person is ex-
posed

On miner or on cutting machine within
36 in. inby normal working position

On miner or on coal drill within 36 in.
inby normal working position

On miner (as described) or along
working face on return side within
48 in. of corner

On miner or on cutting machine within
36 in. inby normal working position

On miner or at location representing
maximum concentration of dust to
which miner is exposed

On miner or at location representing
maximum concentration of dust to
which miner is exposed

*30 CFR 70.207 (e).

Mine operators are also required to sample surface coal mines or surface work areas of under-
ground coal mines on a bimonthly basis [30 CFR 71.208]. Designated work positions are
determined by the MSHA district manager for each work position with an average concentrauon
of respirable dust exceeding 1 mglm (or less if the applicable standard is less than 1 mgfm )
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[30 CFR 71.208(e)]. In both underground and surface coal mines, the PEL for respirable coal
mine dust is currently reduced if the quartz content exceeds 5% [30 CFR 70.101; 30 CFR 71.101].

Since 1985, samples collected by coal mine operators have been used in addition to MSHA
inspector samples to determine the reduced PEL. Under this system, if the sample collected by
the MSHA inspector contains more than 5% quartz, the operator has the option of submitting a
sample for quartz analysis and subsequent averaging with the inspector quartz sample
[Niewiadomski et al. 1990]. If the quartz content of the operator sample differs by more than 2%
(e.g.,4% vs. 6% or 10% vs. 12%) from the inspector sample, the operator is given the opportunity
to submit another sample. The standard is then based on the average of quartz percentages from
one inspector sample and two operator samples (see Table 2-1 for formula). Once an entity (i.e.,
job, area, or work position) is placed on a reduced standard, it is reevaluated approximately every
6 months by quartz analysis of a valid, operator-collected respirable dust sample of sufficient
weight. MSHA uses the low-temperature ashing, infrared method to determine the amount of
quartz in respirable dust samples, and individual dust samples weighing 0.5 mg or more can be
analyzed for quartz [Niewiadomski et al. 1990].

5.5.3 Ventilation System and Methane and Dust Control Plan

According to 30 CFR 75.316, underground coal mine operators are required to submit a
“Ventilation System and Methane and Dust Control Plan,” which must be reviewed by the
operator and MSHA at least every 6 months. The plan must include information about the
mechanical ventilation equipment, the quantity and velocity of air, the operating parameters for
required dust control devices, and the locations of designated area sampling (required in
accordance with 30 CFR Part 70.208). The minimum production required for approval of the dust
control plan is 60% of the average production over the last 30 production shifts [MSHA 1992b].

The Coal Mine Respirable Dust Task Group has evaluated the dust control plan approval process
and has made recommendations for improving its effectiveness [MSHA 1992b]. The Task Group
noted that primary reliance on environmental controls minimizes the possibility that workers will
be exposed to excessive concentrations of respirable coal mine dust. They identified several
important factors for improving the effectiveness of dust control plans: (1) sufficient detail and
specificity in the dust control plans, (2) proper consideration of production levels, (3) upgrading
of plans following abatement of citations, (4) and frequent sampling.

NIOSH makes the following recommendations, which are consistent with those of the Task
Group:

® Mine operators should specify dust control parameters for typical production levels.
e Mine operators should evaluate the effectiveness of dust controls at typical production levels.

¢ Mine operators should perform additional sampling to evaluate dust controls whenever
changes in controls or processes (e.g., increased production) might result in worker
exposures exceeding the REL.
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5.6 SAMPLING RECOMMENDATIONS

5.6.1 Sampling Strategy Issues

The sampling goals determine the approach needed to monitor concentrations of respirable coal
mine dust and respirable crystalline silica. These goals may include determining the effectiveness
of dust control systems, determining compliance with an exposure limit, and determining
individual exposures to investigate exposure-response relationships.

Section 5.5 describes the current MSHA regulations for MSHA inspectors and coal mine
operators sampling respirable coal mine dust and respirable crystalline silica at underground and
surface worksites. The current sampling program generates more than 100,000 respirable dust
samples per year. NIOSH recommends further evaluation of the cutrent sampling program to
ensure that exposures are below the REL for each miner during each shift. Numerous types of
sampling strategies have been published and could be considered in such an evaluation (see
Publications Examined, Sampling Strategies).

The mine operator is responsible for ensuring that the hazards from respirable coal mine dust are
minimized or eliminated within each work environment throughout the mine and support
facilities. The objective of an effective exposure sampling strategy is to periodically obtain
sufficient, valid, and representative exposure estimates so that the work environment is reliably
classified as either acceptable or unacceptable.

5.6.1.1 Frequency of Sampling

Exposure sampling should be periodic and should occur frequently enough that a significant and
deleterious change in the contaminant generation process or the exposure controls is not permitted
to persist. This is particulatly true for face areas in underground coal mining where mining
conditions can change dramatically within a short span of time.

5.6.1.2 Number of Exposure Measurements

Exposure measurements provide estimates of the magnitude of worker exposures in the recent
past. Exposure measurements to determine the efficacy of existing exposure controls are used to
predict exposures in the near future. Consequently, a critical attribute of a collection of exposure
measurements is their predictive value. Although a single, full-shift sample will accurately
measure the average airborne concentration during that shift, a single exposure measurement has
little predictive value for demonstrating that a work environment is (and is likely to remain)
acceptable. Note, however, that a single exposure measurement above the REL has a high
predictive value, since exposures above the REL should occur infrequently (if at all) in a
well-controlled work environment. The number of representative full-shift measurements col-
lected should be sufficient to reliably detect work environments where exposure conditions are
routinely unacceptablc.§

$Where the work environment is particularly dynamic, it may be desirable to adopt a quality control approach when
collecting exposure measurements. For example, one or more measurements could be collected at closely spaced
intervals instead of monitoring a number of consecutive work shifts at 2-month intervals, as is the current practice.
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5.6.1.3 Validity of Exposure Measurements

A valid exposure estimate measures what it is purported to measure {Leidel and Busch 1994].
Validity refers to possible nonrandom (systematic) sampling errors or biases in exposure
measurements that can result in unrepresentative estimates of exposure. Systematic bias
cannot be detected with statistical methods based on probability theory and must therefore be
considered when designing the sampling strategy. Quality control programs can be useful for
identifying systematic measurement errors. For example, proper calibration and periodic checks
of the sampling pump flowrate and the condition of the sampling unit and sample cassette are
needed for valid exposure measurements.

5.6.1.4 Representative Exposure Measurements
5.6.1.4.1 Sampling design

Each exposure measurement should be representative; that is, when measurements are collected,
worker exposures should be comparable with those during unsampled shifts. In principle, a group
of exposure measurements is considered representative if the measurements are collected ran-
domly—that is, with no systematic bias in the selection of workers or sampling shifts. Randomly
collected samples would include exposure measurements from both above- and below-average
production shifts (see section 5.6.1.4.2). A design for statistically representative sampling may
be used, for example, when the goal is to determine the distribution of all worker exposures over
time to evaluate exposure-response relationships.

However, when the goal of sampling is to determine whether or not worker exposures are being
kept below the REL, random sampling is usually not included in the sampling design. Instead,
strategies are used that focus sampling efforts on those workers with the highest exposures (i.e.,
the maximum-risk worker concept discussed by Leidel et al. [1977] and Leidel and Busch [1994]).
Such strategies may be more efficient (i.e., use fewer resources) for identifying potential
exposures above the REL, but sufficient periodic sampling of all workers or groups of workers
should also be performed to ensure that the targeted sampling groups include all workers with
the potential for exposures above the REL.

5.6.1.4.2 Level of coal production

The level of coal production significantly affects the amount of airborne respirable coal mine dust
[MSHA 1992b]. Thus, for example, a measurement collected from a worker at the coal face during
a shift with abnormally low production has little or no predictive value for estimating exposures
during unsampled shifts with typical coal production. The mine operator should therefore
establish a production-level threshold to ensure that exposure conditions are comparable between
sampled and unsampled shifts.

A sample shift with a production level equal to or greater than the production-level threshold is

considered typical (i.e., a normal production shift). The definition of a normal production shift
should be similar to or more stringent than that used when seeking approval of the dust control
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plan.”” Consistent with standard industrial hygiene practice (which requires exposure measure-
ments to be collected during typical work shifts), NIOSH recommends that for a production shift
to be considered a “normal production shift,” it must produce at least 80% of the average
production over the last 30 production shifts.”" The ventilation rate and the dust suppression
devices and techniques used during sampled shifts should also be typical of normal production
shifts.

In principle, the distribution of sample shift production levels should be similar to the overall
distribution of production levels (truncated at the production level threshold). A significant
difference between these distributions should not normally occur. A more stringent threshold
should be imposed if it appears that sample shift production levels are routinely lower than those
of unsampled shifts. These recommendations may evolve with additional data analyses and future
evaluations of the current sampling program.

5.6.1.5 Reliable Classification of Work Environments as Acceplable or Unacceptable

A properly designed exposure sampling strategy will reliably classify a work environment: that
is, it will have a high probability of classifying a work environment as acceptable when exposures
are well-controlled, or unacceptable when exposures are poorly controlled.

The REL is defined here as the upper limit of exposure to respirable coal mine dust as a TWA
concentration for up to 10 hr/day during a 40-hr workweek. Consistent with this definition,
NIOSH defines an acceptable work environment as one where single-shift excursions above the
REL occur infrequently, if at all. Consequently, NIOSH expects that in a well-controlled,
acceptable work environment, the long-term average exposure for each miner will be sufficiently
low to preclude the development of adverse health effects or the progression of existing disease.

5.6.1.6 Additional Personal Monitoring

An additional component of an effective sampling program is the need for additional personal
exposure monitoring for miners who show early signs of occupational respiratory disease. Such
monitoring should be part of an intervention program to prevent further development of disease.

5.6.2 Single, Full-Shift Sampling

The MSHA PEL is based on the standard specified in the Federal Mine Safety and Health Act of
1977 [30 USC 801-962].*% The Act states that “cach operator shall continuously maintain the

""The Coal Mine Respirable Dust Task Group [MSHA 1992b] concluded that the current procedure for defining a
normal production shift “for sampling purposes™ (see Section 5.5.2) is inadequate and makes the current sampling
program susceptible to intentionally reduced production during shifts when exposure measurements are being
collected.

"The minimum production level currently required for bimonthly operator-collected samples is 50% of the average
production reported for the last set of five valid samples [30 CFR 70.2(k)], and the minimum production level
required for approval of the dust control plan is 60% of the average production over the last 30 production
shifts]MSHA 1992b].

#This Act amended the Federal Coal Mine Health and Safety Act of 1969 (P.L. 91-173).
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average concentration of respirable dust in the mine atmosphere during each shift to which each
miner in the active workings of such mine is exposed at or below 2.0 milligrams of respirable
dust per cubic meter of air” [30 USC 842(b)(2)]. The Act defines “average concentration” as that
measured over a single shift:

[TThe term ‘average concentration’ means a determination which accurately represents
the atmospheric conditions with regard to respirable dust to which each miner in the
active workings of a mine is exposed (1) as measured, during the 18 month period
following December 30, 1969, over a number of continuous productions shifts to be
determined by the Secretary (of Labor) and the Secretary of Health and Human Services,
and (2) as measured thereafter, over a single shift only, unless the Secretary (of Labor)
and the Secretary of Health and Human Services find, in accordance with the provisions
of section 811 of this title, that such single shift measurement will not, after applying
valid statistical techniques to such measurement, accurately represent such atmospheric
conditions during such shift [30 USC 842(f)].

NIOSH recommends the use of single, full-shift samples to compare worker exposures with the
REL. For single, full-shift samples used to determine noncompliance, NIOSH recommends that
MSHA make no upward adjustment of the REL to account for measurement uncertainty [NIOSH
1994c]. By enforcing the exposure limit without any upward adjustment, MSHA would provide
an equitable sampling program in which (given frequent sampling) the burden of measurement
error is shared equally by miners and operators.

Statistical methods that account for measurement uncertainty [e.g., Leidel et al. 1977] may be a
useful component of a mine operator’s program to keep worker exposures to respirable coal mine
dust below the REL during each work shift. Quality control approaches may involve determining
long-term average exposutes as part of a program for monitoring the effectiveness of engineering
controls.

5.6.3 Types of Environmental Monitoring

The three types of environmental monitoring generally used include personal, breathing zone,
and area sampling [Leidel et al. 1977]. For personal sampling, the sampling device is attached to
the worker and is worn continuously for all work and rest periods during the shift. For breathing
zone sampling, the sampling device is placed in the breathing zone of the worker; a second
individual may be required to hold the sampling device in this location. For area sampling, the
sampler is placed in a fixed location in the workplace.

When the purpose of the environmental monitoring is to determine worker exposures, personal
sampling or breathing zone sampling should be used [Leidel et al. 1977]. Area sampling to
determine worker exposures should demonstrate that such samples accurately measure worker
exposures [Leidel et al. 1977].

5.6.3.1 Personal Sampling

NIOSH recommends personal exposure monitoring, based on an evaluation of the literature
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(Section 5.6.3.2). The following summarizes the advantages of personal sampling to estimate
worker exposures:

® Personal samples correlate best with exposures judged by biological indicators.

e Personal samples represent variations in worker exposures better than fixed-point area
samples.

o Personal samples estimate worker exposures better than area samples, which tend to
underestimate worker exposures.

® Personal exposure estimates may be used to evaluate exposure-response and the effective-
ness of exposure standards.

o Personal sampling must be used to accurately assess the effectiveness of dust avoidance
technologies (e.g., those with remote control operations). Such technologies may be useful
for improving worker safety and reducing workplace exposures.

5.6.3.2 Studies Comparing Personal and Area Monitoring

Personal sampling provides the best estimate of worker exposures and the temporal and spatial
variability in those exposures [Vincent 1994]. In nearly all the studies where personal and area
monitoring were compared with clinical measures of occupation-related adverse health effects,
the personal exposure measurements provided the best correlations [Stopford et al. 1978; Linch
et al. 1970; Linch and Pfaff 1971]. Also, the personal exposures are frequently higher than the
exposures measured by area monitoring [Niven et al. 1992; Cinkotai et al. 1984; Yoshida et al.
1980; Tomb and Ondrey 1976].

In a study of British longwall mines by the Institute of Occupational Medicine, Hadden et al.
[1977] compared personal samplers with area samplers placed in the return airway. This sampling
location presumably represents the maximum concentration of dust to which lon gwall miners are
exposed. Nevertheless, the average dust concentration of the personal samples taken on a section
was 10% higher than that in the area sample. The personal sampler data for the high-risk miners
averaged 38% highet than the corresponding area samples. In a companion study for continuous
and conventional mining, Garland et al. [1979] concluded that fixed-point gravimetric samples
were unreliable for estimating worker exposures over a work shift. The authors also found that
the creation of localized dust clouds at the coal face contributes greatly to individual exposure
patterns; thus, the use of fixed-point (e.g., area) monitors may underestimate worker exposures
at the coal face.

Studies have also reported large spatial variability in workplace dust concentrations. For example,
in a study of various workplaces, Vaughan et al. [1990] report that lapel-to-lapel variations on a
single worker can be so large that in 5% of the comparisons, a personal sampler on one lapel
yielded more than twice the inhalable dust concentration of a sampler on the other lapel (although
variability in concentrations of smaller particles such as respirable dust might be less). Variations
from lapel to lapel are smaller than personal to area monitoring gradients, as demonstrated by
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BOM data that showed large dust concentration gradients in underground coal mines over a
10-year period [Kissel and Jankowski 1993]. Near the continuous miner, gradients were reported
to increase up to 1 mg/m? per foot in the direction of the coal mine face. Dust gradients are also
large in longwall coal mines, as shown by increases in dust concentration by a factor of 10 in the
9-meter distance along the face in the walkway downwind of the shearer. The associated
measurement bias can be quite large and variable (17% to 36%) [Kost and Saltsman 1977].

5.6.3.3 Area Sampling

NIOSH recognizes that sampling to assess controls and personal exposures may require separate
approaches. Area sampling may be preferable during the development of controls to detect
sources of dust or to assess the efficacy of a particular control measure. However, the ultimate
acceptance of a new control depends on its ability to reduce personal exposure to tespirable coal
mine dust and respirable crystalline silica.

The Federal Mine Safety and Health Act of 1977 refers to “the average concentration of respirable
dust in the mine atmosphere during each shift to which each miner in the active workings of such
mine is exposed” [30 USC 842(b)]. The reference to “atmosphere” could be interpreted as an
indication that area sampling is sufficient. However, NIOSH believes that the intent of the Act is
to provide for the control of each miner’s personal exposure and that personal sampling is
therefore preferable. Area sampling should be substituted for personal sampling only where area
sampling has been shown to measure an equivalent or higher concentration.

5.7 Analytical Methods

The concentration of respirable coal mine dust in the mine atmosphere is determined gravimet-
rically [Tomb 1990]. Sampling and analysis for respirable crystalline silica should be performed
in accordance with NIOSH Method 7500, 7602, or a demonstrated equivalent [NIOSH 1994b].
Sampling devices that may be used for Method 7500 or 7602 include the CPSU (with a 0.8-ym
or 5-pm polyvinyl chloride (PVC) or mixed cellulose ester membrane filter) operated at a flow
rate of 1.7 L/min, the Higgins-Dewell sampler operated at 2.2 L/min, or an equivalent sampler
[NIOSH 1994b]. The presence of the minerals kaolinite (Al;Si,05(0OH)4) and calcite (CaCO3) in
the dust sample may interfere with analysis by Method 7602. This method provides correction
procedures to use if either kaolinite or calcite is present. When respirable coal mine dust is to be
analyzed in the same sample, mixed cellulose ester membrane filters should not be used because
of their high weight variability. A preweighed polyvinyl chloride filter should be used and a final
weight should be taken before ashing when Method 7602 is used to analyze crystalline silica in
coal mine dust. In Method 7500, the presence of kaolinite and calcite do not interfere with the
method if the samples are ashed in a low-temperature asher or if they are suspended in
tetrahydrofuran [NIOSH 1994b].

The current analytical method used by MSHA (known as MSHA P-7) [MSHA 1989b] differs
from NIOSH Method 7602 in the sample preparation procedures. The uneven deposition of ash
that has been observed in the filtration step of MSHA P-7 can adversely affect the quantitation
of the quartz [Lorberau 1990]. NIOSH Method 7603 [NIOSH 1994b] is similar to MSHA P-7
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both in its use of the same filtration technique and in its specification of a 2.0-L/min flow rate
for sample collection. NIOSH Method 7603 and MSHA P-7 are designed specifically to analyze
respirable crystalline silica in coal mine dust and thus may reduce some of the interferences that
can occur in samples collected in the mining environment. However, NIOSH Method 7602 is the
preferred infrared method because it avoids the uneven deposition of ash and has the more
appropriate sample collection flow rate of 1.7 L/min (see Appendix J).

In lieu of either NIOSH Method 7603 or MSHA P-7, NIOSH Method 7602 is recommended for
the analysis of respirable crystalline silica.
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6.1 OBJECTIVES OF MEDICAL SCREENING AND SURVEILLANCE

The REL of 1 rng/m3 for respirable coal mine dust does not assure a zero risk for the development
of occupational respiratory diseases among all miners exposed during 2 full working lifetime.
Consequently, a medical screening and surveillance program that includes initial and periodic chest
X-rays and spirometric examinations is important for the early detection of disease and the
prevention of “material impairment of health or functional capacity” [30 USC 811(a)(6)(A)]. The
medical screening and surveillance program is also useful for disease surveillance, which includes
the tracking trends, the setting of prevention and intervention priorities, and the assessment of
prevention and intervention efforts. NIOSH encourages both underground and surface coal miners
to participate in the medical screening and surveillance program.

6.1.1 Definitions

Medical screening is “the application of an examination, historical question, or laboratory test to
apparently healthy persons with the goal of detecting absorption of intoxicants or early pathology
before the worker would normally seek clinical care for symptomatic disease™ [Halperin et al.
1986]. In contrast, medical surveillance involves the evaluation of a population’s health status
through the periodic collection, analysis, and reporting of data for the purpose of discase prevention
[Halperin and Baker 1992]. Medical surveillance data are useful for evaluating the effectiveness
of disease prevention and intervention programs. Primary prevention of work-related disease
depends on the effective control of worker exposures below occupational exposure limits.
Secondary prevention measures include medical screening for the early detection of diseases and
medical intervention, which is aimed at reversing ot impeding progression of disease.

6.1.2 Criteria for Medical Screening and Surveillance Tests
Acceptable performance of a medical screening test depends on the prevalence of disease in the
population as well as the risk of toxicity and the consequences of false positive test results [Matte
et al. 1990]. Additional criteria for effective medical screening tests and programs include the
following [Weeks et al. 1991; Levy and Halperin 1988]:

e The screening test must have acceptable sensitivity, specificity, and predictive value.

¢ The screening test must be valid and reliable.

e The screening test must identify disease early and lead to treatment that impedes disease
progression.
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¢ Adequate followup, further diagnostic tests, and effective management of the disease must
be available, accessible, and acceptable.

e Benefits of the screening program must outweigh the costs.

If a medical screening test indicates the presence of a disease or the increased probability of the
presence of disease, further evaluation and diagnostic testing are needed.

NIOSH believes that the tests recommended in the, medical screening and surveillance program
for coal miners (i.e., chest X-rays and spirometry) reasonably fulfill the criteria for effective
screening tests. These recommended tests are performed using standardized methods for admin-
istering them and interpreting results. They represent the best available methods for detecting
occupation-related respiratory discases among coal miners. In addition to the medical screening
function, the recommended tests are also important for medical surveillance. The characteristics
of medical tests used in disease surveillance of a population may differ from those required for the
clinical evaluations of individuals [Weeks et al. 1991; Silverstein 1990].

6.2 CURRENT MEDICAL SURVEILLANCE PROGRAM AND RECOMMENDED
REVISIONS

6.2.1. Current Chest X-Ray Program

The Coal Workers’ X-Ray Surveillance Program was established under the Federal Coal Mine
Health and Safety Act of 1969 (P.L. 91-173), which was amended by the Federal Mine Safety and
Health Act of 1977 [30 USC 843]. The specifications for giving, interpreting, classifying, and
submitting chest X-rays for underground coal miners are provided in 42 CFR 37. Currently,
mandatory X-rays include the following:

¢ An initial chest X-ray within 6 months of beginning employment
e Another chest X-ray 3 years after the initial examination

® A third chest X-ray 2 years following the second one if a miner is still engaged in underground
coal mining and if the second chest X-ray shows evidence of category 1 or higher
pneumoconiosis according to the ILO classification [ILO 1980]

In addition to these mandatory chest X-rays, mine operators are required to offer an opportunity
for periodic, voluntary chest X-rays approximately every 5 years. These chest X-rays must be
interpreted by approved, qualified readers [42 CFR Part 37). Radiographic findings of simple
CWP or PMF are reported to MSHA by NIOSH and to the miners by MSHA. All chest X-rays
given under the Coal Workers’ X-Ray Surveillance Program are submitted to and become the
property of NIOSH. Operators of underground coal mines are required to provide chest X-rays at
a convenient time and place for all miners who work in underground coal mines or in sutface areas
of underground coal mines [42 CFR Part 371.
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6.2.2 Spirometry Recommendations

The Federal Coal Mine Safety and Health Act of 1977 specifies that the chest X-rays are to be
supplemented by “such other tests as the Secretary of Health and Human Setrvices deems
necessary” [30 USC 843(a)]. The definition of pneumoconiosis was modified in the Black Lung
Benefits Reform Act of 1977 as a chronic dust disease of the lung and its sequelae, including
respiratory and pulmonary impairments arising out of “coal mine employment” [30 USC
902(b)]. NIOSH therefore recommends that spirometric examinations be included in the medical
screening and surveillance program for coal miners based on

— the definition of pneumoconiosis in the Black Lung Benefits Reform Act of 1977 (which
includes respiratory and pulmonary impairments that might not be detected on a chest
X-ray but would be detected with spirometry), and

— the evidence (see Chapters 4 and 7) that coal miners can develop COPD from their
exposures to respirable coal mine dust—even without radiographic evidence of simple
CWP and apart from the effects of cigarette smoking.

The recommended schedule for spirometric examinations is provided in Section 6.3.

6.2.3 Recommendations for Surface Coal Miners

NIOSH also recommends inclusion of surface coal miners in the medical screening and surveil-
lance program based on the evidence (see Chapters 4 and 7) that these miners can develop simple
CWP, PMF, silicosis, and decrements in lung function as a result of their exposures to respirable
coal mine dust and respirable crystalline silica.

6.2.4 Current and Recommended Option to Work in a Low-Dust Environment

Currently, any miner who shows evidence of the development of pneumoconiosis based on the
chest X-ray or other medical examinations has the optlon to work in a low-dust env1ronment in
the mine where the concentration of respirable coal mine dust i is not more than l 0 mg/m’>—or
where the concentration is the lowest attainable below 2.0 mg/m? if the 1.0 mg/m? concentration
is not attainable in the mine where the miner works [30 USC 843(b)]. If it is necessary for the
miner to transfer to another position in the mine to reduce exposure, the transfer is offered without
loss of pay. These miners also receive periodic personal exposure monitoring [30 CFR 90].

The current regulations [30 CFR 90] include only underground coal miners and workers at surface
work areas of underground coal mines. NIOSH recommends that the regulations governing
eligibility and procedures for the transfer option be amended to include both surface and under-
ground coal miners with radiographic evidence of pneumoconiosis or with confirmed finding of
a chronic airways disease based on spirometry and other medical examinations or tests deemed
necessary by a licensed physician. NIOSH believes that affording miners with evidence of
occupation-related respiratory disease the opportunity to work in a low-dust environment is
consistent with the intent of the Americans with Disabilities Act of 1990 [42 USC 10227-13643].

94



6 Medical Screening and Surveillance

6.3 RECOMMENDED MEDICAL SCREENING AND SURVEILLANCE PROGRAM FOR
UNDERGROUND AND SURFACE COAL MINERS

This document refers to the recommended revisions to the Coal Workers® X-Ray Surveillance
Program as the “Coal Workers’ Medical Screening and Surveillance Program” to better reflect the
functions of the program. The recommended preplacement and periodic medical examinations
include the following:

e Aninitial (preplacement) spirometric examination and chest X-ray as soon as possible after
beginning employment (within 3 months for a spirometric examination and within 3 to 6
months for a chest X-ray)

® A spirometric examination each year for the first 3 years after beginning employment and
every 2 to 3 years thereafter if the miner is still engaged in coal mining

® A chest X-ray every 4 to 5 years for the first 15 years of employment and every 3 years
thereafter if the miner is still engaged in coal mining

® A chest X-ray and spirometric examination when employment ends if more than 6 months
have passed since the last examination

e A standardized respiratory symptom questionnaire—such as the American Thoracic Soci-
ety (ATS) respiratory questionnaire [Ferris 1978 (or the most current equivalent)]—to be
administered at the preplacement examination and updated at each periodic examination

e A standardized occupational history questionnaire (including a listing of all jobs held up
to and including present employment, a description of alt duties and potential exposures,
and a description of all protective equipment the miner has used or may be required to use) to
be administered at the preplacement examination and updated at each periodic examination

6.3.1 Worker Participation

Miners should be provided with information about the purposes of the medical screening and
surveillance program, the health-protection benefits of participation, and a description of the
procedural aspects of the program. This information should include how screening test results are
used, what actions may be taken based on screening results, who has access to screening test results,
and how confidentiality is maintained [Matte et al. 1990]. The initial examination (which is
currently mandatory) is important for providing baseline values for individuals. Comparing test
results for an individual (including baseline values) may indicate a clinically important change that
would not be apparent from comparing an individual’s results with group reference values. The
reason is that normal variation in test results among healthy group members is generally greater
than test-to-test variation in individuals [Hankinson and Wagner 1993; Matte et al. 1990]. The
fact that periodic examinations are voluntary may improve the reliability of data based on
questionnaires and medical tests requiring worker cooperation. Each miner should sign a consent
form indicating that he or she has been informed about the purposes of the medical screening and
surveillance program and accepts or declines participation. Miners should not suffer consequences
because of their choices for or against participation. Recent improvements in the Coal Workers’
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X-Ray Surveillance Program (including increased education and communication) have resulted in
an encouraging increase in the voluntary participation of coal miners [Wagner et al. 1993a].

6.3.2 NIOSH-Approved Facilities

NIOSH recommends that each mine operator make arrangements with a local NIOSH-approved
facility or organization to conduct the medical examinations. The local examination facility or
organization should transmit to NIOSH all chest X-rays, pulmonary function test results (including
spirograms), completed medical questionnaires, and work histories. NIOSH shall evaluate the
technical quality of the chest X-rays and interpret them. In addition, NIOSH shall do the following;:

¢ Evaluate the results of spirometric examinations, completed medical questionnaires, and
work histories

® Prepare letters to notify miners of the examination results and to recommend any followup
examinations

¢ Permanently store the medical and questionnaire data

6.3.3 Smoking

NIOSH recommends that the mine operator prohibit smoking and strictly enforce this policy in all
underground and surface coal mines and in all other work areas associated with coal mining. The
mine operator or the physician should counsel tobacco-smoking miners about their increased risk
of developing lung cancer and COPD; the mine operator or physician should also counsel such
miners to participate in a smoking cessation program.

6.4 INTERPRETATION OF MEDICAL SCREENING EXAMINATIONS
6.4.1 Evidence of Pneumoconiosis on Chest X-Rays

NIOSH recommends that chest X-rays be classified according to the 1980 ILO Classification of
Radiographs of Pneumoconioses (or the most current equivalent) [42 CFR 37 (1989)]. Evidence
of pneumoconiosis is present when the chest X-ray is classified as ILO category 1/0 or greater or
when large shadows are recorded as likely to be due to PMF or complicated CWP. NIOSH
considers two physicians to be in agreement when their classifications meet one of the following
criteria:

¢ They each find complicated pneumoconiosis of any category.
¢ Their findings with regard to simple pneumoconiosis are both in the same major category.

¢ Their findings are within one minor category (ILO category 12-point scale) of each other.
In this case, the higher of the two interpretations should be reported. The only exception
to this criterion is a reading sequence of 0/1, 1/0, or 1/0, 0/1. Such a sequence is not
considered agreement, and additional classifications are required until the readers teach a
consensus involving two or more readings in the same major category.
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. 6.4.2 Evaluation of Spirometric Examinations

NIOSH recommends that the results of spirometric examinations be evaluated as follows:

¢ Use the highest FEV] and FVC values from each miner’s examination when comparing
the FEVy, FVC, and FEV1/FVC% with the lower limit of normal (LLN)

® Compute the miner’s decline in FEV] by comparing his or her FEV] values over a period
of time; a decline of 15% or greater (adjusted for the expected interval decline in FEV)) is
considered significant and warrants further medical evaluation [Hankinson and Wagner
1993; ATS 1991].

A spirometric examination should be repeated within 3 months if it is unacceptable according to
ATS criteria [ATS 1991].

Evidence of impaired lung function is present when there is a confirmed finding (based on two or
more spirometric examinations) of either of the following:

e The FEV1, FVC, or FEV1/FVC value from an acceptable test is below the LLN (Knudson
et al. [1983] and Appendix E, or the most current equivalent).

® A decline in FEV] (adjusted for the expected interval decline in FEV) is 15% or greater
[Hankinson and Wagner 1993; ATS 1991].

6.4.3 Worker Notification

Workers should be notified in a timely manner regarding the results of their medical examinations,
including whether or not any abnormalities were detected. A NIOSH contact person should be

provided for further information.

When a miner first shows evidence of impaired lung function based on the results of the spirometric
examination (Section 6.4.2), he or she should be notified that the spirometric examination should
be repeated within 3 months.

Any miner with either radiographic evidence of pneumoconiosis (as described in Section 6.4.1)
or a confirmed finding of impaired lung function (as described in Section 6.4.2) should be notified
of his or her option to work in an environment where the exposures are as far as feasible below
the RELs for respirable coal mine dust and respirable crystalline silica. In addition, the miner
should be advised to consult a licensed physician or other qualified health care provider regarding
appropriate medical followup and intervention measures, which may include those listed in
Section 6.4.4.

"The ratio of FEV{/FVC is conventionally expressed as a percentage. The miner’s highest FEV| and FVC values are

used to compute this ratio.
"The LLN is calculated with the equations published by Knudson et al. [1983] (Appendix E) or the most current
equivalent. See Section 6.5.4 for a discussion of the LLN.
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6.4.4 Medical Followup and Intervention

Medical followup and intervention that should be considered by the physician and the miner
include the following measures:

¢ Further medical examination and testing determined by and performed by or under the
direction of a licensed physician

® Annual spirometric examination
e Participation in a smoking-cessation program, if applicable

e The option to work in an environment with exposures as far as feasible below the RELs
for respirable coal mine dust and respirable crystalline silica

6.5 LUNG FUNCTION TESTS FOR MEDICAL SCREENING AND SURVEILLANCE

Spirometry is the most important test for evaluating a miner’s lung function [Attfield and Wagner
1992b). The most widely accepted spirometry tests for screening workers are those for FEV; and
FVC [Hankinson 1986]. The detection of lung function values below normal reference values or
the detection of a significant decline in lung function over time indicates that further examination
and testing are needed to confirm the test results, to determine the cause(s) of the reduced lung
function, and to identify appropriate intervention or therapeutic measures.

6.5.1 Determining Obstructive and Restrictive Ventilatory Defects

Obstructive and restrictive ventilatory defects are two basic disease patterns detected by spirom-
etry. An obstructive ventilatory defect indicates airflow limitation caused by airway narrowing
during expiration [ATS 1991]. A greater reduction in FEV| thanin VC (i.e., FEV/FVCdecreased)
suggests an obstructive ventilatory defect [ATS 1991]. Diseases associated with this pattern
include asthma, chronic bronchitis, and emphysema [Garay 1992].

Reduced VC and normal or increased FEV/FVC suggest a restrictive ventilatory defect [ATS
1991]. Pneumoconiosis and other interstitial lung diseases can cause restrictive ventilatory defects.
Exposure to respirable coal mine dust may cause obstructive, restrictive, or mixed ventilatory
defects.

FEV] is ideal as a screening tool because it detects ventilatory defects reflecting either rcstnctlve
or obstructive patterns. However, FEV, should not be used without the FEVljFVC ratio to
distinguish between disease patterns because FEV; may be decreased in both the obstructive and
restrictive patterns, as shown here:

*FVC may be lower than VC in persons with airways obstruction because of gas trapping; thus, the ratio of FEV/FVC
appears to be more normal than the ratio of FEV1/VC. For this reason, the ATS recommends using FEV/VC to
determine the ventilatory disease pattern [ATS 1991). However, FVC is used for screening because it is easily
obtained when measuring FEV 1.
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Obstructive pattern Restrictive pattern
FVC normal or slightly decreased FVC decreased
FEV1 decreased FEV ] decreased
FEV1/FVC decreased FEV1/FVC normal or slightly increased

Determining the disease pattern is more relevant to clinical diagnosis and treatment than to
workplace spirometry screening, where early identification of a ventilatory defect is the primary
ojective.

Once a ventilatory defect is identified, its severity is determined using the percentage of FEV| loss
(for obstructive deficits) or the percentage of FVC loss (for restrictive deficits) [ATS 1991].
Medical followup to detertine the nature of any loss in FEV} or FVC may include further testing
such as TLC, airways resistance, and diffusing capacity.

Similarly, FEV/FVC should not be used to determine the severity of the deficit because both FEV
and FVC may be decreased—either as a result of a restrictive or a mixed ventilatory defect. Such
a pattern of parallel reduction in FVC and FEV) has been reported among U.S. and U.K. coal
miners [Attfield and Hodous 1992; Soutar and Hurley 1986] (see section 4.2.2 for discussion of
epidemiological studies of lung function and respiratory symptoms in coal miners).

The LLN for a spirometric test may be defined as the 5th percentile of the reference population
[ATS 1991] (see section 6.5.4 for further discussion). Patterns of restrictive and obstructive
ventilatory defects observed with other lung function tests are listed in Table 6-1. Figure 6-1
illustrates determination of FEV; and FVC on a spirogram.

6.5.2 Quality Control and Instrumentation

Criteria for improving the accuracy and reproducibility of spirometry test results include the
following [ATS 1991]:

® Adherence to ATS guidelines for equipment performance and calibration [ATS 1987a,
1979]

® Maintenance of spirometer temperature between 17° and 40°C to reduce temperature-re-
lated errors

® Validation of computer calculations following any changes in hardware or software

® Quality assurance reviews by each laboratory to maintain the precision and accuracy of
spirometry measurements, and

® Provision of high-quality of training for technicians (technicians should complete a NIOSH-
approved course on spirometry, and laboratories should receive NIOSH certification)
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Figure 6-1. FVC and FEV1 on a normal volume-time curve.

Two basic types of spirometers are available for determining FEV1, FVC, or FEV/FVC: the flow
spirometer and the volume spirometer [Hankinson 1993]. The flow spirometer measures the rate
at which air is exhaled, and it must integrate flow to determine volume. The volume spirometer
collects exhaled air and directly measures volume. A significant advantage of the volume spirometer
is its simplicity and direct measurement of volume; a significant disadvantage is that a small
error in estimating zero flow can affect the resulting volume, particularly for measurements of
FVC [Hankinson 1993]. Further information about quality control, instrumentation, and inter-
pretation of spirometry tests is provided in the ATS reports mentioned above [ATS 1991, 1987a,
1979}, in other publications [Hankinson 1993; McKay and Lockey 1992; Harber and Lockey 1992},
and in Appendix G of this document. Hankinson et al. [1994] describe a method that uses
ceramic flow sensors to estimate body temperature and pressure-saturated (BTPS) correction
factors for spirometers.

6.5.3 ATS Acceptability and Reproducibility Criteria for Spirometry Tests

The ATS criteria for acceptability of a spirometry curve is based on the technician’s observation
that the individual performed the test with a smooth, continuous exhalation, apparent maximal
effort, and a satisfactory start—and without coughing, glottis closure, early termination, a leak, or
an obstructed mouthpiece [ATS 1987a). A minimum of three acceptable maneuvers are required
according to ATS guidelines [ATS 1987a]. The spirometry testing administered as part of the
National Study of Coal Workers’ Pneumoconiosis includes five maneuvers, and the maximum
FEV, and FVC values are used for epidemiological analysis [Attfield and Hodous 1992].
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The ATS acceptability and reproducibility criteria are intended to be spirometry testing goals-~not
criteria for determining the inclusion or exclusion of subjects in an epidemiological study. As
shown in two separate studies [Kellie et al. 1987; Eisen et al. 1984, 1983], the ATS reproducibility
criteria to determine which subjects should be included in an epidemiological analysis resulted in
biased estimates of FEV ). Eisen [1987] reported that individuals with persistent test failure had
twice the annual average rate of FEV| decline than those without persistent test failure. Kellie et
al. [1987] found that coal miners who failed the reproducibility criteria had a lower mean FEV,
and significantly more respiratory symptoms (i.e., cough, phlegm, wheeze, and dyspnea) than
miners with reproducible tests.

Height has also been shown to affect a person’s ability to meet ATS reproducibility criteria (i.e.,
shorter persons have more difficulty than taller subjects in satisfying ATS reproducibility criteria)
[Hankinson and Bang 1991]. The largest FVC and FEV should be reported regardless of the
spirometry curve(s) on which they occur [Hankinson 1986; ATS 1987a]. Miller and Scacci [1981]
have suggested criteria that can be used to determine whether an individual has used full effort.
NIOSH recommends that the ATS acceptability and reproducibility guidelines be used to describe
spirometry test results but not to dismiss a finding of abnormality.

6.5.4 Cross-Sectional Spirometry Testing

For spirometry used to assess a person’s lung function at one point in time, his or her values for
FEV,, FVC, and FEV/FVC are compared with normal reference values for persons of similar
gender, age, height, and race. This approach (referred to as cross-sectional spirometry testing) is
used to determine whether spirometry test values are within normal limits.

The percentile of the lung function distribution chosen to define the LLN depends on the desired
levels of sensitivity and specificity. The 5th percentlle has been recommended for use as the LLN
in clinical evaluation and diagnosis [ATS 1991].% Thus, spirometry values below the 5th percentile
are below the expected normal range. Although the use of the 5th percentile as the LLN provides
a high degree of specificity (i.e., few false positives), it is implicitly insensitive to detecting early
abnormalities, particularly in a healthy population. Greater sensitivity for screening purposes may
result from using a higher percentile (e.g., the 10th) as the cutoff point for recommending further
medical evaluation or testing [WHO 1995].”

NIOSH recommends that the 5th percentile be used to define the LLN for the recommended
spirometry tests in the medical screening and surveillance program for coal miners (Appendix E).
Miners with a confirmed finding of FEV|, FVC, or FEV|/FVC below the LLN are eligible to
participate in medical intervention programs (see Section 6.4.4).

NIOSH also recommends that the 10th percentile be used as the cutoff point for recommending

further evaluation. Thus, miners with lung function at or below the 10th percentile of the
distribution should be advised to seek further clinical evaluation from a qualified health care provider.

§The 5th percentile is equivalent to the “normal 95th percentile” used by Knudson et al. [1983].
"WHO {1995] uses the terminology from Knudson et al. [1983] (i.e., 90th percentile}.
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If a miner has respiratory symptoms that suggest an abnormality (whether or not his or her lung
function values are below the LLN), he or she may submit medical records and request a review
for eligibility to participate in the medical intervention programs.

Spirometry test results that are less than 80% of the predicted values are often used to identify
abnormal results, but this criterion has no statistical basis [ATS 1991] and is not recommended.
If the data used for deriving the prediction equation are distributed normally (i.e., Gausian
distribution) with variability reasonably constant over the age range of interest, then the LLN may
be calculated as a defined percentile point of that distribution using the estimated standard error.
However, this approach is not recommended because assumptions of normality and homogeneity
of variance ate rarely met in actual spirometric surveys of adults [Knudson et al. 1983]. Instead,
Knudson et al. [1983] advise determining the LLN as a defined lower percentile point of the actual
distribution of data.

The Knudson et al. [1983] equations are recommended as the basis for the normal reference values
for spirometry tests (i.e., the LLN for FEV,, FVC, and FEV/FVC) of U.S. coal miners for the
following reasons:

® The analyses described by Knudson et al. [1983] meet the methodological, epidemiological,
and statistical criteria recommended by the ATS [1991] for the selection of reference values.

® The estimate of the age-related decline in FEV; found by Knudson et al. [1983] is very
similar to that reported by Attfield and Hodous [1992] for nonsmoking coal miners.

® The Knudson et al. [1983] data are based on cross-sectional studies of lifetime nonsmokers;
thus, the spirometry test results will be applicable to the respiratory health surveillance of
miners as a group and to the medical evaluation of individual miners for diagnosis and other
clinical purposes.

As additional data become available, NIOSH may update these recommendations for reference
values in spirometry testing. In particular, future studies may provide reference values for several
ethnic groups that are not currently available in the literature.

6.5.5 Longitudinal Spirometry Testing

Longitudinal spirometry used in medical screening allows comparisons of a worker’s preplacement
lung function values with those determined in later spirometric examinations. Such periodic
spirometry testing may be useful for early identification of a worker with excessive loss of lung
function (i.e., before the loss is apparent from cross-sectional testing) [Hankinson and Wagner
1993]. This identification is possible because workers as a group are often healthier than the
general population and have above-average lung function [Becklake and White 1993]. Thus,
comparing a worker's lung function values with general population reference values may not detect
an actual loss in that worker’s lung function [Hankinson and Wagner 1993]. About half of a worker
population may benefit from longitudinal (in addition to cross-sectional) evaluation of spirometry
[Hankinson and Wagner 1993].
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Hankinson and Wagner [1993] recommend establishing a baseline FEV| value for each worker
from several initial spirometric examinations. They then recommend calculating the longitudinal
LLN by taking 85 percent of this baseline value minus the expected decline over a period of time
(based on the individual’s age).

6.5.6 Additional Medical Tests of Lung Function

Additional lung function tests may be required for further evaluation of miners with abnormal
spirometric examinations or with respiratory symptoms. Such tests may be too complicated or
expensive to administer during routine screening, or they may have large variability within a
normal population [Miller and Scacci 1981; Hankinson 1986; WHO 1995].

Recommended methods are available for measuring the diffusing capacity of the lung for carbon
monoxide (DLCO) [Ferris 1978] and for calculating predicted values [Crapo and Morris 1981].
Changes in the membrane-diffusing capacity or in the capillary volume that are caused by structural
lung damage can influence the diffusing capacity of the lung [Miller and Scacci 1981]. The
single-breath method of measuring DLCO is the most widely used and best standardized method
of measuring diffusing capacity [Gold and Boushey 1988; Hankinson 1986]. Because DLCO can
be abnormal in numerous respiratory disorders, the test lacks specificity for work-related respira-
tory diseases. Also, cigarette smoking has been associated with reduced DLCO (because of
elevated carboxyhemoglobin) and should be considered in the diagnosis [Hankinson 1986].
Measuring the DLCO is indicated when other tests such as spirometry do not show sufficient lung
impairment to explain a patient’s respiratory symptoms [Hankinson 1986; Miller and Scacci 1981].

6.6 OTHER ISSUES PERTAINING TO RECOMMENDATIONS FOR MEDICAL
SCREENING AND SURVEILLANCE

6.6.1 Evaluating the Work-Relatedness of COPD Among Coal Miners

The evidence implicating exposure to coal mine dust as a cause of COPD in coal miners has been
reviewed in Chapter 4 and is used in Chapter 7 as part of the basis for the NIOSH REL for respirable
coal mine dust. Becklake [1985] concluded that the causal link between occupational exposure
and chronic airflow limitation among coal miners has been demonstrated “beyond reasonable
doubt,” Becklake’s conclusion refers to the epidemiological evidence from studies of exposures
and responses in groups of miners. In these studies [Attfield and Hodous 1992; Seixas etal. 1993,
1992; Marine et al. 1988; Soutar et al. 1988; Soutar and Hurley 1986; Rogan et al. 1973], the
variability among individuals’ lung function responses to similar exposures implies that a certain
proportion of miners will respond either more or less severely than the average. Among miners
who respond more severely than the average, some may have clinically significant reductions in
lung function, as shown by Marine et al. [1988]. Soutar and Hurley [1986] found that studies
limited to working miners may underestimate the clinical importance of dust-associated reductions
in lung function. Hurley and Soutar [1986] identified a subgroup of coal miners (including those
who had left the industry voluntarily before normal retirement age) for whom the average effect
of dust exposure on reduction in FEV| was more than twice that reported by Marine et al. [1988].

The findings of these epidemiological studies indicate that exposure to coal mine dust may lead
to clinically significant COPD. But as Becklake [1985] notes, it is unlikely that medical evidence
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could provide scientific proof of the work-relatedness of a particular case of COPD, even though
“a reasonable statement of probability” may often be obtained. Kusnetz and Hutchinson [1979]
identified the various elements that need to be considered when physicians attempt to make such
an individual assessment of probability:

e Verification of convincing epidemiological evidence that occupational exposure may cause
COPD

® Clinical evidence that the disease exists in the individual concerned
e Evidence that there has been an exposure of sufficient degree or duration to result in disease

® Anassessment of other relevant factors such as nonoccupational exposures that might cause
COPD or other special circumstances.

The spirometric examinations and questionnaires on respiratory symptoms and work history
(which are included in the recommended medical screening and surveillance program for coal
miners) will provide important information for effective workplace surveillance, medical diagno-
ses, and individual advice to miners.

6.6.2 Medical Intervention Strategies

The risk of developing PMF increases with increasing initial category of simple CWP [Attfield
and Seixas 1995; Attfield and Morring 1992b; Hurley and Maclaren 1987; Hurley et al. 1987,
McLintock et al. 1971; Cochrane 1962]. Furthermore, the risk of progression to a higher category
of simple CWP increases with increasing intensity of exposure (mean dust concentration)
[Jacobsen et al. 1970, 1971] and increasing cumulative exposure (i.e., intensity X duration)
[Jacobsen 1973, 1979]. Thus, the risk of PMF increases systematically both with initial category
of simple CWP and with the amount of progression (over 5-year periods) from each initial category
(including categories 0/0, 0/1, and 1/0) [McLintock et al. 1971]. The amount of time spent in a
disease category of simple CWP may also influence the risk of progression to a higher category
[Morfeld et al. 1992].

The weight of evidence from these studies suggests that a reduction in worker exposures to respirable
coal mine dust will decrease the risk of simple CWP progression and thus the risk of PMF. However,
other factors may influence the effectiveness of dust reduction in decreasing the risk of disease
progression. Cumulative exposure and residence time of dust in the lungs may be important factors
in the development of PMF [Maclaren et al. 1989; Hurley et al. 1987]. Maclaren and Soutar [1985]
found that 32% of the miners who developed PMF after they left mining had no evidence of CWP
(i.e., category 0) when they terminated their employment in mining. The effectiveness of dust
reduction may also depend on the magnitude of that reduction. Hurley and Maclaren [1987]
estimated that just 1 in 10,000 cases of PMF would be prevented if all mmers who had developed
simple CWP category 1/0 or greater at a mean concentration of 2.0 mg/m of respirable coal mine
dust were then allowed to work at a mean concentration of 1.0 mg/m”. However the same report
also shows that reducing average dust concentrations from 2 to 1 mg/m> over a 40-year working
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lifetime would more than halve the risk of PMF—from between 7 and 18 cases per 1,000, to between
3 and 7 cases per 1,000, depending on coal rank [Hurley and Maclaren 1987].

The effectiveness of reducing exposures to respirable coal mine dust has not been adequately
studied with regard to reversing or reducing lung function deficits. However, some evidence shows
that reduction or cessation of smoking can at least partially reverse the functional abnormalities
associated with smoking [McCarthy et al. 1976] and the structural changes in the peripheral airways
of asymptomatic young smokers [Ingram and O'Cain 1971]. These studies of smoking suggest
that reducing or ceasing exposures to other contaminants associated with airways obstruction and
loss of lung function (e.g., respirable coal mine dust and respirable crystalline silica) may also
effectively reverse or further reduce adverse effects. NIOSH therefore recommends, as a prudent
public health measure, that miners be permitted to work in a low-dust environment if they have
evidence of COPD caused or exacerbated by exposure to coal mine dust.

Further research is needed to evaluate the effectiveness of medical interventions such as reducing
or ceasing exposures to respirable coal mine dust or respirable crystalline silica. Any analysis of
the effectiveness of the transfer program would need to consider possible bias from the low rate
of participation: only 23% of eligible coal miners (2,119 of 9,138 miners) elected to participate
[Wagner and Spieler 1990]. Goldenhar and Schulte [1994] have described additional methodological
issues in intervention research.

A related research need is to evaluate the availability of mine areas where exposures to respirable
coal mine dust and respirable crystalline silica are as far below the respective RELs as feasible.
The tables in Appendix B show that mean concentrations for most occupations have been below
the PEL of 1 m g/m3 for miners transferred under 30 CFR 90. However, the mean concentrations
for some occupations (e.g., roof bolter and continuous miner helper) exceed the PEL of 1 mg/m3 ,
and a substantial percentage of samples show measured concentrations greater than 1 mg/mS.
Limited data from sampling required for miners transferred under 30 CFR 90 also show that
concentrations of respirable crystalline silica exceeded the NIOSH REL and the MSHA PEL for
some occupations. NIOSH advocates primary prevention (through reducing exposures) rather than
secondary intervention as the most effective means of eliminating occupational diseases.
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7.1 THE NIOSH REL FOR RESPIRABLE COAL MINE DUST

NIOSH recommends that exposures to respirable coal mine dust be limited to 1 mg/m3 asaTWA
concentration for up to 10 hr/day during a 40-hr workweek, measured according to current MSHA
methods (see Section 5.1 and Appendix J). NIOSH recommends that sampling be conducted with
a device that operates in accordance with the NIOSH accuracy criteria [Busch 1977; Busch and
Taylor 1981] and the international definition of respirable dust [ACGIH 1994; CEN 1993; ISO
1993; Soderholm 1991a,b; 1989].”

The REL represents the upper limit of exposure for each worker during each work shift. For
single, full-shift samples used to determine noncompliance, NIOSH recommends that MSHA
make no upward adjustment of the REL to account for measurement uncertainties [NIOSH 1994c]
(see also Section 5.6.2). NIOSH further recommends that all reasonable efforts be made to reduce
exposures to respirable coal mine dust below the REL through the use of engineering controls
and work practices.

7.2 BASIS FOR THE CURRENT U.S. STANDARD

The current U.S. standard of 2 mg/m3 for respirable coal mine dust [30 USC 842(b)] is based
primarily on studies of coal miners in the United Kingdom [Jacobsen et al. 1971; McLintock et
al. 1971; Cochrane 1962)]. Studies of U.S. coal miners during the 1960s investigated the
prevalence of simple CWP and PMF using the number of years worked underground to estimate
exposures to respirable coal mine dust (see Section 4.2). By contrast, U.K. studies during that
period investigated both (1) the relationship between increasing category of simple CWP and the
development of PMF [Cochrane 1962; McLintock et al. 1971], and (2) the relationship between
the concentration of respirable coal mine dust and the risk of developing simple CWP [Jacobsen
et al. 1971] or PMF [McLintock et al. 1971].

Cochrane [1962] reported in an 8-year study of 1,429 Welsh miners and ex-miners that the
incidence of PMF was nearly zero among miners who either had no evidence of simple CWP
(category 0) or who had simple CWP category 1 when the study began. However, the incidence
of PMF was 15% or 30%, respectively, among miners who had had simple CWP category 2 or 3
when the study began (Figure 7-1). McLintock et al. [1971] found a similar relationship between
increasing category of simple CWP and the development of PMF (Figure 7-1). Thus, the strategy
for preventing PMF was directed at preventing progression to simple CWP category 2.

“The REL of 1 mglm3 is equivalent to 0.9 mgfm3 when measured according to the NIOSH recommended sampling
criteria (see Sections 5.2 and 5.4).
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Figure 7-1. Incidence of PMF among U.K. coal miners during an 8-year period by average category of simple
CWP. Adapted from Mclintock et al. [1971].

The first quantitative, exposure-specific estimates of simple CWP risk from the Umted Kingdom
[Jacobsen et al. 1971] suggcsted that the probability of progresswn to category 2/1 or greater
was essentlally zeto for miners exposed to respirable coal mine dust at an average concentration
of 2 mg]m over a 35-year working lifetime (Figure 7-2). Thus to prevent the development of
simple CWP category 2 (and therefore to prevent PMF), 2 m g/m> was adopted as the U.S. standard
for respirable coal mine dust [30 USC 842(b)].

7.3 BASIS FOR THE NIOSH REL

The NIOSH REL for respirable coal mine dust is based primarily on epidemiological exposure-
response studies of occupational respiratory disease among U.S. coal miners. Additional consid-
erations include sampling and analytical feasibility and the technological feasibility of reducing
exposures. The intent of the REL (given the limits of technical feasibility) is to keep the daily
exposures of workers low enough to reduce or eliminate the risk of impaired health or functional
capacity over a working lifetime.

7.3.1 Epidemiological Studies Evaluated

Since 1969, several large, well-designed epidemiological studies have been conducted in both
the United States and the United Kingdom to investigate the relationship between exposure to
respirable coal mine dust and the development of simple CWP, PMF, and COPD.

TSee Section 4.1.2.1 for a discussion of radiographic classifications.
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Figure 7-2. Probability that a man starting with no pneumoconiosis {category 0/0) will be classified as category
2 or higher after 35 years of exposure to various concentrations of coal mine dust. (Source: Jacobsen et al. [1971].)

Exposure-response studies of coal miners in the United States [Attfield and Seixas 1995; Attfield
and Morring 1992b] and the United Kingdom [Hurley and Maclaren 1987] indicate that miners
exposed to respirable coal mine dust for a working lifetime at the current U.S. standard of 2 mg/m’
have a substantial risk of developing simple CWP and PMF (Figures 7-3 through 7-6). PMF has
been associated with impaired lung function, disability, and early death [Parkes 1982]. Addi-
tional exposure-response studies of U.K. miners [Soutar et al. 1988; Marine et al. 1988; Hurley
and Soutar 1986; Rogan et al. 1973] and U.S. miners [Attfield and Hodous 1992; Seixas et al.
1992] have shown that miners may also develop severe decrements in lung function as a result
of their exposures to respirable coal mine dust—whether or not pneumoconiosis is present. The
weight of evidence and the adverse health effects observed consistently in numerous independent
studies of U.S. and UK. coal miners provide a substantial basis for recommending an exposure
limit for respirable coal mine dust. Table 7-1 lists the exposure-response studies that wete used
as the basis for the REL.

The exposure-response studies of U.S. coal miners, which provide the primary basis for the
REL, were based on both the health effects data from the National Study of Coal Workers’
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Figure 7-3. Prevalence of simple CWP and PMF among U.S. coal miners by estimated cumulative ex?osure and
coal rank. Note: Exposure to 2 mg/m” for 45 years (i.e., 90 mg-years/m3) is equivalent to 180 gh/m” (based on
2,000 hr/year). (Source: Attfield and Morring [1992b].)

Copyright by American Industrial Hygiene Association Journal. Used with permission by the U.S. Department of Health and Human Services.
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Figure 7-4. Prevalence of simple CWP category 1 or greater among U.S. coal miners by estimated cumulative
dust exposure and coal rank (median reading of three X-ray readers). Note: Exposure to 2 mg/rn3 for 45 years
is equivalent to 90 mg—yr/mB. (Source: Attfield and Seixas [1995].)

Copyright 1995 by Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc. Used with permission by the U.S. Department of Health and Human
Services.
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Figure 7-5. Predicted prevalence of simple CWP category 2 or higher among U K. coal miners after a 35-year
working lifetime (1,631 hr/year), by mean concentration of respirable coal mine dust and coal rank {expressed as

percentage of carbon). (Source: Hurley and Maclaren [1987].)

Capyright by The Institute of Occupationat Medicine. Used with permission by the U.S. Department of Health and Human Services.
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Figure 7-6. Predicted prevalence of PMF among U.K. coal miners after a 35-year working lifetime (1,631 hr/year),

by mean concentration of respirable coal mine dust. (Source: Hurley and Maclaren [1987].}

Copyright by The Institute of Occupational Medicine. Used with permission by the U.S. Department of Health and Human Services.
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Table 7-1. Epidemiological exposure-response studies used as the basis for the
recommended U.S, standard for respirable coal mine dust

Type of study and Number of Date of medical
reference Country miners examination
Simple CWP or PMF:
Attfield and Morring [1992b] U.s. 9,078 1969-71
Attfield and Seixas [1995] U.s. 3,194* 1969-71; followup in 1985-88
Hurley and Maclaren [1987] U.K. >30,000 At least two examinations

between 1953 and 1978

Decrements in lung function:”

Attfield and Hodous [1992] U.S. 7,139 1969-71

Seixas et al. [1992; 1993]I U.S. 1,185 or 977 1969-71 or 1972-75,
followup in 1985-88

Marine et al. [1988] _ UK. 3,380 1963

*Analysis based on 52,264 five-year tisk petiods.
'FEV, <65% or >80% of predicted normal values.
*Study of miners new to coal mining during or after 1970.

Pneumoconiosis and the exposure data from sampling programs of MSHA and BOM. The
National Study of Coal Workers® Pneumoconiosis is an epidemiological research program that
includes data from the medical examinations and work histories of more than 17,000 U.S. coal
miners from 1969 through 1988 [Attfield and Castellan 1992]. The BOM data include measure-
ments of respirable coal mine dust collected during 1968 and 1969 in 29 underground coal mines
across the United States [Jacobson 1971; Attfield and Morring 1992a]. The MSHA data include
measurements of respirable coal mine dust and respirable crystalline silica collected from 1970
to the present by both MSHA inspectors and coal mine operators for the purpose of evaluating
compliance with the standard of 2 mg/m’ [30 USC 842].

In addition, several exposure-response studies of coal miners in the United Kingdom [Maclaren
etal. 1989; Marine et al. 1988; Soutar et al. 1988; Hurley and Maclaren 1987; Hurley et al. 1987]
provide an important basis for comparison with the U.S. studies. The data for the U.K. coal
miners are from the British Pneumoconiosis Field Research Program, which includes medical
examinations and individual exposure estimates for more than 50,000 coal miners for up to 30
years.

7.3.2 Estimated Risks of Occupational Respiratory Diseases

7.3.2.1 Background Prevalence

The background prevalence of simple CWP, PMF, or a clinically significant deficit in lung
function is defined here as the predicted prevalence of disease among persons with no occupa-
tional exposure to respirable coal mine dust. Each predicted prevalence of simple CWP, PMF,

115



Coal Mine Dust

or decreased lung function (reported in Section 4.2.3) includes a background prevalence. Because
there were no miners without exposure to respirable coal mine dust in these studies, these
background prevalences were defined in the statistical models as the predicted prevalence of each
disease at zero exposure.

Two studies have reported a prevalence of radiographic small opacities resembling simple CWP
among persons not employed in coal mining [Castellan et al. 1985; Epstein et al. 1984] (see
discussion in Section 4.2.1.6). However, no radiographic large opacities resembling PMF were
reported. The predicted prevalence of PMF (Section 4.2.3) includes a background prevalence of
radiographic large opacities predicted by the model. This model-based background prevalence
of large opacities could be interpreted as reflecting the presence of diseases such as lung cancer
or tuberculosis (which may also present as large opacities) in the general population. The
background prevalence could also indicate that exposures were underestimated in miners with
low exposures (which could result in a fitted model with higher disease prevalences among miners
with low or zero exposures).

A background prevalence of decreased lung function (e.g., FEV| of <65% or <80% of predicted
normal values) has been associated with age and smoking in studies of both coal miners [Seixas
etal. 1993, 1992; Attfield and Hodous 1992; Marine et al. 1988; Rogan etal. 1973] and nonminers
[Samet 1989; Fletcher and Peto 1977; Fletcher et al. 1976].

7.3.2.2 Excess Risk in U.S. Coal Miners

Tables 7-2 and 7-3 provide the excess (exposure-attributab]e) prevalence estimates for simple
CWP, PMF, and decreased lung function® among U.S. coal mmers at age 65 following exposure
to respirable coal mine dust during a 45-year working lifetime.} Excess prevalence (EX), as cases
per 1,000, was defined as follows:

EX(X) = P(X)-P(O)

where P(X) is the prevalence from the fitted model at exposure X, and P(O) is the prevalence
attributable to all factors except exposure to respirable coal mine dust. Excess prevalence was
computed using regression coefficients from the statistical models described in the published
exposure-response studies of U.S. coal miners. These prevalence estimates were for simple CWP
and PMF [Attfield and Seixas 1995; Attfield and Morring 1992b] and for decreased lung function
[Seixas et al. 1992; Attfield and Hodous 1992].

*Decreased lung function is defined here as an FEV| <80% of predicted normal values. The dichotomous responses
of FEV| (either <65% or <80% of predicted normal values) were selected because they represent clinically important
deficits. An FEV| 80% of predicted normal values is approximately equal to the LLN (5th percentile), a measure
that is used to determine ventilatory defects (see Section 6.5.3 for further discussion) [ATS 1991; Boehlecke 1986).
An FEV| <65% of predicted normal values is approximately equal to FEV| deficits associated with severe exertional
dyspnea in U.K. coal miners [Marine et al. 1988; Soutar et al. 1993].

YU K. estimates are generally based on a 35-year working lifetime, whereas U.S. estimates are generally based on either
a 40-year or a 45-year working lifetime.
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Table 7-2. Excess (exposure-attributable) prevalence of simple CWP or PMF among U.S. coal miners at
age 65 following exposure to respirable coal mine dust over a 45-year working lifetime.

Casesf1,000 at various
mean dust concentrations

Study and coal rank Disease category 0.5 mg[m3 1.0 mg,fm3 2.0 m.glm3

Attfield and Seixas [1995):"

High-rank bituminous CWP 21 48 119 341
CWP 22 20 58 230

PMF 13 36 155

Medium/low-rank bituminous CWP 21 27 63 165
CWP 22 9 22 65

PMF 4 10 29

Attfield and Morring [1992b]:"

Anthracite CWP 21 45 120 380
CWP 22 17 51 212

PMF 17 46 167

High-rank bituminous CWP 21 41 108 338
(89% carbon) CWP 22 15 43 168
PMF 13 34 114

Medium/low-rank bituminous CWP 21 18 42 111
(83% carbon) CWP 22 6 15 42
PMF 4 9 21

Medium/low-rank bituminous CWP 21 12 26 64
{(Midwest) CWP 22 4 9 22
PMF ¥ 1 3 6

Medium/low-rank bituminous CWP 21 7 14 32
{West) CWP 22 <1 <1 1
PME? <1 <1 1

*Attfield and Seixas [1995] define the coal rank groups as follows:
1. High-rank bituminous (89%-90% carbon): central Pennsylvania and southeastern West Virginia
2. Medium/low-rank bituminous (80%-87% carbon): medium-rank—western Pennsylvania, northern and south-
western West Virginia, eastern Ohio, eastern Kentucky, western Virginia, and Alabama; low-rank—western
Kentucky, Iflinois, Utah, and Colorado.
TAttfield and Morring [1992b] define the coal rank groups as follows:
1. Anthracite: two mines in eastern Pennsylvania (about 93% carbon)
2. Medium/low-volatile bituminous (89%-90% carbon): three mines in central Pennsylvania and three in
southeastern West Virginia
3. High-volatile A bituminous (80%-87% carbon): 16 mines in western Pennsylvania, north and southwestern
West Virginia, eastern Ohio, eastern Kentucky, western Virginia, and Alabama
4. High-volatile midwest: four mines in western Kentucky and Illinois
5. High-volatile west: three mines in Utah and Colorado
Coal rank groups 4 and 5 contained mines for which the rank of the coal was generally lower than in the
high-volatile A bituminous group.
¥The coefficients of the logistic regression models (which were used to compute excess prevalence estimates) were
not statistically significant (£>0.4) for these outcomes.
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Table 7-3. Excess (exposure-attributable) prevalence of decreased lung function” among U.S. coal miners
at age 65 following exposure to respirable coal mine dust over a 45-year working lifetime.

Casesf1,000 at various
mean dust concentrations

Lung function Smoking 0.5 1.0 2.0
Study and region decrement status mghn3 mg/m mg,{m3

Attfield and Hodous [1992]:7

East <80% FEV; Never smoked 10 21 44
Smoker 12 24 51

West <80% FEV, Never smoked 9 19 40
Smoker 11 23 48

East <65% FEV, Never smoked 2 5 12
Smoker 4 8 19

West <65% FEV, Never smoked 2 4 9
Smoker 3 7 15

Seixas et al. [1993]* <80% FEV| Never smoked 60 134 315
Smoker 68 149 338

<65% FEV, Never smoked 18 45 139

Smoker 27 67 188

"Decreased lung function is defined as FEV| <80% of predicted normal values. Clinically important deficits are
FEV; <80% (which equals approximately the LLN, or the 5th percentile) and FEV) <65% (which has been
associated with exertional dyspnea).

T Attfield and Hodous [1992] define the following coal ranks and regions:

East: anthracite (eastern Pennsylvania), and bituminous (central Pennsylvania, northern Appalachia [Ohio,
northern West Virginia, western Pennsylvania], southern Appalachia [southern West Virginia, eastern
Kentucky, western Virginia], Midwest [Illinois, western Kentucky], South [Alabama]).

West: Colorado and Utah.

*Coal rank was not provided in Seixas et al. [1993]. However, miners were included from bituminous coal ranks
and regions across the United States, as described in Attfield and Seixas [1993]:

1. High-rank bituminous (89%-90% carbon): central Pennsylvania and southeastern West Virginia

2. Medium/flow-rank bituminous (80%-87% carbon): medium-rank—western Pennsylvania, northern and

southwestern West Virginia, eastern Ohio, eastern Kentucky, western Virginia, and Alabama; low-rank—
western Kentucky, Illinois, Utah, and Colorado.

As shown in Tables 7-2 and 7-3, the excess prevalence of simple CWP, PMF, and decreased
lung function is estimated to be substantially reduced if lifetime average exposure to respirable
coal mine dust is reduced from 2.0 to 0.5 mg/ms. However, even at a mean concentration of
0.5 mg/m>, miners have a >1/1,000 risk of developing these conditions (Tables 7-2 and 7-3). A
1/1,000 risk was defined as significant by the U.S. Supreme Court in the 1980 benzene decision:
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If the odds are one in a thousand that regular inhalation of gasoline vapors that are
two percent benzene will be fatal, a reasonable person might well consider the risk
significant and take appropriate steps to decrease or eliminate it [U.S. Supreme
Court 1980].

PMF and FEV, <65% (of predicted normal values) indicate the presence of severe respiratory
diseases. The exposure-attributable risks for these diseases are estimated to exceed 1/1,000 in
coal miners with 45-year working lifetime exposures. NIOSH therefore recommends additional
protective measures to minimize the risk of adverse health effects among coal miners (Section
7.3.4.7).

7.3.2.3 Risk Estimates at Low Exposures

Figure 7-7 shows exposure data from the National Study of Coal Workers’ Pneumoconlosls
These graphs show that the lower range of the data is about 1.0 and 0.5 mg/m for exposures of
miners participating in round 1 (1969-71) and round 4 (1985-88), respectively. These data
indicate that risk estimates below 0.5 mg/m3 would be based on extrapolations beyond the range
of the data and would carry considerable uncertainty.

7.3.2.4 Excess Risk of PMF at Age 65 by Duration and Intensity of Exposure

NIOSH is authorized to recommend occupational safety and health standards and to describe
exposures that are safe for various periods of employment, including but not limited to exposures
at which no worker will suffer diminished health, functional capacity, or life expectancy as a
result of his or her work experience [29 USC 651(b)(7), 669(a)(3), 671(c); 30 USC 811(a}(6)(B)].
Tables 7-2 and 7-3 provide excess risk estimates for miners exposed to respirable dust of various
coal ranks over a 45-year working lifetime. Figure 7-8 illustrates the excess risk of PMF among
miners at age 65 by intensity (concentration) and duration (years) of exposure to different ranks
of coal. These excess (or exposure-attributable) risk estimates were determined for exposures to
dust of both high-rank bituminous coal and medium/low-rank bituminous coal as defined by
Attfield and Seixas [1995] (see Table 7-2, footnote” ).

The Attfield and Seixas [1995] study (shown in Table 7-2) included 3,194 miners who partici-
pated in round 1 of the National Study of Coal Workers’ Pneumoconiosis (1969-71) and who
were followed in round 4 (1985-88). The Attfield and Morring [1992b] study (also shown in
Table 7-2) included 9,023 miners who participated in round 1. Table 7-2 shows that the excess
risk estimates for simple CWP and PMF within similar coal ranks are comparable for these two
studies.

The Attficld and Hodous [1992] study (shown in Table 7-3) included a subset of miners who
participated in round 1 (i.e., 7,139 white miners aged 25 or older). The Seixas et al. [1993] study
included the 977 miners who began working after 1969 and who participated in rounds 2 and 4.
The excess risk estimates for decreased lung function based on the Seixas et al. [1993] study are
higher than those based on the Attfield and Hodous [1992] study. Seixas et al. [1993] suggest
that the greater effect of dust exposure observed in their study is attributable to a nonlinear effect
of dust on the lungs. That is, miners who are new to mining have a greater loss of lung function
per unit of exposure than the more experienced miners.
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Figure 7-7. Exposures of miners participating in rounds 1 and 4 of the National Study of Coal Workers'
Pneumoconiosis.
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Figure 7-8. Excess risk of PMF in U.S. miners at age 65 by intensity (concentration) and duration (years) of
exposure to high-rank coal (HR) or medium/low-rank coal (MLR). (Based on data from Attfield and Seixas [1995].)
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Figure 7-8 shows that the excess risk of developing PMF by age 65 increases with increasing
duration of employment and with increasing intensity of exposure (mean concentration). Excess
risks are higher for miners exposed to dust of higher-rank coal—at any given duration and
intensity of exposure.

At a mean concentration of 0.5 mg/m the excess risk of PMF at age 65 exceeds 1/1,000 (Section
7.3.2.2) for all durations of exposure and coal ranks evaluated, 1nclud1ng 15 years of exposure to
medium/low-rank coal. This mean concentration of 0.5 mg/m represents the lower range of the
exposure data (Section 7.3.2.3; Figure 7-7). Long -term average concentrations of respirable coal
mine dust are expected to be below 0.5 mg/m? if miners’ daily exposures are kept below the REL
of 1 mg/m (Section 7.3.3).

7.3.3 Expected Long-Term Average Exposures When Work-Shift Exposures Are
Below the REL

The REL represents the exposure limit during each work shift (8- to 10-hr TWA, 40-hr
workweek). In developing the REL for respirable coal mine dust, NIOSH has computed the
work-shift exposure limit associated with the long- term mean concentration of 0.5 mg/m’
(Appendix K). The average concentration of 0.5 mg/m was used because it constitutes the lower
range of the exposure data; thus, estimates of disease risk at that average concentration do not
represent extrapolation beyond the range of the data (Section 7.3.2.3). NIOSH did not use
extrapolated risk estimates in developing the REL because of the limitations in sampling and
analytical feasibility (Section 7.4 and Appendix I) and technological feasibility (Section 7.7).

The association between a work-shift exposure limit and a long-term mean concentration depends
on the variability of exposures for a given workplace or job and on the desired level of confidence.
In Appendix K, an analysis of variance was used to determine the within-occupation GSDs after
accounting for the variability by mine and section within a mine. This analysis shows that the
GSDs are fairly uniform for the following five occupations: continuous miner operator, 1.79;
cutting machine operator, 1.75; handloader operator, 1.68; longwall shear operator, 1.82; and
roof bolter, 1.70.

Figure 7-9 illustrates the relationship between the GSD and the ratio of the REL to the long-term
mean concentration. This ratio is approximately 2 with the GSDs reported in Appendlx K. Thus,
this analysis indicates that the long-term average exposures will be below 0.5 mg/m if at least
95% of the exposures during each work shift are below 1.0 mg/m3

The exposure data used to derive the NIOSH REL for respirable coal mine dust are based on
sampling according to the current MSHA method (Section 5.1). NIOSH recommends sampling
according to the international definition of respirable dust (Section 5.2). Thus, the NIOSH REL
of 1 mg/m for resplrable coal mine dust, measured according to the current MSHA method, is
equivalent to 0.9 mg/m when measured according to the recommended sampling criteria
(Sections 5.2 and 5.4).

The relationship between the single-shift and long-term mean concentrations assumes that the
exposure limit is not adjusted upward to account for measurement uncertainty. Thus, a worker’s
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Figure 7-9. Relationship between the ratio of the single-shift exposure limit to the long-term average exposure
(mean) and the variability in exposures (GSD), assuming that the probability of any measured single-shift
concentration {C) exceeding the REL is 5% (i.e., probability [C>REL] = 0.05).
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exposure is considered to have exceeded the REL for respirable coal mine dust if the measured
concentration exceeds 1 mg/m in any valid, single, full-shift sample (Section 5.6.2), measured
according to the current MSHA method (Section 5.1 and Appendix J)—or if it exceeds 0.9 mg/m®
in any valid, single, full-shift sample measured according to the NIOSH recommended criteria
(Sections 5.2 and 5.4).

7.3.4 Factors Considered in Determining the REL

7.3.4.1 Strength of Evidence

The epidemiological studies of U.S. and U.K. coal miners provide a substantial basis for
evaluating the effectiveness of the current U.S. standard for respirable coal mine dust. These
studies involve thousands of miners and include data on both health effects and exposures. The
health effects data are based on medical evaluations that used standardized methods of chest
radiography, spirometric examinations, and medical history questionnaires. The exposure data
are based on in-mine respirable dust sampling and occupational history questionnaires. These
studies included both cross-sectional and longitudinal evaluations of exposure-response data for
adverse health effects ranging from relatively minor deficits in lung function and simple CWP to
severe deficits in lung function and PMF. Some studies include predicted prevalences of disease
among miners with working lifetime exposures at various average concentrations—including
2 mg/m3, the current U.S, standard for respirable coal mine dust. The numerous studies of U.S.
and U.K. coal miners enable comparisons of independently derived risk estimates associated with
working lifetime exposures.

Comparisons of data from the U.S. and UK. studies (Table 4-6) show that the U.S. predicted
prevalences of simple CWP and PMF are higher than those from the UK. for comparable
exposures to dust of similarly ranked coals (sce Section 3.1.1 for a discussion of coal rank).
Differences in exposure conditions, dust characteristics, or study design could account for some
of this variation. The U.K. studies are based on medical and personal exposure data collected
specifically for epidemiological study (Pneumoconioses Field Research Program). The U.S.
studies are based on medical data collected as part of an epidemiological program (the National
Study of Coal Workers® Pneumonoconiosis); the exposure data are from in-mine sampling
surveys by the BOM (in 1968 and 1969) and from samples collected by coal mine operators or
MSHA inspectors for compliance purposes (from 1970 through 1988). Possible biases in exposure
data collected for compliance purposes have been reported [Boden and Gold 1984; Seixas et al.
1990]. The prevalence estimates based on the U.K. studies may therefore be more intrinsically
reliable. However, the U.S. studies are more relevant to conditions in the United States.
Therefore, the U.S. studies were selected to determine the excess (exposure-attributable) risks in
this chapter.

7.3.4.2 Limitations of the Risk Estimates

7.3.4.2.1 Range of exposure data

Estimating the risk of disease at low exposures is often uncertain because of limits in the lower
region of the exposure data—which is often the region of special interest for standard setting.
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All of the epidemiological studies used as the basis for the REL (Table 7-1) demonstrated
significant exposure-responses. These studles project that miners exposed to respirable coal mine
dust at a mean concentration of 2 mg/m over a working lifetime have an elevated risk of
developing simple CWP, PMF, or decreased lung function (Tables 7-2 and 7-3; Figure 7-8).

Furthermore, these studies project elevated risks for less than working-lifetime exposures,
although these risks are smaller. Figure 7-8 illustrates the relationship between mean concentra-
tion and PMF among miners with 15, 30, or 45 years of exposure. The mean concentration of
2 mg/m°> and durations of 15 and 30 years are well within the range of the data, but the exposure
data become sparse near 45 years (Figure 7-7). Hence, the estimates for 0.5 mg]m or for 45
years of exposure carry considerable uncertainty, since the uncertainty of interpolating models
near the boundary of the data is well known [Attfield and Seixas, 1995].

7.3.4.2.2 Range of risk estimates

The risk estimates used in these studies are based on the mean response, not on the upper 95%
confidence limit for the mean. Thus, for some individuals, the risks may be higher than predicted
by the mean response. On the other hand, the risk of some adverse health effects may be
underestimated because affected miners who left mining for health reasons would be omitted
from the cross-sectional studies. Risk may also be underestimated because miners with simple
CWP may have progressed to PMF after they left mining [Soutar et al. 1986].

7.3.4.2.3 Uncertainty factors

Unlike most Federal standards set for the general population in the United States, occupational
exposure limits often include no uncertainty factors because of feasibility constraints. Likewise,
the REL for respirable coal mine dust includes no uncertainty factors. Allowance was made for
the long-term average exposures expected when daily exposures are maintained below the REL
(Section 7.3.3). The risk estimates used as the basis for the REL are those thought to represent
the lower range of the data; thus, these estimates are not based on extrapolation beyond the range
of the data. In view of these factors, the health-based need to reduce exposures to respirable coal
mine dust to concentrations below the REL is well supported by the risk estimates from the
existing epidemiological studies. In addition to the health effects estimates, information about
sampling and analytical feasibility and technological feasibility was considered when determining
the REL for respirable coal mine dust.

7.3.4.3 Statistical Models Evaluated

The epidemiological studies that formed the basis for the REL (Table 7-1) used either the linear
regression model (for continuous responses such as FEV) or the logistic regression model (for
dichotomous responses such as presence or absence of a particular radiographic category). The
models predict elevated disease risks at all exposures greater than zero. Hurley etal. [1984, 1979]
evaluated several models for describing the relationship between exposure to respirable coal mine
dust and the development of simple CWP and PMF. They selected the logistic regression model
using cumulative exposure because it best fit the data and best described the observed exposure-
response relationship. Attfield and Seixas [1995] also provide support for using cumulative
exposure.
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Experimental evidence from animal studies (Section 4.3) suggests that a nonthreshold model is
more consistent with the plausible biological mechanisms of discase development than a threshold
model. In these studies [Soderholm 1981; Vostal et al. 1982; Vincent et al. 1985, 1987], the
investigators found that lung burden increased in proportion to the respirable dust exposure over
the entire range of exposures, suggesting that some fraction of the dust is sequestered or retained
in the lungs even at low exposures. Studies have also found that at higher lung dust burdens,
alveolar clearance becomes saturated or overloaded [Bolton et al. 1983; Vincent et al. 1985;
Morrow 1988] and pathogenic events (including fibrogenesis) increase.

A logistic regression model to describe the risk of simple CWP or PMF among coal miners is
consistent with the findings from these animal studies because the logistic model allows for a
relatively small but nonzero risk of disease at low exposures and a more rapid increase in risk as
cumulative exposure increases. In contrast, a threshold model would assume a zero risk of disease
associated with dust retained in the lungs if the lung burden did not exceed the threshold
concentration. Even if a threshold model reasonably fit the exposure-response data, it would not
constitute definitive evidence of a threshold concentration for disease development. Rather, it
could simply indicate the limitations in the data: a larger or better designed study with a greater
proportion of low exposures might provide evidence of disease at exposures below the previously
estimated threshold concentration. Furthermore, it is unreasonable to assume that any single
threshold concentration would adequately describe the biological response to exposure in all
individuals of a population.

Evaluation of alternative statistical models becomes more important for estimating disease risk
in regions of the exposure-response curve where data are lacking (e.g., the low-exposure region).
However, such evaluation is less likely to alter the basic conclusions drawn from the exposure-
response studies and used as the basis for the REL for respirable coal mine dust. The reasons are
as follows: (1) the statistical models used to describe the exposure-response relationships
provided a reasonable fit to the data and are consistent with plausible biological mechanisms;
(2) these studies clearly demonstrate elevated risk of simple CWP, PMF, and decreased lung
function among miners exposed for a working lifetime at the current standard of 2 rng/m3 for
respirable coal mine dust; (3) the risk estimates used as the basis for the REL do not represent
extrapolation beyond the range of the data; and (4) other factors (limitations in sampling,
analytical, technological feasibility) were also considered in developing the REL.

7.3.4.4 Comparison of Predicted and Observed Prevalences of Simple CWP

Comparison of observed disease prevalences with those predicted by the statistical models
provides an important basis for evaluating the validity of model-based risk estimates. One such
analysis compared the estimated and observed decreases in PMF incidence among U.K. miners
following a reduction in the U K. standard for respirable coal mine dust in 1970 [Jacobsen et al.
1970]. Appendix J compares prevalence data from U.S. coal miners in the Coal Workers™ X-Ray
Surveillance Program with model-derived prevalence estimates for simple CWP category 1 or
greater and for simple CWP category 2 or greater. This analysis shows good agreement between
the predicted and observed prevalences. For simple CWP category 1 or greater, the model-based
prevalences were lower (underestimated) than the observed prevalences. For simple CWP
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category 2 or greater, the model-based prevalences were slightly higher (overestimated) relative
to the observed prevalences in the Coal Workers” X-Ray Surveillance Program.

7.3.4.5 Cumulative Exposure As the Metric of Exposure

The exposure-response analyses that form the basis for the REL use cumulative exposure
(intensity x duration) as the metric of exposure. Disease risk is assumed to be a function of
cumulative exposure and not to depend on the specific values of intensity or duration used to
compute cumulative exposure. For example, the exposure -related risk of a given d1scasc is
assumed to be equal among miners exposed to 2 mg]m for 20 years (i.e., 40 mg- yr/m ) and for
miners exposed to 1 mgjm for 40 years (also 40 mg- yr/m3) Ev1dence suggests that this is a
reasonable assumption provided the duration of exposure has been sufficient [Hutley et al. 1982,
1979]—usually considered to be 10 or more years [Althouse et al. 1986].

7.3.4.6 Coal Rank

Several epidemiological studies have shown that the prevalence of simple CWP and PMF
increases with increasing coal rank [McLintock et al. 1971; Lainhart 1969; McBride et al. 1966;
1963]. Recent exposure-response studies have estimated that the probability of developing PMF
over a working lifetime is also higher for miners exposed to respirable dust of high-rank coal
[Attficld and Seixas 1995; Attfield and Morring 1992b; Hurley and Maclaren 1987]. One study
found that U.S. miners exposed to respirable dust from medium- and high-rank bituminous coal
in the midwestern and castern United States had greater decrements in lung function than miners
exposed to respirable dust from low-rank bituminous coal in the western United States [Attfield

and Hodous 1992].

Epidemiological studies clearly demonstrate that miners exposed to respirable dust from coal of
all ranks studied are at risk of dcveloplng adverse health effects from working lifetime exposures
at the current U.S. standard of 2 m g/m Technological feasibility limits the control of exposures
to respirable dust of all coal ranks. Thus, it may not be technologically feasible to reduce
exposures to dust of high-rank coal to a greater extent than dust of low-rank coal. NIOSH
therefore recommends that all reasonable efforts be made to keep exposures to respirable dust
from coal of all ranks below the REL—with particular emphasis on reducing exposures to
respirable dust of high-rank coal.

7.3.4.7 Additional Measures to Minimize the Risk of Adverse Health Effecits

The REL may not be sufficiently protective to prevent all occurrences of simple CWP, PMF, and
COPD among coal miners exposed for a working lifetime. NIOSH therefore recommends that
worker exposures be maintained as far below the REL as feasible during each work shift. NIOSH
also recommends

— that miners participate in the medical screening and surveillance program,

— that improved dust control techniques for respirable coal mine dust and respirable
crystalline silica be developed and applied,
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— that exposures to respirable coal mine dust and respirable crystalline silica be closely
monitored, and

— that miners use personal protective equipment as an interim measure if exposures exceed
the REL.

7.4 SAMPLING AND ANALYTICAL FEASIBILITY

Appendix I presents an evaluation of the minimum accurately quantlfiable concentration (MAQ)
of respirable coal mine dust. The MAQ varies depending on the precision of the sampling device
and the balances used to weigh the filters before and after sampling. The MAQ also depends on
the sampling method—that is, whether the sampler is calibrated to operate in accordance with
the current MSHA method (Section 5.1 and Appendix J) or the international definition of
respirable dust (Section 5.2). In computing the MAQ for either method, both the NIOSH accuracy
criteria [Busch 1977; Busch and Taylor 1981] and a recent evaluation of welghmg imprecision
[Kogut 1944] were used. The MAQ of respirable coal mine dust is 0.46 mg/m (Section 1.2 in
Appendix I) when the sampler (CPSU) is calibrated in accordance with the current MSHA
method. Thus, the sampling and analytical method for respirable coal mine dust poses no
limitation relative to the NIOSH REL of 1 mg/m For sampling according to the international
definition, the MAQ is 0.66 m g/m (CPSU) or 0.51 mg/m3 (Higgins-Dewell sampler) (Table I-1
in Appendix I; Kogut [1994]). Thus, the sampling and analytical method also poses no limitation
relative to the NJOSH REL when measured according to the recommended sampling criteria. **

The MAQ of appr0x1mately 0.5 mg/m”> is based on single, full-shift sampling. Because the
precision of sampling increases as the number of samples 1ncreases the MAQ for the mean
concentration from multiple samples would be less than 0.5 mg/m Thus, the sampling and
analytical method would not limit the measurement of long- term average exposures of mg/m3
which are expected to be associated with the REL of 1 mg/m (Section 7.3.3).

7.5 APPLICABILITY OF THE REL TO WORKERS OTHER THAN UNDERGROUND
COAL MINERS

7.5.1 Surface Coal Miners

Studies have shown that U.S. surface coal miners (particularly workers on drill crews) are at risk
of developing CWP (sce Tables 4-8 and 4-9) [Amandus et al. 1989; Amandusetal. 1984; Fairman
et al. 1977]. Furthermore, Amandus et al. [1989] found that decreased lung function (measured
by FEV, FVC, and peak flow) is significantly related to the number of years worked as drill
operators or drill helpers at surface mines. NIOSH thercfore recommends including surface
miners in the same programs for environmental monitoring (Chapter 5) and medical screening
and surveillance (Chapter 6) as those recommended in this document for underground coal
miners. The RELs for respirable crystalline silica and respirable coal mine dust should also apply
to surface coal miners.

"“The REL of 1 mg,v'm3 (current MSHA method) is equivalent to 0.9 mg/m3 when the international definition is used
(Section 5.4).
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7.5.2 Workers Exposed to Coal Dust in Occupations Other Than Mining

Environmental sampling data and health effects data have been studied extensively for under-
ground coal miners (Chapter 4). Some studies have examined health effects among surface coal
miners [Amandus et al. 1989; Amandus et al. 1984; Fairman et al. 1977] and workers exposed to
silica [CDC 1990; Suratt et al. 1977, NIOSH 1974]. However, few studies have evaluated
possible adverse health effects among workers exposed to respirable coal dust in occupations other
than coal mining. A BOM survey of 21 coal-preparation and mineral-processing plants (about 500
exist in the United States) found that one-third had high dust concentrations in localized areas of
the plant (upto 11 mg/m>), although worker occupancy in those areas was often temporary [Divers
and Cecala 1990].

Several NIOSH health hazard evaluations concluded that coal dust and quartz may pose health
hazards for workers at coal-powered electrical generating plants [Lewis 1983; Zey and Donohue
1983; Hartle 1981]. In a combined environmental study and medical evaluation of workers
exposed to coal dust and boiler gases (including sulfur dioxide), Zey and Donohue [1983]
observed twice the number of expected respiratory symptoms (cough, phlegm, and wheezing).
They found four cases of pneumoconiosis, but no decrements in lung function. In a study of
surface miners and coal-cleaning plant workers in the anthracite coal mining region of the United
States, Amandus et al. [1989] found that lung function (measured by FEV;, FVC, and peak flow)
was not related to the number of years worked in coal-cleaning plants in anthracite coal mining
regions.

Although the exposure and health effects data are limited for exposed workers other than miners,
the available evidence indicates a potential for exposures sufficient to cause pneumoconiosis. It
is reasonable to assume that the etiology of pneumoconiosis would be similar for workers with
comparable exposures to coal mine dust or coal dust. NIOSH therefore recommends that the REL
for respirable coal mine dust apply to workers exposed to respirable coal dust in occupations other
than mining.

7.6 RECOMMENDED EXPOSURE LIMIT FOR RESPIRABLE CRYSTALLINE SILICA

The NIOSH REL for respirable crystalline silica is 0.05 mg/m3 as a TWA for up to 10 hr/day
during a 40-hr workweek [NIOSH 1988b, 1974]. NIOSH recommends that single, full-shift
samples be used for comparing worker exposures with the REL for respirable crystalline silica.
In the current MSHA procedure [30 CFR 70.101; 30 CFR 71.101], the percentage of quartz in
respirable coal mine dust is determined, and the PEL for respirable coal mine dust is reduced if
the respirable quartz content exceeds 5%.

NIOSH also recommends personal monitoring of worker exposures to respirable crystalline silica.
Exposure to respirable crystalline silica has been associated with the risk of simple CWP, PMF,
and silicosis in both surface coal miners [Love et al. 1992; Amandus et al. 1984, 1989; Jacobsen
and Maclaren 1982; Fairman et at. 1977] and underground coal miners [Robertson et al. 1987;

Hurley et al. 1982; Seaton et al. 1981]. Rapid development and progressmn of simple CWP
occurred in coal miners who had relatively low average exposures (1.4 mg/m ) to respirable coal
mine dust containing higher-than-average concentrations (about 13%) of respirable crystalline
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silica [Seaton et al. 1981]. This high silica contact was caused by difficult mining conditions that
involved the cutting of silica-containing rock above and below the coal seam. These studies
suggest that the role of respirable crystalline silica in the development and progression of simple
CWP and silicosis may become more important as the concentration of respirable coal mine dust
is reduced.

Worker exposures to respirable crystalline silica may vary with the job or other factors and may
therefore be underestimated in the current sampling program. Personal exposure monitoring is
the most effective method for estimating these worker exposures and for detecting exposures
above the REL (Section 5.6.3). Exposure monitoring programs for coal miners (Section 5.6.1)
should provide sufficient sampling of respirable crystalline silica to ensure that worker exposures
are kept below the REL. '

7.7 TECHNOLOGICAL FEASIBILITY OF KEEPING WORKER EXPOSURES BELOW
THE REL FOR RESPIRABLE COAL MINE DUST

The Federal Mine Safety and Health Act of 1977 requires NIOSH to develop and revise
recommended occupational safety and health standards for miners [30 USC 811]. Specifically,
the Secretary of Health and Human Services is required to consider, “in addition to the attainment
of the highest degree of health protection for the miner . . . the latest available scientific data in
the field, the technical feasibility of the standards, and experience gained under this and other
health statutes™ [30 USC 811(6)(A)].

NIOSH has performed a preliminary evaluation of the technological feasibility of keeping worker
exposures to respirable coal mine dust below 1 mg/m>"T during each work shift. This evaluation
is based on (1) a survey of the percentage of samples below the REL during the period 1988-92
(see Section 7.7.1 and Appendix A), and (2) studies of available and experimental or prototype
dust control measures (Sections 7.7.2 and 7.7.3).

7.7.1 Percentage of Samples Below the REL

During the period of 1988-92, the average concentration of respirable coal mine dust in
underground coal mines for all occupations combined was approximately 1.0 mg]m3 based on
MSHA inspector samples (Tables A-4 and A-5), however, this average concentration exceeded
2 rng/m3 for some occupations. In occupations with average concentrations below 2 mg/m>, up
to 42% of individual samples exceeded 2 mg/m3. For these occupations, as few as 19% of
individual samples were below 1 mglm3. For all underground occupations combined, 65% to
68% of all samples were below 1 mg/m> (Tables A-4 and A-5).

At surface coal mines, the average concentration of respirable coal mine dust for all occupations

combined was 0.56 mg/rn3 based on inspector samples (Table A-6) or 0.71 mg/m3 based on
operator samples (Table A-7). For every surface occupation, the average concentration of respirable

"Measured according to the current MSHA method (Section 5.1); 1 mglm3 is equivalent to 0.9 m g/m*> when measured
according to NIOSH recommended sampling criteria (Sections 5.2 and 5.4).
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coal mine dust was below the current standard of 2 mg/m?>, though some individual samples
exceeded it. For all surface occupations combined, 79% to 88% of all samples were below 1 mg/m’
(Tables A-6 and A-7).

The exposure data in Appendix A represent dust control efforts to keep exposures below the
standard of 2 mgjm3 for respirable coal mine dust (which is currently enforced as an average of
five samples). Appendix B provides exposure data for miners with simple CWP category 1 or
greater who elected to transfer [30 CFR 90; 30 USC 843(b)]. Average exposures to respirable
coal mine dust exceeded 1 mglm3 for some underground occupations (Tables B-1 and B-2}, but
they were below 1 mg/m" for all surface occupations (Tables B-3 and B-4).

On the basis of these data, NIOSH believes that the REL of 1 mg/m” for respirable coal mine dust
is technologically feasible for most occupations in underground and surface coal mines. For
occupations in which average exposures currently exceed the REL, studies of available and
experimental or prototype dust controls indicate the potential for substantial exposure reduction.
On the basis of these studies, NIOSH believes that the REL for respirable coal mine dust is
technologically feasible for these operations as well.

Sections 7.7.2 and 7.7.3 discuss studies of dust control techniques in underground coal mines.
Appendix C provides a list of available control techniques by mining method, and Appendix D
describes methods for controlling dust during drilling and other operations at surface coal mines.

7.7.2 Sources of Dust and Control Methods Used in Underground Coal Mines

7.7.2.1 Sources

A primary source of dust in underground mines using longwall methods is the shearer or plow
that cuts the coal face {Jankowski et al. 1989]. Double-drum shearers disperse more dust than
single-drum shearers because the drum on the shearer cannot rotate in the same direction as the
airflow [Mundell et al. 1984]. The respirable dust exposure of a worker at the coal face is
influenced by hisfher work position relative to the cutting drum and the direction of airflow
[Mundell et al. 1984]. Another major source of dust exposure for the shearer operator is the dust
generated by roof supports in longwall operations; the amount of dust generated is inversely
related to roof strength [Organiscak et al. 1985]. On longwall plow operations, the stageloader-
crusher is a primary source of dust, producing up to 60% of the dust along the face [McClelland
and Jankowski 1987]. In continuous mining operations, the major source of dust is the continuous
miner machine [Divers et al. 1987]. In auger mining, the coal cutting and loading processes are
the primary sources of dust, but machine and bridge conveyors also generate dust [Divers et al.
1987]. Geological factors (coal seam parameters) also influence the production of airborne
respirable dust; low-ash, high-volatile bituminous coals are associated with higher concentrations
of respirable dust [Organiscak et al. 1992].

7.7.2.2 Controls

The methods for controlling worker exposures to tespirable dust include (1) engineering controls,
(2) work practices, and (3) personal protective equipment. Engineering controls for respirable
coal mine dust include dilution of the dust by the intake air stream, removal of the dust by localized
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air streams and water sprays flowing away from the miners, water infusion into the coal seam to
reduce the formation of respirable dust, and improved cutting machine parameters [Jankowski
and Organiscak 1983; Mundell et al. 1984; Jankowski et al. 1986; McClelland et al. 1987]. The
effectiveness of various engineering controls depends on basic mining variables such as mining
technique, type of MMU, coal seam characteristics, and ventilation parameters.

Work practices to control worker exposures to respirable dust in longwall mining sections include
remote location of the shearer operator, and modified cutting sequence or cutting in one direction
[Mundell et al. 1984]. The disadvantages of remote shearer operation include difficulty in
maintaining the desired cutting height. The disadvantages of modified cutting sequence include
the loss of production [Mundell et al. 1984]. If it is not possible to use a double-split ventilation
system in continuous mining sections, the roof bolter’s exposures may be reduced by keeping
this worker upwind of the continuous miner whenever possible [Divers et al. 1987].

Personal protective equipment consists of approved respirators that are used and maintained
according to a respiratory protection program. The use of respirators in the active workings of a
mine is restricted by 30 CFR 70.300. Respirators are not permitted as a substitute for environ-
mental controls.

In a study of dust controls for continuous mining machines, Colinet et al. [1991] found that the
use of optimum water sprays and local airflow reduced operator exposures up to 99%. However,
they found an upper limit of airflow (8,400 cubic feet per minute [cfm] in the box cut), above
which counterproductive airflow patterns developed and operator exposures increased. Simi-
larly, water pressures above 140 pounds per square inch (psi) increased dust concentrations.
Jayaraman et al. [1990] found that a water-powered scrubber for continuous mining machines
was equally effective in reducing respirable coal mine dust and respirable crystalline silica. This
scrubber had a collection efficiency of 72% for all respirable dust when a double filter panel was
used. Use of enclosed cabs on underground and surface mining equipment has been shown to
reduce dust concentrations inside the cab (up to 44% in underground equipment) [Volkwein
et al. 1979].

Of the cutting machine parameters, the depth of cut and the bit sharpness appear to have the
greatest effects on the generation of respirable dust [Mundell et al. 1984]. Routine inspection of
the cutting drum and replacement of dull or broken bits improve cutting efficiency and minimize
dust generation [Divers et al. 1987]. Proper maintenance of dust collectors on roof bolting
operations and replacement of worn bits can reduce exposures to roof bolter operators [Divers
et al. 1987].

Dust generated in areas outby the coal face (e.g., from conveyor belts, coal haulage transfer points,
and haulroads) is generally controlled through the use of water sprays [Divers et al. 1987].
Because intake air to the coal face usually contains dust generated by operations outby the face
area, control of dust in outby areas will reduce dust exposures of workers at the coal face. In
longwall mining, the outby dust sources that can contaminate intake air to the coal face include
the stageloader-crusher, panel belt, and intake roadway [Organiscak et al. 1986]. The most
effective method for controlling intake dust on longwall faces is homotropal ventilation, which
routes air in the direction of coal transport along the face (tailgate to headgate) [Organiscak et al.
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1986]. However, tailgate to headgate face ventilation is only applicable on longwalls that
maintain an open tailgate to serve as a primary intake [Jankowski et al. 1993].

Ventilation is the primary means of controlling dust in all mining methods [Niewiadomski et al.
1982]. In a study of longwall mining operations, the minimum air velocity for the effective
control of respirable dust at the coal face was approximately 400 to 450 ft/min [Jankowski et al.
1993]. Haney et al. {1993] studied the influence of airflow and production on longwall dust
control and found that dust concentrations were reduced when airflow was increased in proportion
with increased coal production. The installation of curtains in the headgate can provide better
direction of the air and can increase air velocity down the face [Jankowski et al. 1993]. Jankowski
et al. [1986] discuss three additional dust control techniques in longwall mining: (1) a water
spray system (e.g., the shearer-clearer system, which keeps shearer-generated dust near the face
and away from the shearer operator), (2) a drum spray system (which helps prevent dust from
becoming airborne), and (3) a cutting sequence that allows shearer operators to work on the
intake-air side of the lead-cutting drum.

7.7.3 Feasibility of Keeping Exposures Below the Current MSHA PEL for Respirable
Coal Mine Dust

Keeping respirable coal mine dust concentrations below the MSHA PEL of 2.0 mg,(m3 has been
difficult in mines using longwall methods. Tomb et al. [1990] concluded that the technology is
available to limit concentrations of respirable coal mine dust to 2.0 mg/m3 in longwall mining
operations (e.g., by upgrading controls at the headgate of the panel and by using larger quantities
of air to ventilate the face). In one study of a high-productivity longwall mining operation, a
critical factor in achieving effective compliance with the PEL of 2 m g/m3 was the daily evaluation
of each mining situation [Webster et al. 1990].

In a study of six high-tonnage longwall mines by BOM, the production average was 4,600 tons/
shift even though effective dust control measures were used to keep the mines in compliance with
the MSHA PEL of 2 mg/m3 [Jankowski et al. 1991]. The major sources of respirable dust were
the shearer during the tail-to-head-cut pass (40% to 59% of total respirable dust) and the
stageloader/crusher (17% to 28% of total dust generated on the longwall face) [Jankowski et al.
1991]. In another BOM study, Jankowski et al. [1989] tested an improved design of the shearer
drum (the major source of respirable dust generated in longwall mining). This design used a
high-pressure, inward-facing drum spray. The 800-psi, 30°-inward-facing system was the best
method for reducing dust concentrations (up to 68%) along the longwall face.

Although the concentration of respirable dust in a coal mine is directly related to the level of
active coal production, some reports have shown that improvements in mining equipment reduced
respirable coal mine dust and increased production as well. Howe [1987] reported that the use
of new mining equipment (including the flooded-bed scrubber and radio remote control) reduced
respirable coal mine dust from a range of 1.5 to 1.8 mg]m3 to a range of 0.5 to 0.8 mg]m3 at the
coal face. In addition, production increased by 32%. Rice [1987] reported on an electronic
longwall mining system that included electronic sensing devices, remote control shearers, and
shields with microprocessors. This system improved roof control and reduced respirable dust
exposure by 31% at the coal face by shunting dust away from workers. Roepke and Strebig [1989]
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and Olson and Roepke [1984] describe a modified cutting drum design (the constant-depth linear
cutting drum). When this cutting drum was mounted on a continuous mining machine in
laboratory tests, it reduced the shearer-generated respirable dust by 95%. The shearer contributes
one- to two-thirds of the total respirable dust generated underground. Compared with conven-
tional rotary drums, the constant-depth linear cutting drum also improved the size of the coal
produced by effecting a 50% reduction in the >1/4-in.-mesh product. This cutting drum also
reduced horsepower, torque, and thrust by 40% to 70% without loss of production. A trend in
technology may be toward automated coal faces operated from a remote location so that miners
are not at the coal face during production [Fisher 1991; Green 1987; Rice 1987].

7.7.4 Economic Considerations for Keeping Exposures Below the REL

The scope of this document does not include evaluating the economic feasibility of keeping
worker exposures below the REL for respirable coal mine dust or respirable crystalline silica
(including the cost of upgrading or retrofitting mining equipment and the cost of reduced
production levels). However, those who evaluate the economics must consider the benefits of
eliminating occupational respiratory disease (including lower costs for black lung benefits,
litigation fees, and administration) and an improved work environment. Evidence also indicates
that the careful design and application of mining equipment to reduce dust generation can also
increase productivity and improve the quality of the coal [Cervik et al. 1985; Howe 1987; Roepke
and Strebig 1989].
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The following methods should be used to protect miners from the adverse health effects of
exposure to respirable coal mine dust and respirable crystalline silica:

e Informing workers about hazards
¢ Establishing written emergency procedures

e Using engineering controls, work practices, and personal protective equipment (including
respiratory protection when dust control equipment is being installed, maintained, or
repaired)

® Monitoring exposures
¢ Conducting medical screening and surveillance
¢ Encouraging smoking cessation

¢ Maintaining medical records

8.1 INFORMING WORKERS ABOUT HAZARDS

8.1.1 Training Programs

Employers should establish a training program for all coal miners and other workers exposed to
respirable coal mine dust and respirable crystalline silica. Training should be provided whenever
a new job is assigned, and workers should be informed about the health and safety hazards of the
worksite. Training should include information about measures workers can take to protect
themselves from exposure to respirable dust (e.g., the use of appropriate work practices, emer-
gency procedures, and personal protective equipment--including the emergency use of respiratory
protective equipment).

8.1.2 Posting

All warning signs should be printed in both English and the predominant language of workers
who do not read English. Workers who cannot read posted signs should be identified so that they
may receive information about hazardous areas and be informed of the instructions printed on
the signs.
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8.2 ESTABLISHING WRITTEN EMERGENCY PROCEDURES

The employer should formulate a set of written procedures covering fire, explosion, asphyxiation,
and any other foreseeable emergency that may arise during coal mining or in other occupations
where workers are exposed to respirable coal dust. All potentially affected workers should
receive regular training in fire or emergency evacuation procedures and the proper use of
self-contained self-rescuer (SCSR) and other rescue and evacuation equipment. Selected workers
should be given training in first aid, cardiopulmonary resuscitation, and fire control. Procedures
should include prearranged plans for transportation of injured workers and provisions for
emergency medical care. At least two trained persons in every work area should have received
extensive emergency training. Necessary emergency equipment, including appropriate respira-
tors and other personal protective equipment, should be stored in readily accessible locations.

8.3 ENGINEERING CONTROLS

Engineering controls should be the principal method for minimizing exposure to respirable coal
mine dust and respirable crystalline silica in the workplace. Engineering control measures include
diluting the dust generated (by adequate ventilation at the coal face), controlling the respirable
dust generated and entrained (e.g., with improved shearer drum design), and suppressing the dust
generated (e.g., by water application).

8.3.1 Dust Control

To be effective, the dust control system in a mine should be evaluated as soon as possible after
any change in geological conditions, production, processes, or controls that might increase the
concentrations of respirable coal mine dust or respirable crystalline silica.

Jobs that require rock drilling (e.g., roof bolters) can generate dust containing respirable crystal-
line silica. Wet drills (including use of surface-active agents) or drills with attached dust
collectors are advisable [Olishifski 1971; NIOSH 1992]. Dry drilling without dust controls
should be prohibited. Appendix C contains further information about reducing respirable dust
concentrations during overburden drilling in surface coal mining operations.

8.3.2 Ventilation

Underground coal mines are required to be mechanically ventilated [30 CFR 75.300-75.330].
The purpose of mechanical ventilation is to provide fresh air to the underground miners and to
carry off toxic and explosive gases and dusts. The primary purposes of ventilation are to dilute
respirable coal dust, to remove explosive concentrations of coal dust and methane from the
working faces, and to remove methane from mined-out areas. In addition to supplying fresh air
and exhausting noxious and explosive gases and dusts, mine ventilation systems must furnish
paths of escape in the event of an underground fire. Ventilation and escape considerations relating
to fire safety are extremely complex.

The portions of the mine used as part of the ventilation system are sometimes referred to as “air
courses” [McAteer 1981]. Air courses are often described as follows:
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¢ Intake air courses, which bring in fresh air to the working face

e Return air courses, which exhaust air from the working face

The number of entries available for ventilation vary with the mining method used and the
geological characteristics of the rock strata mined.

Exhaust fans are commonly used to ventilate underground coal mines. Positive-pressure fans are
used infrequently—usually where the mine is close to the surface and there is leakage to the
surface through the air intakes. The volume of air flow through an underground mine is a function
of the fan capacity and the “resistance” of the mine ventilation configuration [McAteer 1981].

Because of the multiple functions imposed on underground coal mine ventilation systems and the
wide variations in underground mining methods, no general statements can be made about the
availability of intake air to dilute respirable dust at the working face. Current ventilation
techniques are largely dictated by regulations relating to available types of air courses, escapeway
requirements, and methane regulation. The ventilation plan for each underground coal mine must
be approved by MSHA [30 CFR 75.316].

Guidelines for the design of mine ventilation systems may be found in Mine Ventilation and Air
Conditioning [Hartman et al. 1982]. Principles for the design and operation of local exhaust
systems are presented in Industrial Ventilation—A Manual of Recommended Practice {ACGIH
1995]; American National Standard: Fundamentals Governing the Design and Operation of
Local Exhaust Systems, Z9.2 (1971) [ANSI 1979]; and Recommended Industrial Ventilation
Guidelines, published by NIOSH [Hagopian and Bastress 1976].

8.4 WORK PRACTICES
8.4.1 Worker Isolation

If feasible, workers should be isolated from work areas where the concentration of respirable coal
mine dust or respirable crystalline silica exceeds the REL. This can be done by using automated
equipment operated from a closed control booth or room. The control room should be maintained
at a positive pressure so that air flows out of rather than into the room. However, personal
protective clothing and equipment (including respiratory protective equipment) may be necessary
when workers must perform process checks, adjustments, maintenance, or other related opera-
tions in work areas where respirable dust concentrations exceed the RELs.

8.4.2 Sanitation and Hygiene

Tobacco products should not be smoked, chewed, or carried into work areas. Workers should be
provided with and advised to use facilities for showering and changing clothes at the end of each
work shift. Tools and protective clothing and equipment should be cleaned as needed to maintain
sanitary conditions. The work area should be kept free of flammable debris. Flammable work
materials (rags, solvents, etc.) should be stored in approved safety cans.
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8.5 PERSONAL PROTECTIVE EQUIPMENT

8.5.1 Protective Clothing and Equipment

Workers should wear work uniforms, coveralls, or similar full-body coverings that are laundered
each day. Employers should provide lockers or other closed areas for workers to store their street
clothes separately. Employers should also ensure that protective clothing is inspected and
maintained to preserve its effectiveness. At the end of each workshift, employers should collect
work clothing and provide for its laundering. Laundry personnel should be informed about the
potential hazards of handling contaminated clothing, and they should be instructed about
measures to minimize their health risk.

Workers and persons responsible for worker health and safety should be informed that protective
clothing may interfere with the body’s heat dissipation, especially during hot weather (e.g., in
surface coal mines) or in hot work situations (e.g., in confined spaces). Additional monitoring
is required to prevent heat-related illness when protective clothing is worn under these conditions
[NIOSH 1986].

8.5.2 Respiratory Protection
8.5.2.1 The Need for Respiratory Protection

The need for respiratory protection in U.S. coal mines has changed considerably since 1969. The
use of sophisticated extraction machines has greatly increased coal production and the quantity
of dust generated. New chemicals have also been introduced for use in dust control systems, and
viable biological matter has been discovered in the mining environment. Other potentially
hazardous exposures include diesel exhaust, coal tar pitch volatiles from creosote-treated timbets,
and polyurethane resins used in some roof support systems. The current MSHA regulations for
respiratory equipment are contained in 30 CFR 70.300-70.305-1.

Engineering controls should be the primary method used to control exposures to airborne
contaminants. Respiratory protection is the least preferred method of controlling worker expo-
sures and should not be used routinely to prevent or minimize exposures. Respirators should be
used by workers only in the following circumstances:

¢ During the development, installation, or testing of required engineering controls

® When engineering controls are not feasible to control exposures to airborne contaminants
during short-term operations such as maintenance and repair

¢ During emergencies

8.5.2.2 Selection of Respirators

Several factors in the mine environment affect the selection of respirators. Safety factors are a
particular concern, and impairment of vision must be avoided. For example, the use of water
sprays to suppress dust may result in dirty water droplets that can quickly obscure vision in
full-facepiece respirators. Silt can also collect around respirator face seals and irritate the skin.
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The patticulate filter in the respirator can become saturated and change its filtration and breathing
resistance characteristics.

The NIOSH Respirator Decision Logic [NIOSH 1987b] should be followed to select the correct
respirator. The following issues should be evaluated:

e Other available means of reducing exposure, such as increased or redirected ventilation and
improved dust and vapor control systems

® The nature of the task to be performed (location, physical demands, industrial processes
involved, and frequency and duration of respirator use)

® The space restrictions within the work location

¢ The physical nature of the air contaminant, including odor threshold, eye irritation, and
other warning properties

® The interaction of contaminants with the respirator filter medium

® The concentrations of respirable coal mine dust, respirable crystalline silica, and other toxic
contaminants in the miner’s breathing zone

e Toxicological data, RELs, and PELs
® The required use of protective devices for the eyes and face
e The level of respiratory protection needed by the miner

e The worker’s fitness to wear a respirator as determined by his or her health, potential
hypersensitivity to a substance, type of tespirator, fit testing, training, and conditions of
respirator use (this issue is particularly important with the use of self-contained breathing
apparatus)

® The performance characteristics, capabilities, and limitations of different types of respirators

8.5.2.3 Respiratory Protection Program

When respirators are used, employers should institute a complete respiratory protection program
that includes, at regular intervals, worker training in the use and limitations of respirators, routine
air monitoring, and the inspection, cleaning, maintenance, and proper storage of respirators. Any
respitatory protection program must, at a minimum, meet the requirements of 29 CFR 1910.134.
Respirators should be used according to the manufacturer’s instructions.

Each respirator uset should be fit-tested and the wearer’s physical ability to wear a respirator
should be periodically evaluated by a physician [Appendix H of NIOSH 1991b; NIOSH 1994d].
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The miners should be informed annually about the hazard of dust exposure, and they should be
trained in the use and care of the respirators. In addition, the program should be periodically
teviewed, and if necessary, corrective action should be taken to maintain program effectiveness.
For additiona! information about the use of respiratory protection, refer to the NIOSH Guide to
Industrial Respiratory Protection [NIOSH 1987a] or the NIOSH Respirator Decision Logic
[NIOSH 1987b].

Table 8-1 lists the recommended minimum respiratory protection for respirable coal mine dust
and respirable crystalline silica. The NIOSH Respirator Decision Logic [NIOSH 1987b (or
subsequent revised editions)] should be consulted if a certain condition requires a specific type
of respirator other than those listed in Table 8-1.

When respirators are indicated, the employer should provide them at no cost to the worker and
should assure the appropriate respirator is used. The employer should select respirators that are
approved under the new NIOSH respirator certification regulation (42 CFR 84)."

8.6 EXPOSURE MONITORING

Routine environmental monitoring is an important part of an occupational health program
designed to protect workers from the adverse effects of exposure to respirable coal mine dust and
respirable crystalline silica. Such monitoring provides a means of assessing the effectiveness of
engineering controls and work practices. The environmental monitoring (including both the
initial and periodic surveys) should be conducted by competent industrial hygiene and engineer-
ing personnel. Chapter 5 and Appendices I and J contain additional information about sampling
respirable coal mine dust and respirable crystalline silica.

The concentration of respirable coal mine dust or respirable crystalline silica shall be determined
as a time-weighted average (TWA) by collecting samples over an 8- or 10-hr shift forup to a
40-hr workweek. For extended workshifts, Brief and Scala [1975] present a method for estimat-
ing an exposure-limit reduction factor. When the mine environment contains concentrations that
exceed the REL for respirable coal mine dust or respirable crystalline silica, workers must wear
respirators for protection until adequate engineering controls or work practices are instituted.

8.7 MEDICAL SCREENING AND SURVEILLANCE

First priority should be given to primary prevention of occupational respiratory diseases through
the reduction of exposures. However, a secondary program of medical screening and surveillance
is necessary to identify miners who develop respiratory diseases as a result of their workplace
exposures. Chapter 6 contains provisions for preplacement and periodic medical examinations
and recommendations for medical intervention.

’42 CFR 84 became effective July 10, 1995, and replaces the provisions under 30 CFR 11.
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8 Methods for Protecting Coal Miners

8.8 SMOKING CESSATION

Overwhelming evidence exists for the adverse health consequences of smoking, the number of
workers affected, and the additive effects of smoking and dust exposures on the development of
occupational respiratory diseases (e.g., chronic bronchitis, emphysema, and lung cancer). Be-
cause of this evidence, NIOSH and the Association of Schools of Public Health cosponsored a
Proposed National Strategy for the Prevention of Occupational Lung Diseases, which recom-
mended the elimination of smoking in the workplace as an important strategy for preventing
occupational lung diseases [ASPH 1986]. The recommendation was further supported by the
NIOSH conclusion that nonsmokers exposed to environmental tobacco smoke' in the workplace
had an increased risk of lung cancer [NIOSH 1991a].

NIOSH recommends the following regarding smoking in the workplace:

¢ Workers should be prohibited from smoking in the workplace.
¢ Information about health promotion and the harmful effects of smoking should be disseminated.

e Smoking cessation classes should be offered to workers at no cost to the participant.

Therefore, in addition to the MSHA prohibition of smoking in all underground mines and in
surface mines where fire or explosion may result [30 CFR 75.1072 and 77.1711], NIOSH
recommends that smoking be prohibited in all underground and surface coal mines and all other
work areas associated with coal mining to prevent exposure to environmental tobacco smoke, a
potential occupational carcinogen [NIOSH 1991a]. NIOSH also recommends that all miners who
smoke participate in a smoking cessation program.

8.9 RECORDKEEPING

Medical records must be maintained for workers as specified in Section 1.11 of this document.
They must be kept for at least 40 years after termination of employment. Copies of environmental
exposure records for each worker must be included with the medical records. These records must
be made available to past or present workers or to anyone having the specific written consent of
a worker, as specified in 42 CFR 37.80.

8.10 PROTECTING CONTRACT MINERS

Some provisions of the standard recommended in this criteria document may be difficult to apply
to a special category of miners known as contract miners. Coal miners who are contracted to
work on specific jobs at various mines for relatively short periods may not gain the full benefits
of exposure monitoring, medical surveillance, hazard training, and transfer programs normally
available to other mine workers. NIOSH recognizes the need to include these contract miners in
a recommended standard and will continue to explore options that will address their occupational
safety and health needs.

Environmental tobacco smoke is tobacco smoke in the ambient atmosphere composed of sidestream smoke and exhaled
mainstream smoke [NIOSH 1991a]}.
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9 RESEARCH NEEDS

Additional research and data analysis are needed for improvements in engineering control
methods, respiratory protection, sampling devices and strategies, medical screening and interven-
tion, adverse health effects of dust exposure, characterization of dust for future recommended
standards, and training and education. The following is a list of such research needs:

Engineering control methods

e Assess current control technology in the coal mining industry by examining state-of-the-art
technologies and work practices.

¢ Develop and recommend improved methods for keeping worker exposures below the RELs
for respirable coal mine dust and respirable crystalline silica in underground and surface
coal mines.

Respiratory protection

® Evaluate the physiological stress placed on miners who must wear respiratory protection.

Sampling devices

® Develop sampling devices with improved design for greater accuracy and precision and
more rugged construction.

¢ Develop continuous monitors for use in sampling respirable coal mine dust.

Sampling strategy
e Evaluate sampling strategies for the accurate monitoring and control of worker exposures.

® Evaluate sampling strategies for effective enforcement of the standard.

Medical screening and intervention

e Evaluate the effectiveness of the existing transfer program in preventing the progression
of simple CWP. The transfer program enables miners with CWP category 1/0 or greater
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9 Research Needs

to transfer to jobs in areas of the mine where mean concentrations of respirable coal mine
dust are 1 mglms.

Identify early markers of disease to help identify adverse health effects of exposure to
respirable coal mine dust and respirable crystalline silica and to prevent or impede disease
progression.

Determine the factors affecting the incidence of PMF in miners without prior radiographic
evidence of simple CWP. Determining these factors will facilitate early identification and
intervention.

Evaluate exposure-response relationships affecting lung function in surface coal miners.

Evaluate the effectiveness of reducing or eliminating exposures to respirable coal mine dust
(and tobacco smoke, if applicable) in halting or impeding decline in lung function.

Determine the prevalence of miners who have normal spirometry values and chest X-rays
but abnormal gas exchange values. Knowledge of this prevalence would help determine
the need for lung function tests in addition to spirometry tests (FEV| and FVC): DLCO or
transcutaneous measurements of arterial oxygen pressure, for example.

Adverse health effects of dust exposure

Investigate exposure, dose, and response relationships—including the effect of exposure
patterns (intensity and duration) on the development of occupational respiratory diseases
in coal miners.

Assess the influence of dust composition and characteristics (e.g., quartz concentration,
thoracic dust) on the development of simple CWP, PMF, and COPD in coal miners.

Evaluate the role of overloaded lung clearance mechanisms in the development of occupa-
tional respiratory diseases in coal miners.

Evaluate the ways in which the statistical model may affect risk estimates for occupational
respiratory diseases—particularly in the low-exposure regions of the exposure-response

curves.

Analyze the relationship between exposure to thoracic coal mine dust and COPD.

Characterization of dust

Compare the particle size distribution and the composition of airborne respirable dust in
underground coal mines, surface mines, and other worksites where workers are exposed to
coal dust.
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Training and education

e Determine the training and education needed to promote occupational safety and health
awareness in coal miners and coal mine operators, including safe work practices and use
of engineering controls and personal protective equipment.
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APPENDIX C

OPTIONAL DUST CONTROL TECHNIQUES FOR
COAL MINING ENVIRONMENTS

The following sections list optional dust control techniques for various types of mining (conven-
tional, auger-type continuous, continuous miner-type, and longwall), for underground areas outby
mining sections, and for preparation plants.

C.1 CONVENTIONAL MINING

Hollow-steel, drilling-auger-based, dry dust collection systems for face drills [Chander et al. 1988]
Hollow-steel, drilling-auger-based, water suppression systems for face drills [Chander et al. 1988]
Water-filled dummies for stemming shotholes to reduce dust in coal breaking [Cummins and Given 1973]

External cutter bar sprays machine-mounted at the front and rear of the cutter bar on cutting machines
[Kost et al. 1981]

External sprays mounted on loading machines near the gathering arms on the pan and directed at
the conveyor [Kost et al. 1981]

Cardox® (liquified carbon dioxide), Airdox® (compressed air), or Hydrox® (sodium nitrate and
ammonium chloride reaction) chemical and hydraulic coal burster systems for high pressure
breakage of face coals [Bourgoyne et al. 1986]

Low porosity line brattice with tight top and bottom seals for single-split and double-split ventilation
systems [Kost et al. 1981]

Double-split ventilation systems to keep extraction and roof bolting activities in separate fresh air
currents [Kost et al. 1981]

Improved stopping-construction techniques using mortar supplemented with steel or fiberglass
fibers brushed on as sealant coatings [Kost et al. 1981]

Machine-mounted water spray systems to (1) wet coal surfaces to immobilize dust and prevent it

from becoming airborne, and (2) generate water droplets to collide with and engulf airborne dust
particles accelerating settlement from the airstream [Kost et al. 1981]
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Upgraded water supply systems incorporating increased pump capacity for additional flow and
pressure with increased line sizes to decrease pressure losses [Shirey et al. 1985; Jankowski and

Organiscak 1983; Kost et al. 1981]

“Non-clogging” filtration system that uses hydrocyclone, flushable Y -strainer, and micropolishing
filter devices to improve water quality and reduce maintenance downtime [Shirey et al. 1985;
Jankowski and Organiscak 1983; Kost et al. 1981]

Haulroads that have been wet, with calcium chloride applied to maintain moisture content and
minimize airborne dust in intake airstreams [Kost et al. 1981]

Belt scrapers, installed on the return side of the belt near the drive, for cleaning the load-bearing
side of the belt [Shirey et al. 1985; Organiscak et al. 1986; Kost et al. 1981]

C.2 AUGER-TYPE CONTINUOUS MINING

Double-split ventilation systems to keep extraction and roof-bolting activities in separate fresh air
currents [Kost et al. 1981]

Combination line brattice plus auxiliary fan face ventilation systems for improved continuous face
ventilation [Kost et al. 1981}

Improved stopping-construction techniques using mortar supplemented with steel or fiberglass
fibers brushed on as sealant coatings [Kost et al. 1981]

Machine-mounted external water spray systems to (1) wet coal sutfaces to immobilize dust and
prevent it from becoming airborne, and (2) generate water droplets to collide with and engulf
airborne dust particles accelerating settlement from the airstream [Kost et al. 1981}

Wet-auger water spray systems supplying nozzles on the auger shaft and at cutting bits for dust
suppression [Kost et al. 1981]

Upgraded water supply systems incorporating increased pump capacity for additional flow and
pressure with increased line sizes to decrease pressure losses [Shirey et al. 1985; Jankowski and
Organiscak 1983; Kost et al. 1981}

“Non-clogging” filtration system that uses hydrocyclone, flushable Y-strainer, and micropolishing
filter devices to imptove water quality and reduce maintenance downtime [Shirey et al. 1985;

Jankowski and Organiscak 1983; Kost et al. 1981]

Nonionic surfactant additives and wetting agents for improved performance of water-spray,
dust-suppression systems [Chander et al. 1988; Kost et al. 1981}

Machine-mounted, high-pressure, water-powered scrubber for reducing dusts on blowing ventila-
tion systems [Campbell 1988; Bourgoyne et al. 1986]
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Haulroads that have been wet with water, with calcium chloride applied to maintain moisture content
and minimize airborne dust in intake airstreams [Kost et al. 1981]

Belt scrapers, installed on the return side of the belt near the drive, for cleaning the load-bearing
side of the belt [Shirey et al. 1985; Organiscak et al. 1986; Kost et al. 1981]

C.3 CONTINUOUS MINER-TYPE MINING

Double-split ventilation systems to keep extraction and roof bolting activities in separate fresh air
currents [Kost et al. 1981]

Combination line brattice plus auxiliary fan face ventilation systems for improved continuous face
ventilation [Kost et al. 1981]

Blowing diffuser fans mounted on the continuous miner opposite the exhaust tubing or brattice to
sweep dust into the exhaust ventilation system [Kost et al. 1981]

Improved stopping-construction techniques using mortar supplemented with steel or fiberglass
fibers brushed on as sealant coatings [Kost et al. 1981]

Large bits (conical and others) used on drum-type continuous miners and operation at reduced speed
to break the coal out in larger chunks and reduce dust generation [Cummins and Given 1973]

Machine-mounted water spray systems that use additional sprays or improved mounting positions
to (1) wet coal surfaces to immobilize dust and prevent it from becoming airborne, and (2) generate
water droplets to collide with and engulf airborne dust particles accelerating settlement from the
airstream [Kost et al. 1981]

Continuous miner-mounted conveyor throat venturi sprays to prevent dispersion of dust clouds into
the operator’s station [Kost et al. 1981]

Machine-mounted, high-pressure, water-powered scrubber for dust collection [Kost et al. 1981]

Nonionic surfactant additives and wetting agents for improved performance of water-spray,
dust-suppression systems [Chandet et al. 1988; Shirey et al. 1985; Kost et al. 1981]

Continuous miner-mounted venturi scrubber and ducting systems for dust capture and removal
[Jayaraman 1979]

Upgraded water supply systems incorporating increased pump capacity for additional flow and
pressure with increased line sizes to decrease pressure losses [Shirey et al. 1985; Jankowski and
Organiscak 1983; Kost et al. 1981]
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“Non-clogging” filtration system that uses hydrocyclone, flushable Y -strainer, and micropolishing
filter devices to improve water quality and reduce maintenance downtime [Shirey et al. 1985;
Jankowski and Organiscak 1983; Kost et al. 1981]

Remote control operation systems for continuous minets to keep operators out of the zone of dust
production [Cummins and Given 1973]

Half-curtain, face-ventilation techniques to redirect dusts [Jayaraman et al. 1988]

High-pressure, shrouded, water sprays mounted on continuous miner cutting head [Jayaraman et
al. 1981]

Campbell flooded bed scrubber systems installed on the continuous miner [Campbell 1988; Frantz
and Ramani 1988]

Twin-flooded, fibrous-bed scrubber and water droplet eliminator systems [Divers et al. 1981; Kost
et al. 1981]

Auxiliary ventilation tubing on the exhaust of face ventilation fans to reroute dust from the
continuous miner past downstream roof bolter working places directly into return entries [Babbitt
and Jayaraman 1988]

Roof-bolter, flooded-bed scrubber and fan modules that receive a split of dusty air from the
continuous miner, extracts the respirable dust, and delivers it to the roof bolters as a split of fresh
air [Babbitt and Jayaraman 1988]

Wet drilling with or without water-jet-assisted cutting in roof bolting operations [Adam 1990]

Belt scrapers, installed on the return side of the belt near the drive, for cleaning the load-bearing
side of the belt [Shirey et al. 1985; Organiscak et al. 1986; Kost et al. 1981; Barrett et al. 1983]

Machine-mounted, high-pressure, water-powered scrubber [Campbell 1988]

Venturi scrubbets and ceramic flow-through filters for particulate emission control on diesel
powered equipment [Wheeler 1986]

Haulroads that have been wet, with calcium chloride applied to maintain moisture content and
minimize airborne dust in intake airstreams [Kost et al. 1981]

Short-hole watet infusion from horizontal holes drilled into the working face toa depth equal to the
daily advance of the face to increase the moisture content of the coal [Kost et al. 1981]

Long-hole water infusion holes drilled parallel into the coal seam in advance of the face and before
extraction to increase the moisture content of the coal [Shirey et al. 1985; Cervik et al. 1983; Taylor

and Evans 1985; Taylor et al. 1986; Kost et al. 1981]
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C.4 LONGWALL MINING
Increased ventilation air quantity and face velocities for increased dust dilution [Shirey et al. 1985]

Longwall-shearer remote controls for operators [Shirey et al. 1985]

Computer-controlled systems for automated advancement of roof support systems from a direction
downwind of the shearer or plow [Shirey et al. 1985; Organiscak et al. 1985]

Water sprays directed over shield and chock roof support canopies to suppress dust generated
during support movement [Jankowski and Organiscak 1983; Organiscak et al. 1985]

Large bits (conical and others) used on drum-type shearer and operation at reduced drum rotational
speed to break the coal out in larger chunks and reduce dust generation [Cummins and Given 1973]

Deep-cut-shearer cutting drums with lower drum rotational speeds [Shirey et al. 1985];
Shearer-Clearer external water spray system using high-pressure, air-moving water sprays to
confine shearer-generated dust near the face and away from operators [Shirey etal. 1985; Jankowski
and Organiscak 1983; Jayaraman et al. 1985]

Splitter-arm, passive belting barriers [Shirey et al. 1985; Jankowski and Organiscak 1983;
Jankowski and Babbitt 1986; Jayaraman et al. 1985]

Machine cooling water relocated into panline sprays or a crescent spray ring wrapped around shearer
ranging arms {Shirey et al. 1985; Jayaraman et al. 1985]

Alternate-design mining sequence taking the primary face cut downwind with operators positioned
upwind ahead of the lead cutting drum [Shirey et al. 1985; Jankowski and Organiscak 1983;
Organiscak et al. 1985]

Special fabricated shearer cutting drums incorporating cavity filling, water-through-the-bit, and
pick-face flushing sprays [Shirey et al. 1985] '

Upgraded water supply systems incorporating increased pump capacity for additional flow and
pressure with increased line sizes to decrease pressure losses [Shirey et al. 1985; Jankowski and
Organiscak 1983]

Installation of a “non-clogging” filtration system utilizing hydrocyclone, flushable Y-strainer, and
microfilter devices to improve water quality and reduce maintenance downtime [Shirey et al. 1985;
Jankowski and Organiscak 1983]

Ventilation curtains {wing curtain, gob curtain, and stage loader curtain) used in the headgate area
to minimize air leakage into the gob and teduce the shearer operator’s dust exposure when cutting
out at the headgate [Shirey et al. 1985; Jankowski and Organiscak 1983; Organiscak et al. 1986]
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Stageloader and crusher enclosed with steel plates ot strips of conveyor belting to isolate conveyed
material from the airstream and reduce dust entrainment [Shitey et al. 1985; Jankowski and
Organiscak 1983; Organiscak et al. 1986]

Spraybars containing multiple full-cone water sprays mounted in the stageloader/crusher and at the
stageloader-belt conveyor transfer point to provide uniform coverage of the coal stream {Shirey et
al. 1985; Jankowski and Organiscak 1983; Organiscak et al. 1986]

A water-powered scrubber and brattice partition to reduce tailgate worker’s dust exposure [Shirey
et al. 1985; Organiscak et al. 1983]

Belt scrapers, installed on the return side of the belt near the drive, for cleaning the load-bearing
side of the belt [Shirey et al. 1985; Organiscak et al. 1986; Kost et al. 1981]

High-pressure, water-jet-assisted cutting for shearers [Taylor et al. 1986]

Nonionic sutfactant additives and wetting agents for enhanced performance of water-spray, dust-
suppression systems [Chander et al. 1988; Shirey et al. 1985]

Water infusion holes drilled into the coal seam before extraction to increase the moisture content
of the coal [Shirey et al. 1985; Cervik et al. 1983; Taylor and Evans 1985; Taylor et al. 1986]

C.5 UNDERGROUND AREAS OUTBY MINING SECTIONS

Water sprinkled on empty coal cars, the tops of loaded cars, and coal on conveyor belts to reduce
or eliminate dust blown into ventilating airstreams [Cummins and Given 1973]

A water-powered scrubber at belt conveyor transfer points to capture and eliminate dusts suspended
in the airstream [Shirey et al. 1985; Organiscak et al. 1983]

Filter cartridge-based compact dry dust collectors for dust control at transfer points and airlock
stations [Barrett et al. 1983]

C.6 SURFACE OPEN PIT MINING

Steel-collat-vacuum dust collection systems drilled with cyclones and baghouses for drill units
[Gadomski and Chiz 1988]

Water-based or oil-based wet drilling techniques to eliminate dusts generated during shothole
drilling and reduce dusts during subsequent rock and coal breakage [Cummins and Given 1973;

Bourgoyne et al. 1986]

Environmentally-controlled, airtight cab enclosures for highwall rotary blasthole drill units and
bulldozers [Gadomski and Chiz 1988; Frantz and Ramani 1988]
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Trucks equipped with water sprays optionally using wetting agents for roadway and haulroad dust
control [Cummins and Given 1973]

Wood-based adhesive polymer foam for roadway dust and materials handling [Charlton 1988]

Building conveyors with elevated discharge chutes around a steel tube with discharge windows at
appropriate intervals, or the use of telescopic chutes to materially cut blowage of dusts [Cummins

and Given 1973]

C.7 PREPARATION PLANTS

Nonionic surfactant additives for water-spray, dust-suppression systems at conveyor transfer points,
crushers, and vibrating screens [Zimmer et al. 1988]

Overhead air supplied island (OASIS) for operators and maintenance personnel at stationary
locations [Volkwein et al. 1988; Frantz and Ramani 1988]

Airtight enclosures around transfer chutes with and without local exhaust systems to control
suspended dusts {Cummins and Given 1973]

Airtight housings and hoods with vacuum fans and dust collectors or electrostatic precipitators to
clean up dusts at rotary breakers, raw coal screens, and crushers [Cummins and Given 1973; Divers
and Cecala 1990; Divers and Jankowski 1988]

A water-powered scrubber at belt conveyor transfer points to capture and eliminate dusts suspended
in the airstream [Shirey et al. 1985; Organiscak et al. 1983; Divers and Cecala 1990]

Prepared coal confined in storage bins or silos to prevent dust dispersal [Cummins and Given 1973]

Building conveyors with elevated discharge chutes around a steel tube with discharge windows at
appropriate intervals, or the use of telescopic chutes to materially cut blowage of dusts [Cummins
and Given 1973]

Sprayed storage piles of fine, prepared coal that will stand for appreciable times with fuel oil to
reduce dust blowage [Cummins and Given 1973]

C.8 OTHER DUST EXPOSURE CONTROL OPTIONS

Within the hierarchy of dust control technologies, all available engineering controls should be
implemented first. During implementation periods, or after exhausting engineering technologies,
two additional dust exposure mediation techniques may be instituted:
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1. Use of administrative controls (i.e., rotating workers from high dust-making operations to low
dust-making operations to expose the mine personnel to lower average daily dust concentrations)
[Barrett et al. 1983]

2. Use of tespirators capable of removing respirable-size particulates (which are commercially
available from a number of suppliers and may be provided to miners with proper training in
their use and maintenance) [Barrett et al. 1983; Divers and Cecala 1990]
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METHODS FOR CONTROLLING RESPIRABLE COAL MINE DUST
FROM OVERBURDEN DRILLING AT SURFACE COAL MINES

This appendix focuses on methods of reducing excess respirable dust exposures during overburden
drilling, the activity that places surface coal miners at the greatest risk of exposure to respirable
crystalline silica.

D.1 ENGINEERING CONTROLS

Engineering controls for overburden drilling include dry dust collection systems, wet dust suppres-
sion systems, and enclosed cabs [Zimmer and Lueck 1986; Volkwein et al. 1979]. Proper
maintenance of the dust suppression system is critically important for drills using dry dust
suppression methods. Failure to rigorously maintain these systems will result in inadequate dust
control. Acute silicosis has been reported in miners operating equipment that relies on dry dust
suppression [NIOSH 1992].

D.1.1 Dry Dust Collection Systems

Dry dust collection systems typically include a drill platform shroud, a drill stem seal, and a dust
collector.

D.1.1.1 Drill Platform Shroud

A drill platform shroud is essentially a skirt made of a flexible material (usually rubber) that hangs
from the underside of the drill platform and surrounds the drill hole. The shroud enclosure, which
is maintained under negative pressure, contains the dust that comes out of the drill hole. When the
system is equipped with an adjustable shroud, the shroud height (the distance between the ground
and the bottom of the shroud) should be kept as low as possible. A BOM {Zimmer and Lueck 1986]
study found that although results differ with various drills, the control efficiency generally decreases
as the shroud height increases. The same study reported that for the two drills tested, control
efficiencies varied from 99% to 41% over the 0- to 27-in. height range and the collection system
performed most efficiently when the shroud height was no greater than 9 in. In practice, however,
maintaining a consistent height around the shroud because of uneven ground surfaces is not always

possible.
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D.1.1.2 Drill Stem Seal

The point at which the drill stem passes through the drill platform can be a source of dust emission.
To control this dust source, a flexible collar that acts like a seal is placed around the drill stem at
the platform level. The integrity of the seal must be maintained to prevent dust leakage.

D.1.1.3 Dust Collector

The dust from the shroud enclosure is transported through a duct to a collection chamber containing
paper or fabric filters. An exhaust fan located on the clean side of the filters maintains a negative
pressure inside the duct and the shroud enclosure and draws the dust-laden air through the filters at
rates greater than 4 to 6 times the bailing airflow and varying from 600 to 6,000 cfm, depending on
the size of the system. The filtered air is exhausted to the atmosphere and the dust is trapped on the
filters. The filters are periodically cleaned with a reverse pulse of compressed air, which sends the
collected dust into a hopper for discharge onto the ground away from the drill crew.

Test data have shown that dry dust collection systems are capable of achieving greater than 95%
control efficiency [Zimmer and Lueck 1986], but this control efficiency may not always be
reproducible in practice. Table D-1 summarizes the advantages and disadvantages of dry dust
collection systems.

D.1.2 Wet Dust Suppression Systems

In wet dust suppression systems, water is pumped from a storage tank into a line injecting the bail
air into the interior of the drill stem. The water droplets in the bail air coat and aggregate the dust
as they are carried upward through the drill hole. Thus, the dust is suppressed by the weight of the
moisture as the air bails out the cuttings from the hole. Because the water is expended in the process,
the storage tank may have to be refilled one or more times per day. Normally, the water has to be
transported to the drilling site.

The effectiveness of the control also depends on the experience and skill of the driller, who controls
the flow rate manually with a control valve. The driller often must adjust the flow rate based on his
visual estimation of the moisture content of the cuttings. Excessive water in the bail air would make
the cuttings too heavy to be bailed up the drill hole. Also, cuttings with excessive moisture would
plug up the air orifices of the drill bit. The flow-efficiency relationship may have to be determined
more than once in a particular mine because it is affected by different drills, different bit sizes, or
different types of geologic strata. A flowmeter should be installed at the control valve to aid this
determination [Zimmer and Lueck 1986].

In one study [Zimmer and Lueck 1986], for example, control efficiencies for a selected drill varied
from 9% at a water flow rate of 0.2 gallon per minute (gpm) to 96% at 1.2 gpm; the greatest increase
in control efficiency was in the range of 0.4 to 0.6 gpm. These figures are valid only for the
conditions under which the tests were conducted.
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Table D-1. Advantages and disadvantages of dry dust collection systems”

Advantages Disadvantages
Operate at any outside temperature Expensive to install
Do not require any expendable Expensive to maintain

material (water)
Require conscious effort by driller
Function well when properly to ensure efficiency
maintained and operated
May not be suitable where ground
water or coal-bed fires are present

* Adapted from Zimmer and Lueck [1986].

Bit life can be shortened by 50% or more because of the degrading effects of excessive moisture on
the bit [BOM 1988]. When outdoor temperatures drop below the freezing point, the system must
be heated to alleviate operational problems. Antifreeze compounds may be added to the water to
prevent freczing, but this method could be extremely expensive when large volumes of water are
used.

The control efficiency of wet dust suppression is similar to that of dry dust collection [Zimmer and
Lueck 1986]. Table D-2 summarizes the advantages and disadvantages of wet dust suppression
systems. Figure D-1 illustrates a wet dust suppression system.

D.1.3 Enclosed Cab

Drills come in different sizes. Depending on the size, the drills may or may not be equipped with
cabs, and the cabs may be partially or totally enclosed. When a totally enclosed cab is available,
an effective way to protect the driller working inside the cab is to pressurize it (positive pressure
relative to the outside) with outside air drawn through an air filter capable of removing respirable
dust. A NIOSH health hazard evaluation [Cornwell and Hanke 1983] reported that the use of a
pressurized cab alone (without dry dust collection or wet dust suppression) could afford a respirable
dust concentration that was 70% lower than that outside the cab. Subsequent information [Cormnwell
1990] revealed that the air filter used for the cab was graded as 99.9% efficient in removing fine
test dust as defined by the Society of Automotive Engineers [SAE 1987]. Thus, the control
efficiency may be highly dependent on the grade of the air filter.

Air conditioning should be installed in the cab to eliminate the need for opening the cab door or
windows in hot weather. When the cab door or windows are open, even the best dust filtration
system will not be effective. The air conditioning unit needs to be rugged in construction. Ordinary
automotive air-conditioning units are not able to withstand the severe conditions found in the mining
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Table D-2. Advantages and disadvantages of wet dust suppression systems”

Advantages Disadvantages

Inexpensive to install Must be heated in cold temperatures or used
with antifreezing additive

Inexpensive to maintain Require some expertise on behalf of drill
operator for proper operation

Function well when properly operated Require use of expendable material (water)

Not affected by groundwater or bed fires May cause decreased bit life and drilling
efficiency

* Adapted from Zimmer and Lueck [1986).

/ Rotary head

+—— Bail air

+«—— Water line

Drill stem —» , C) <+«— Valve Water tank

Pump

Figure D-1. Wet dust suppression system. (Source: Zimmer and Lueck [1986].)
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environment [Volkwein et al. 1979]. Ideally, the air conditioning system should be incorporated
into the engine intake system to reduce the number of maintenance items and to insure proper
maintenance of both systems [Volkwein et al. 1979].

D.1.4 Improved Control Technology

D.1.4.1 Dust Agglomerator

In a dry dust collection system, the discharge of dust from the dust collector accounts for 40% of
the respirable dust emitted [BOM 1989]. The discharged dust can be dispersed by the wind, from
impact on the ground, or by equipment driven over dust piles. The dispersed dust poses a potential
health hazard not only to the drill crew but also to other miners working in the vicinity. An
agglomerator tested by the BOM [1989] offers a solution to these problems. The discharged dust
is fed directly into a device that uses gentle water sprays and a spinning motion to coalesce the dust
particles into nonrespirable pellets.

D.1.4.2 Water Separation

The moist environment around the drill bit in wet dust suppression has been noted to reduce drill
bit life by 50% or more [BOM 1988]. Water separation is a method used to prevent water from
reaching the drill bit, thereby prolonging the bit life. In this method, the bail air is guided through
one or more sharp tumns as it travels down the interior of the drill stem. Because it has a higher
inertia than that of air, the water cannot negotiate the turns and thus is separated from the bail air.
The dried bail air continues to travel through the drill stem and out of the air orifices of the bit.
Under positive pressure, the water is forced out through weep holes into the annular space around
the drill stem. Consequently, the drill cuttings are wetted as they are carried upward through this
annulus by the bail air below. The BOM [1988] reported that no significant difference in the dust
control efficiency was noted between water drilling with and without water separation and that data
from one mine showed a greater than 400% increase in average bit life—9,000 ft per bit with water
separation versus 1,938 ft per bit without water separation.

D.2 WORK PRACTICES

The selection of a suitable drilling site affects the control efficiency of a dry dust collection system.
A drilling site with a flat surface should be selected because this would allow uniform shroud height
around the drill. Sometimes the ground surface can be leveled with appropriate equipment.

Where applicable (and coupled with proper maintenance procedures such as replacing worn parts

when required), periodic and pre-operational inspections should be made on engineering controls.
The following is a checklist of inspection items associated with the different control systems:

¢ Dry dust collection system

— Check the integrity of seals and shroud material.
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— Check fan belts for proper tension and for wear and tear.
— Check fan blades for wear and teat.
— Check the integrity of dust collector filters.
— Check exhaust ductworks for leakage.

e Wet dust suppression system
__ Check the control valve and the flow meter for proper operation.
— Check pipe connections for leakage.

® Pressurized cab
— Check the integrity of seals around the door and windows.
— Check air filters for dust accumulations.
— Check fan belts for proper tension and for wear and tear.

When the drill is operating with a totally enclosed cab, the drill crew should stay inside the cab with
the door and windows closed as much as practicable. When work must be done outside the cab,
the drill crew members should try to position themselves upwind from dust emissions. The drill
crew will drag dust with them into the cab as they enter and exit during the drilling operation.
Therefore, good housekeeping is necessary to maintain a relatively dust-free environment inside
the cab. Vacuuming is effective but may not be practical at the worksite. Whenever possible, wet
wiping is preferred over dry sweeping. If dry sweeping is used, care should be exercised to prevent
dispersing the settled dust. Cleaning with compressed air should be avoided.

Where a dry dust collection system is used, the shroud must be raised periodically to let the cuttings
spill out of the enclosure. The drill crew should be careful to raise the shroud only enough to clear
the cuttings; at the same time, they must keep the shroud height low enough to maintain the dust
capture efficiency of the system.

D.3 ENGINEERING CONTROLS AND WORK PRACTICES FOR OTHER
OCCUPATIONS

For other surface coal miners who are potentially exposed to respirable crystalline silica and
respirable coal mine dust, general industrial hygiene control methods should be applied where they
are feasible and appropriate to particular operational conditions. Judicious application of engineer-
ing controls (e.g., local exhaust ventilation and enclosures) and work practices (e.g., equipment
maintenance and housekeeping) is needed for occupations such as bulldozer operator, shotfirer, pan
scraper operator, truck driver, and crusher attendant.
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Table D-3. Dust suppressants for controlling particulate emissions from unpaved roads”

Category Description Examples

Salts Hygroscopic compounds that extract Sodium silicates, calcium chloride,
moisture from the atmosphere and magnesium chloride, hydrated lime
dampen the road surface

Surfactants Substances capable of reducing Soaps, detergents

the surface tension of the transport
liquid, thereby allowing available
moisture to wet more dirt particles

per unit volume
Adhesives Compounds that are mixed with native Sodium lignon sulfonate, ammonium
soils to form a new surface lignon sulfonate, calcium lignon
sulfonate, Portland cement
Bitumens Compounds derived from coal or Asphalt, cils

petroleum and mixed with native
soils to form a new surface

Films Polymers that form discrete layers Vinyls, fabrics
or membranes

* Adapted from Rosbury and Zimmer [1983).

D.4 DUST CONTROL ON UNPAVED ROADS

The application of dust suppressants to unpaved roads in surface mines is generally considered
useful in reducing dust emissions and improving driver safety by increasing visibility [Rosbury and
Zimmer 1983]. The benefits of reduced dust emissions from treated roads could extend to miners
working in the vicinity, and especially to truck drivers, in the form of reduced exposures to respirable
crystalline silica and respirable coal mine dust. Table D-3 lists the various types of dust
suppressants.
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INTERPRETATION OF PULMONARY FUNCTION TESTS:
SPIROMETRY

For evaluating the results of spirometric examinations, the largest FVC, the largest FEV1 and the
ratio of the largest FEV to the largest FVC (FEV/FVC%) from each worker’s pulmonary function
examination should each be compared with the lower limit of normal (LLN or 5th percentile [ATS
1991]) derived from the reference equations of Knudson et al. [1983] (Tables E-1, E-2, and E-3
for males and Tables E-4, E-5, and E-6 for females) or the most current equivalent. When previous
test results for a worker are available, a physician should also determine whether any significant
change in FEV has occurred over a period of time. See Appendix G for the criteria for interpreting
longitudinal changes in lung function and for a discussion of technical considerations in the use of
spirometry for screening and surveillance programs.
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APPENDIX F

NIOSH OCCUPATIONAL HISTORY QUESTIONNAIRE FROM
THE COAL WORKERS’ X-RAY SURVEILLANCE PROGRAM
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DEPARTMENT OF HEALTH AND HUMAN SERVICES FOR ALOSH USE ONLY

PUBLIC HEALTH SERVICE
CENTERS FOR DISEASE CONTROL AND PREVENTION
NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH
MINER IDENTIFICATION DOCUMENT

RECEIVING CENTER ASSURANCE OF CONFIDENTIALITY
AETURN APPALACHIAN LABORATORY FOR
b OCCUPATIONAL SAFETY AND HEALTH The U.S. Public Health Service hereby gives assurance that your identity and your
BOX 4258 relationship 1o any Information obtained by reason of your participation in the Periodic
MORGANTOWN, WEST VIRGINIA 26505 g:slcczlf(x:zmé\%o:air?g;am will be kept confidential in accordance with Public Health

PLEASE PRINT OR TYPE ALL RESPONSES Your social secunity number Is required by Public Health Service REGULATIONS

EETT N oY (42 CFR Part 37 ). It will be used for identification purposes only and not be released
X-RAY FACILITY NAME gxcepl as required by law withoul your written cansent. s
NIOSH FACILITY CERTIFICATION NO. DATE OF X-RAY EXAMINATION TYPE OF X-RAY ( Please check ong )
Preemployment  Mandatory { newly hired miners)  Voluntary every (3-1/2 - 4-1/2 years)
MINER'S NAME (Please Print} SOCIAL SECURITY NUMBER
- . (L] (1] [[TT]
MAILING ADDRESS STREET cITY COUNTY STATE 2IP CODE 5EX
M/F
TELEPHONE # AGE | Date of Birth (M-D-Y) | RACE ETHNIC CODE (Please check one)
| | | J r l | I ( ] I I | 1.[] American Indian or Alaskan Native 4.[] Hispanic
EMPLOYER'S NAME 2.[] Asian or Pacific Islander 5.[J White, not Hispanic origin
3.(7 Black, not Hispanic origin
EMPLOYER'S ADDRESS STREET / PO BOX CITY STATE 2IP CODE
MINE NAME MSHA MINE IDENTEFICATION NO.
EMPLOYER |S: (Pisasa check one) MSHA CONTRACTOR ID NO.
[O Mine Operator [] Gonstruction Contractor
OCCUPATIONAL HISTORY
UNDERGROUND COAL MINE
Do you now or have you ever worked at an UNDERGROUND coal mine? Yes No
If yes, list titie for any job you have held for more than one (1) year in an UNDERGROUND coal mine.
(Site: § = Surface LF = Longwall Face CMF = Continuous Mine Face CvMF = Conventional Mine Face
UNF = Underground Non Face O = Other)
Please use correct job titles as assigned by Mine Safety and Health Administration.
Job title list available at X-ray facility.
JOB SITE APPROXIMATE YEARS
JOB TITLE
3 LF CMF | CvMF | UNF 4] FROM 19__ T0 19__
EXAMPLE: x 1971 1975

Continuous Miner Operator

If you need additional space for job titles, please use the bottom section
of the back of this form

CDC / NIOSH (M) 2.9
REV. 391

300



SURFACE COAL MINE

Do you now or have you ever worked at a SURFACE coal mine? Yes

No

If yes, list title for any job you have held for more than one (1) year in a SURFACE coal mine.

APPROXIMATE YEARS (DATES)

JOBTITLE

FROM 19__

TO 19__

OTHER
Have you ever worked in any mine other than coal? ( gold, salt, silver, other metals, nonmetals, etc. ) Yes No
If yes, list title for any job you have held for more than one (1) year in any mine other than coal.

APPROXIMATE YEARS (DATES)

TYPE OF MINE
FROM 19__ TO 19_
Have you ever worked with asbestos? Yes___ No___
If yas, what was your job?
Dates: From To
MO/ YR MO/YR
Have you evar worked for more than one (1) year in any other dusty job not listed above?
Jos YES | NO YRS. JOB YES | NO | YRS

Cotten, flax or hemp Quarry
Diesel / Diessl Exhaust Sandblasting
Drilling Tunneling
Foundry Other (specify)
Pottery

CONSENT - ! wish to participate in the periodic Medical Examinati
Health Act of 1977 (30 U.S.C. B43). | authorize the Public Health Service to furnish any significant

ion Program conducted under section 203 of the Fedaral Mine Safety and

X-ray and other medical tests under the program to my personal physician:

medical findings revaaled by the

Persanal Physician's Name

Physician's Telephone Number

Street Address

City

State

Zip

| undarstand that | will be advised of any findings concerning coal workers pneumoconiosis ( black lung disease ) directly.

Dale Signed

Miner's Signatura

X

Additional information:
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APPENDIX G

TECHNICAL CONSIDERATIONS IN THE USE OF
SPIROMETRY IN SCREENING AND SURVEILLANCE OF
MINERAL-DUST-EXPOSED WORKERS

This appendix describes recommended procedures in the recording and performance (including
interpretation) of spirometry in ptograms of screening and surveillance of mineral-dust-exposed
workers.

G.1 RECOMMENDED PROCEDURES AND QUALITY CONTROL

Spirometry tests should be conducted in accordance with the American Thoracic Society (ATS)
recommended spirometry standards and the recommendations of the European Respiratory Society
(ERS) [ATS 1987; ERS 1993]. These standards establish both the minimum equipment require-
ments and the procedures to use in administering the test. A quality control (QC) program is also
a critical component of the spirometry scteening program. The QC program should include
adoption of a procedures manual describing the proper calibration, use, and maintenance of all
equipment; requirements for record maintenance of calibration checks; and technician training and
monitoring. When screening information is being collected from multiple sites, a central system
for reviewing test quality is needed.

If spirometry results are to be interpreted longitudinally, the central quality control monitoting center
should also attempt to identify “survey” biases. A survey bias is an unexplained change in a group’s
mean FEV between surveys (which take place at different times and perhaps different locations).
A record of calibration checks should be maintained and is particularly useful when a survey bias
is suspected to eliminate instrumentation errors as the source.

G.2 INTERPRETATION
G.2.1 Test Reproducibility

The first step in interpreting spirometry is to assess the quality of the test. The lack of a sufficient
number of acceptable trials or a reproducible test should be carefully considered during the interpretation

“This material is currently being prepared for publication as an appendix to a book entitled Health Screening and
Surveillance of Workers Exposed to Mineral Dust (Geneva, Switzerland: World Health Organization, 1995 [in
press]). Printed with permission from the World Health Organization.
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Appendix G

interpretation. The presence of excessive flow oscillations in the spirogram, resulting in the curve
being eliminated due to a “cough,” may indicate a functional structural disorder. The lack of a
reproducible test may result from disease and has been shown to be associated with an increased
risk of mortality from lung disease in cohorts who are occupationally exposed [Eisen et al. 1985;
Kellic et al. 1987]. In addition, shorter individuals may have more difficulty in meeting reproduc-
ibility criteria than taller individuals. Therefore, an individual’s results may be interpreted even
though the test was not considered reproducible by ATS standards [ATS 1987].

G.2.2 Comparison with Reference Values

The recommended method of interpreting a single observation of lung function involves the
comparison of an individual’s observed values of FEV,, with a reference value derived from
cross-sectional data which takes into account the subject’s height (as the main determinant of
differences between individual sizes), as well as gender and age. Both ATS and ERS have recently
published statements on interpretation of spirometry results [ATS 1991; ERS 1993]. The cutoff
values selected to separate individuals for whom no intervention is warranted (presumed “normals™)
from those for whom a preventive intervention is recommended or required (presumed “abnormals™)
should be chosen to reflect the goals of screening the program. For purposes of screening where
early identification of abnormality is the goal, these test cutoffs may be different from those
generally used in clinical practice, which focuses on disease diagnosis and confirmation. Test
sensitivity (the ability of a cutoff point for test interpretation to accurately identify a truly abnormal
individual), test specificity (the ability of a test cutoff point to accurately identify individuals without
disease), and the predictive value of positive and negative test results vary depending on the specific
cutoff values adopted and on the extent of disease in the screened population.

G.2.3 Selection of Reference Values

Reference values should be selected based on methodological, epidemiological, and statistical
criteria. Reference values are derived from regression equations generated from lung function data
gathered in healthy (often non-smoking) populations. Published reference values vary as a result
of technical reasons and population differences in groups studied. These differences may relate to
socioeconomic, psychosocial, and other factors. The ATS, for example, does not recommend a
universal reference value. Instead, it recommends that, to the extent possible, reference values be
selected from those obtained using comparable equipment in a population with comparable age,
physical characteristics, socio-economic background, and ethnic characteristics [ATS 1991]. By
contrast, the ERS guidelines recommend the use of one equation for males and one for females,
based on pooled data collected in several countries. Almost all reference values are based on the
individual’s age and height.

For ethnic groups where reference values may not be available, some adjustment to the caucasian
values may be possible. For example, the ERS recommends that for subjects of African descent,
the predicted values be multiplied by 0.87. This procedure is not recommended by the ATS, nor
does it appeat justified based on a recent analysis of published data on over 30,000 men and women
of sub-Saharan African descent [White et al. 1994]. Some variability between ethnic groups may
be due to differences in trunk length relative to standing height [ERS 1993].

303




Coal Mine Dust

G.2.4 Criteria for Abnormal FEV, Based on Reference Value Comparisons

Although the 95th percentilet is often used as the lower limit of normal (LLN) for purposes of
clinical interpretation, this may not be appropriate for screening and surveillance. In some
circumstances, where the purposes of cross sectional screening would be better met by a more
sensitive indication of potential abnormality, the 85th or 90th percentile, or another cutoff, might
be selected as the LLN or level that stimulates further monitoring, investigation, or other action.
The LLN is available or can be calculated from data published for most reference values. For
example, the ERS recommends that the LLN approximating the 95th percentile can be estimated
by subtracting 0.84 L (males) or 0.62 L (females) from the predicted value.

G.2.5 Criteria for Abnormal FEV, Based on Change Over Time

A comparison of an individual’s current FEV, with his/her own FEV determined in the past may
be of some benefit, particularly for those workers whose FEV is above that predicted. A quality
control program is especially important if longitudinal changes are to be assessed. Because of
considerable short-term variability in FEV, a yeat-to-year change of greater than 15% should occur
before a change in FEV, is considered significant. For longer periods of observation, adjustment
for the expected annual decline in FEV, is appropriate. Therefore, the LLN for the follow-up FEV
is computed by taking 85% of the baseline value minus the expected decline over the time period.
An individual’s expected decline over the time period is dependent on his/her age, but for practical
considerations, a constant value of 25 ml/fyear is often recommended. For example, an individual
whose initial FEV, is 4.00 L would be considered to have an accelerated decline in FEV if his/her
FEV, is below 3.15 L, 10 years after the baseline value was determined (0.85 x 4.00 L —10 years
x 0.025 L). This approach to interpretation of longitudinal test performance has been presented in
more detail recently [Hankinson and Wagner 1993].

To increase the sensitivity of screening spirometry, comparisons of an individual’s FVC and
FEV,/FVC% with the appropriate LLNs can also be conducted. However, because the FVC is
usually a more difficult parameter to accurately determine (more effort-dependent than the FEV)),
the FVC and FEV /FVC% comparisons should be optional.

REFERENCES CITED IN APPENDIX G
ATS [1987]. Standardization of spirometry—1987 update. Am Rev Respir Dis 136:1285-1298.

ATS [1991]. Lung function testing: selection of reference values and interpretative strategies. Am
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"The “normal 95th percentile” used by Knudson et al. [1983] is equivalent to the ATS [199 1] definition of LLN as the
5th percentile.
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APPENDIX H
THE BLACK LUNG BENEFITS PROGRAM

The Black Lung Benefits Program, initially established in 1969 as part of the Federal Coal Mine
Health and Safety Act (Public Law 91-173), is intended to provide compensation for coal miners
who are partially or totally disabled from their normal coal mine employment. Standards for
determining coal miners’ total disability or death due to pneumoconiosis are based on criteria such
as length of employment, radiographic evidence of pneumoconiosis, and/or values for pulmonary
function tests or arterial blood-gas tests that are below predicted normal values [29 CFR 718].

The initial program established in 1969 was administered by the Social Security Administration and
used public funds to compensate disabled coal miners. It was intended that the second phase of the
program would be administered by the U.S. Department of Labor and structured according to general
principles of workers’ compensation. However, the number of claims filed under the initial program
far exceeded estimates, and the Black Lung Benefits Act of 1972 was enacted to provide simplified
interim eligibility criteria for claims filed with the Social Security Administration and to delay the
transfer of responsibility to the U.S. Department of Labor for processing and paying claims
until 1973. The Social Security Administration continues to administer funds for claims filed
before July 1, 1973.

In 1978, the Black Lung Benefits Reform Act of 1977 was enacted, which again mandated the use
of interim criteria based on the presumption of eligibility to resolve old, unapproved claims. In
addition, the Black Lung Benefits Revenue Act of 1977 was enacted, which created the Black Lung
Disability Trust Fund, to be financed by an excise tax on coal that is mined and sold in the United
States.

In 1981, the Black Lung Benefits Revenue Act of 1981 and the Black Lung Benefits Amendments
of 1981 were enacted. The amendments tightened the eligibility standards, eliminated certain
presumptions, and temporarily increased the excise tax on coal to reduce the debt of the Trust Fund
to the U.S. Treasury, which was more than $1.5 billion in 1981 and $2.8 billion in 1985. In 1985
and 1987, budget-related laws were passed, but further changes were made in the eligibility criteria
or adjudication procedures. By the end of 1991, the Trust Fund’s cumulative debt to the U.S.
Treasury was $3.3 billion. Tables H-1 through H-4 provide information on the number of
beneficiaries and the costs of the Black Lung Benefits Program. An in-depth review and evaluation
of the Federal Black Lung Benefits Program was performed by Prunty and Solomons [1989].

*This Act was later amended by the Federal Mine Safety and Health Act of 1977 [30 USC 901-945].
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Table H-1. Summary of claims activity, U.S. Department of
Labor’s Black Lung Benefits Program, fiscal year 1991
and cumulative, July 1, 1973, to December 31, 1991

Appendix H

Cumulative decisions—all levels'

(July 1, 1973, to December 31, 1991)

Total number Approval

Claim category Approved Denied of decisions rate (%)
Section 435

claims filed,

T/1f73 to 2{28(78 56,080 63,725 119,805 46.8
Section 727

claims filed,

3/1/78 to 3/31/80 20,494 41,044 61,538 333
Section 718 (PRE)

claims filed,

1/1/82 to present 4,125 28,529 32,654 12.6
Section 718 (POST)

claims filed,

1/1/82 to present 5,890 77,804 83,694 7.0
Part B denials—

denied claims

inherited from SSA 21,867 45917 67,784 323
$SAT approvals—

claims approved by

SSA under the 1977

amendments 15,931 710 16,641 95.7
Subtotal 124,387 257,729 382,116 326
Medical only 116,738 1,656 118,394 98.6
Grand total 241,125 259,385 500,510 482

Source: DOL [1992].

*Refers to the most recent decision (any level—Division of Coal Mine Workers® Compensation, Administrative Law
Judge, Benefits Review Board).
SSA = Social Security Administration.
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Table H-2. Department of Labor’s Black Lung Benefits Program
obligations for fiscal years 1982-91

Program obligations
Year (in billions)
1982 $1.79
1983 2.15
1984 2.50
1985 2.83
1986 2.88
1987 2.95
1988 2.99
1989 3.05
1990 3.05
1991 3.26

Source: DOL [1992].

REFERENCES CITED IN APPENDIX H

DOL [1992]. Annual report on administration of the Act during calendar year 1991. Submitted to
Congress 1992. U.S. Department of Labor Employment Standards Administration. Washington,
DC: U.S. Department of Labor.

Prunty AR, Solomons ME [1989]. The Federal Black Lung Program: its evolution and current

issues. In: West Virginia Law Review, Vol. 91. Morgantown, WV: West Virginia University,
pp. 665-735.
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Table H-4. Monthly black lung benefit rates, 1973-91

Benefit rates by type of beneficiary

Claimant and Claimant and Claimant and 3 or
Period Claimant 1 dependent 2 dependents more dependents
7111713 10 9130173 $169.80 $254.70 $297.10 $339.50
10/1/73 to 9/30/74 177.60 226.40 610.80 355.20
10/1/74 to 9/30/75 187.40 281.10 328.00 374.80
10/1/75 to 9/30{76 196.80 295.20 344.40 393.50
10/1/76 10 9/30177 205.40 308.10 359.50 410.80
10/1/77 to 9/30/78 219.90 329.80 384.80 439.70
10/1/78 10 9/30/79 232.00 348.00 405.90 463.90
10/1/79 to 9/30/80 254.00 381.00 44450 508.00
10/1/80 to 9/30/81 279.80 419.60 489.60 559.50
10/1/81 to 9/30/82 293.20 439.80 513.10 586.40
10/1/82 10 12/31/83 304.90 457.30 533.60 609.80
1/1/84 to 12/31/84" 317.10 475.60 554.90 634.20
1/1/85 to 12/31/86 328.20 492.30 574.30 656.40
1/1/87 to 12/31/87 338.00 507.00 591.50 676.00
1/1/88 to 12/31/88 344.80 517.20 603.40 689.60
1/1/89 to 12/31/89 358.90 538.30 628.10 717.80
1/1/90 to 12/31/90 371.80 557.70 650.60 743.60
1/1/91 to 12/31/91 387.10 580.60 677.40 774.10

Source: DOL [1992].

*These benefit rates include the additional 0.5% increase that was granted retroactively to January 1, 1984. The rates
in effect before the retroactive payments (1/1/84 through 6/30/84) were $315.60 for a claimant only, $473.30 for a
claimant and one dependent, $552.20 for a claimant and two dependents, and, $631.10 for a claimant and three or

more dependents.
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CONFIDENCE LIMIT ON MINIMUM ACCURATELY
QUANTIFIABLE (MAQ) CONCENTRATION OF RESPIRABLE
COAL MINE DUST

The lowest concentration of respirable coal mine dust that can be accurately quantified is estimated
here. The accuracy critetion to be used is one that has been referred to as the NIOSH Accuracy
Criterion, namely: “. .. measurements by the method will come within 25% of corresponding true
air concentrations at least 95% of the time” [Busch and Taylor 1981]. Therefore, the accuracy A
itself is defined as the largest percentage of deviation from the true concentration to be found among
95% of measurements; it is given in terms of bias and total imprecision relative standard deviation

(rsd) implicitly by
& [(bias + A)frsd] - @ [(bias - A)/rsd] =95%

where @ is the accumulative normal function. Note that the (true) rsd may be denoted by its
approximation, the coefficient of variation (CV). The function A (bias, rsd) is shown, together with
a planar approximation, in Figure I-1. Then the confidence limit on the minimum (concentration)
accurately quantifiable (MAQ) is defined as the smallest concentration at which the 95% confidence
limit on accuracy is better than 25%.

If the method were unbiased and the imprecision perfectly known, MAQ equals approximately eight
times the method imprecision. Therefore, in this case MAQ differs only slightly from the limit of
quantitation (LOQ). LOQ as defined by the American Chemical Society and by NIOSH [NIOSH

1994] is the concentration corresponding to 10 times the method imprecision (i.e., the use of MAQ
avoids introducing a second arbitrary number (10) in addition to the value 25%).

Conditions of the calculation:

The pump uncertainty-induced imprecision (rsd, ) is assumed to be less than 1% [Bartley et al.
1994].

The samplers considered ate the traditional 10-mm nylon cyclone operated at 1.7 Lfmin and the
Higgins-Dewell cyclone at 2.2 L/min.

The intersampler imprecision (rsd,,, ) is assumed to be less than 5% [Bartley et al. 1994].
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Appendix I

The maximum bias of each sampler is assumed to equal 7% as indicated by the coal mine dust size
distributions of Mutmansky and Lee [1987] and the computation of Bartley et al. [1994].

The sampling time is assumed to equal 8 hr.

I.{ DETAILS OF THE CALCULATION

The confidence limit ,4A on the accuracy for obtaining the above results was computed by
approximating the dependence of the true accuracy A on the intersampler variability rsd_, and on
the bias as linear. Details of this approximation have been published by Bartley et al. [1994].
Furthermore, regarding the data on S samplers (with v,y = S-1 degrees of freedom) reported in this
paper, the uncertainties in both bias and in the overall imprecision were dominated by the
intersamplet variability. This results in the following expression for the accuracy confidence limit
(hats over variables denote estimates):

A=A+164rsd 5+—k§——
95% " 08 10 amp * | s 2v_,

where the constant k, and k, solve

k, = 0A/0 bias
K “ rsd
k - 1.64|-L+ ks =—20 . 3A /9 rsd
1 S 2vugy rsd

where rsd is the total imprecision given by

./ 2 2 2
rsd =V rsd i+ 1d gy = 1sd

The dependence of the accuracy A on the total imprecision rsd and bias is somewhat complicated
but is given by

bias+A _ o bias— A

o,

0A _ rsd rsd
orsd O, +D_

oA _D-" %

on D, + D

@, = exp [~ 3 (bias £ A /rsd’]
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The weighing-induced imprecision is given by

_ Oeign X 1,000 L/m’
weigh Q 8 x 60 min

rsd

where Q is the sampler flow rate.

Finally, using these expressions, the equation g4 A = 25% is solved numerically for MAQ in terms
Of O igns giving the above results.

.2 BIASLESS ACCURACY
The confidence limit on the accuracy is simple to calculate when the bias is known to be zero. This
is consistent with the current MSHA practice for defining respirable dust by the sampler. Specific-
ally, respirable dust is 1.38 x that which is captured by the traditional 10-mm nylon cyclone at 2
L/min.
In this case, the accuracy A is given by

® [A/rsd] - P [-A/rsd] =95%
which implies that

A=®"[97.5%] rsd = 1.96 rsd

Since rsd___ is the only uncertain quantity in rsd and therefore in A, and since A is monotonic in
rsd__, the 95% confidence limit on A is computed simply by determining the 95% confidence limit

on rsd,, . and substituting into the expression for A. In other words,
\[ 2 rsd’ 2
Agsg =196 Y 15d yein + 71— — +15d
95% Bh s (V)L pump

With the number of degrees of freedom v = 7, x2 = 2.167. Futhermore, rsd,,.;.,, is given by

. _138':;W.Ehxmooum3
Ceign = Q 8 x 60 min

where 0., is the weighing imprecision, Q is the flow rate, and MAQ is the minimum accurately
quantifiable concentration. Setting Q = 2.0 Ljmin and g,,;,, = 0.029 mg; MAQ is determined so as
to give Agsq = 25%. The result is

MAQ = 0.46 mg/m>
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.3 RESULTS

Under these conditions, the confidence limit on the MAQ in terms of the imprecision in the coal
dust weight measurements is given in Figure I-2. As seen from the graph, the value of MAQ
depends strongly on the precision of the coal dust mass measurement. Several values of this
precision may be found in the literature. A figure 0.081 mg was published in an early study of
Parobeck et al. [1981] of weighing procedures employed in the past by the Mine Safety and Health
Administration (MSHA) in which filters are preweighed by the filter manufacturer and postweighed
by MSHA, using balances readable to 0.010 mg.

MSHA [Kogut 1994] has recently completed a study of the accuracy of weighing new “tamper-re-
sistant” (and heavier) capsules. The filter manufacturer’s balance, readable to 0.01 mg, was used
for preweighing the filters and a 0.001 mg balance was used for the postweighing by MSHA. The
results indicate imprecision equal to 0.029 mg (as well as a systematic etror equal to -0.012 mg,
which is considered negligible or correctable here).

The precision can likely be improved further. Bowman et al. [1984] reported imprecision equal to
0.010 mg, using a single 0.001 mg balance for both preweighing and postweighing. This value is
consistent with a study of Vaughan et al. [1989] of repeat filter weighings. Tt should be noted that
the actual attainable precision may depend strongly on the specific environment to which the filters
are exposed between the two weighings.

These values are used in Table I-1.

Table I-1. Minimum (concentration) accurately quantifiable
(MAQ) at specific values of imprecison

MAQnylon* MAQHD"'
Gweigh (H2) (mg/m) (mg/m®)
81 [Parobeck et al. 1981] 1.83 1.42
29 [Kogut 1954] 0.66 0.51
10 [Bowman et al. 1984] 0.23 0.17

*Minimum concentration accurately quantifiable by the nylon sampler (CPSU) [30 CFR 74].
TMinimum concentration accurately quantifiable by the Higgins-Dewell sampler [Higgins and Dewell 1968].
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Figure 1-2. Minimum accurately quantifiable (MAQ): CPSU and Higgins-Dewell cyclone.
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VARIABILITY IN SAMPLING AND ANALYTICAL METHODS'

J.1 MSHA GRAVIMETRIC METHOD FOR RESPIRABLE COAL MINE DUST

The current procedure for measuring the concentration of respirable coal mine dust is as follows.
Each filter is preweighed by the filter manufacturer to 0.1 mg. Following sampling with the Coal
Mine Dust Personal Sample Unit (CPSU) at 2.0 L/min, the filter with coal mine dust is sent to
MSHA for weighing. The current MSHA procedure for weighing tespirable dust samples uses a
Mettler Model AE163 analytical balance in conjunction with an automatic weighing system with a
precision of +0.02 mg [Tomb 1990]. Each balance is calibrated twice per day.

Quality control for the automatic weighing system includes the systematic weighing of one in eight
filters on a second Mettler AE163 balance. Tolerance is set at 0.1 mg between the two weighings
of the same sample. Weights are truncated at the 0.1 mg level (e.g., 3.457 mg is truncated to 3.4 mg)
[Bowman et al. 1985]. The difference of the two truncated weights is then recorded as the weight
of coal dust deposited. The respirable concentration (mg/m3) is computed by multiplying by a
correction equal to 1.38 and dividing by the volume of air sampled (2.0 L/min x sampling
time [min]).

J.2 WEIGHING IMPRECISION

The weighing inaccuracy corresponding to the MSHA weighing procedure has been estimated and
is documented in Parobeck et al. [1981] and Bowman et al. [1985]. Including both the above
truncation on the weights prior to subtraction and analytical errors (for example, due to balance
inaccuracy or to filter mass instability), the estimated standard deviation Oweigh in the measured
deposited mass has been reported as:

Uwe]gh = 0.081 mg

The relative standard deviation (rsd)” in the respirable dust concentration estimates due to a
weighing error (rsdweigh) can be estimated, as illustrated in the following examples:

*Rsd may be approximated by the coefficient of variation (CV).
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Example 1: The following conditions represent sampling at the current PEL for respirable coal
mine dust (using the 10-mm nylon cyclone): sampling time, 8 hr; sampler flow rate, 2.0 L/min;
respirable dust concentration, 2.0 mg/m3. The rsdweigh is given by the following equation:

tsdweigh = [(0.081 mg X 1.38)/(2.0 x 10-> m3/min x 8 hr x 60 min/hr)]/2 mg/m>
= 5.8%

Example 2: The conditions corresponding to sampling at the REL (again using the CPSU):
sampling time, 8 hr; sampler flow rate, 1.7 L/min; respirable dust concentration, 0.9 mg/m3. Note
that a correction factor (e.g., 1.38) is not required for the REL. The rsdweigh is given by the
following:

rsdweigh = [(0.081 mg)/(1.7 % 10-3 m3/min % 8 hr x 60 min/hr)]/0.9 mg/m3
= 11.0%.

Example 3: Similarly using the HD cyclone, the following conditions correspond to sampling at
the REL: sampling time, 8 hr; sampler flow rate, 2.2 L/min; respirable dust concentration, 0.9
mg/m3. Then, rsdweigh is given by the following:

rsdweigh = [(0.081 mg)/(2.2 x 103 m¥min x 8 hr x 60 min/hr)]/0.9 mg/m3
= 85%

Note that the value rsdweigh for sampling at the REL, using either the CPSU or the HD cyclone, is
larger than rsdweigh for sampling at the current PEL and sampling criteria. The NIOSH accuracy
criteria for determining the acceptability of sampling and analytical methods are the following: 95%
of a method’s concentration estimates should be within 25% of the true concentration [Busch and
Taylor 1981]. Translated to the method inaccuracy rsd, this means that rsd (or CV) must be less
than 12.8% (even if the method has no systematic error) [Gunderson and Anderson 1980].

J.3 FEASIBILITY OF REDUCING WEIGHING IMPRESSION

For respirable dust samplers, rsd is composed of rsdweigh as well as 5% from the sampling pump
uncertainty [30 CFR Part 74 (1988)] and 5% from intersampler variability [Bartley et al. 1994].
With rsdweigh as large as 11.0% or 8.5%, the weighing errors dominate the method inaccuracy.
Thus, the total rsd can be significantly reduced by lowering the true uncertainty in weighing (Gweigh)-

Oweigh itself is comprised of two parts:

(Gweigh)? = (Otrunc)? *+ (Ganaly)?,
where Girunc refers to the truncation procedure and Ganaly to the variability in the analysis itself.
Truncation errors are analyzed as follows: Define the function Xtrunc(x) of a random variable x by
dropping the decimal part of x. The error A= Xtrunc(X) - X looks like a saw-tooth, falling from 0 to

-1 between each integer. The mean or expected error E(A) is thus -1/2 (i.e., truncation is negatively
biased). Similarly, E(A?) = 1/3, which means the variance o?is
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a2 = E(A?) - E(A)? = 1/12

The bias cancels the difference between two such independent truncated numbers, but the variance

is doubled. Thus, the standard deviation in the difference ogiff is

odiff = 1/Sqrt[6]

With dust mass equal to the difference of two weights truncated at the 0.1 mg level, the standard

deviation Otrunc is 0.1 mg/Sqrt[6] or about 0.41 x 0.1 mg.
Thus, the two truncations lead to the following:
Otrunc = 0.41 x 0.1 mg
where mass is the sampled mass. Therefore, Gweigh = 0.081 mg implies that Gapa) = 0.070 mg.
For example, after 8 hr of sampling 0.9 mg/m3 at 1.7 L/min,
mass = 0.734
and therefore,
tsdirunc= 5.6%
At rsdweigh = 11.0%, this corresponds to
rsdanaly = 9.5%

Thus, to reduce rsdweigh, NIOSH recommends the following:

(1) Reduce rsdanaly by improving quality control of the weighing procedure itself. The figure 0.081
mg quoted above for the weighing precision is based on an early study [Parobeck et al. 1981]
of weighing procedures employed in the past by MSHA in which filters are preweighed by the
filter manufacturer and postweighed by MSHA using balances readable to 0.010 mg. MSHA
has recently completed a study of the accuracy of weighing new “tamper-resistant” capsules
using a 0.001 mg balance for the post-weighing, indicating imprecision equal to 0.029 mg
[Kogut 1994]. The precision can probably be improved further. Bowman etal. [1985] reported
imprecision equal to 0.010 mg using a single 0.001-mg balance for both preweighing and
postweighing. This value is consistent with a study of Vaughan et al. [1989] of repeat filter
weighings, although the actual attainable precision may depend strongly on the specific

environment to which the filters are exposed between the two weighings.

(2) Essentially eliminate rsdirunc by using scientific rounding (at no greater than the 0.01-mg level)

instead of the current MSHA method of truncating measured weights at the 0.1-mg level.
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J.4 DETERMINATION OF VARIABILITY IN SAMPLING RESPIRABLE COAL MINE
DUST: ADJUSTMENT FOR BIASED METHODS

The statistical evaluation of workplace exposures as measured by unbiased sampling methods is
described by Leidel et al. [1977). However, when the sampling method includes bias, adjustment
for that bias is made by adding the estimated value of that bias to the quantity 1.645*CV. Such bias
adjustment is required when using performance-based sampling criteria. Performance-based sam-
pling criteria enable the certification of any sampler meeting specified criteria to be used for
sampling in accordance with the international definition of respirable dust. This bias associated
with performance-based sampling results from the differences in the collection characteristics of an
ideal laboratory sampler relative to those of a prospective sampler.
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APPENDIX K

ESTIMATES OF EXPOSURE VARIABILITY AND EXPOSURE
PARAMETERS FOR SELECTED DESIGNATED OCCUPATIONS

K.1 INTRODUCTION

The primary purpose of this analysis was to derive the best possible estimates of the within-occupation
geometric standard deviations (GSDs), using the Spot Inspection Program (SIP) data set [MSHA
1993]. Accurate estimates of the within-occupation GSDs are necessary in order to estimate the
true long-term mean for a section that is, at given confidence (e.g., 95%), in compliance with the
NIOSH REL for coal mine dust where the REL is defined as the maximum average exposure across
a single shift.”

The SIP data set was chosen because it contains fairly recent data and therefore is likely to represent
current conditions. Furthermore, the SIP data set is readily available; thus, the results reported here
could be easily duplicated by any interested party.

The secondary purpose was to derive estimates of the exposure parameters (mean, standard
deviation, geometric mean, and geometric standard deviation) for selected designated occupations.
Such parameter estimates are useful for estimating the fraction of measured exposures that exceed
the REL or any other value.

K.2 METHODS

A complete description of the SIP data set is provided in an MSHA report [MSHA 1993].
Briefly, the SIP consists of the operator-submitted exposure monitoring data for the three cycles
(bimonthly sampling periods) preceding the “spot inspection” by an MSHA inspector. These spot
inspections ended on October 31, 1991.

The SIP data set was analyzed using the SAS procedure PROC MEANS to derive estimates of
the exposure parameters and SAS procedure PROC VARCOMP to derive estimates of the
within-occupation GSD after accounting for variability due to mine and section within a mine.

*A section that is “in compliance™ with the NIOSH REL is one in which single-shift exposures exceed the REL
infrequently if at all.
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The within-occupation GSDs for roof bolters (occupation code 46) were estimated after accounting
only for variability due to mine because the MMU (section) number was not reported with the data.

Five occupations were included in this analysis: continuous miner operator, cutting machine
operator, handloader operator, longwall shear operator, and roof bolter. These occupations primar-
ily represent designated occupations, which are those occupations with the highest exposures and
the most frequent sampling. The number of samples for these five occupations ranged from 392 to
6,818 (summed across all mines). Other occupations sampled had less than 30 measurements
(summed across all mines), and these were excluded from this analysis.

Low-weight-gain (LWG) measurements (i.e., all measurements of 0.1 and 0.2 mglm3)T were
removed from the data set, and the analyses were repeated. Thus, two sets of results were generated:
those calculated with the LWG measurements and those without. The distributions of exposure for
each occupation were examined to determine which set of results are likely to be the most
representative of the true exposures. Justification for excluding LWG measurements was presumed
to exist if the number of 0.1 to 0.2 mg/m3 measurements was inconsistent with the remainder of the
distribution.

K.3 RESULTS

The results of the components of variance analysis are given in Table K-1. Descriptive statistics
for each of the occupations are given in Table K-2. Table K-3 contains descriptive statistics for
the same data, but minus the LWG measurements. The GSDs in Tables K-2 and K-3 are greater
than those given in Table K-1 because they were calculated directly from the data; thus, they include
the extra variability due to between-mine differences and between-section differences within mines.

The number of measurements by concentration are provided in Figures K-1 through K-5 for each
of the five occupations analyzed. The histograms for continuous miner operators (code 36), cutting
machine operators (code 38), and roof boltets (code 46) suggest an overabundance of LWG
measurements that may not be representative of the true distributions. Thus the estimates of the
within-occupation GSD for these occupations (which was derived after excluding LWG measure-
ments [column 7, Table K-1]) are most likely closer to the true values.

The handloader operators (code 39) apparently experienced much lower exposures than other
designated occupations so that exposures of 0.1 and 0.2 mg/m3 were common. The longwall shear
operators (code 44) experienced generally greater exposures than the other designated occupations.
The number of 0.1 and 0.2 mg/m3 measurements appeared to be consistent with the overall shape
of the exposure distribution. Thus, for both these occupations the GSDs derived using all the data
are probably the best estimates of the true GSDs (column 4, Table K-1).

TMSHA defines low weight gain measurements as any calculated concentration of 0.1 and 0.2 mg]m3 {MSHA 1993].
Such measurements, in principle, occur with any exposure distribution for coal mine dust, but an overabundance
when compared with the rest of the exposure distribution suggests that some manipulation of the environment or
sampling process may have occurred. Evidence of an overabundance of measurements below 0.3 mg/m3 in mine
operator-collected data was reported by Boden and Gold [1984].
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Figure K—1. Number of measurements by concentration for continuous miner operators (code 36) (SIP data).
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Figure K-2. Number of measurements by concentration for cutting machine operators {code 38) (SIP data).
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Figure K-5. Number of measurements by concentration for roof bolters (DA sample) (code 46) (SIP data).

K.4 COMMENTS

These statistics can be considered representative of the exposures that occurred during sample days
spanning roughly a 1-year period ending on October 31, 1991. Analysis of data sets from earlier
or later periods may lead to different estimates. The best estimates of the within-occupation GSD
are marked with a double dagger (}) in Table K-1.

Note that the GSD estimates, after accounting for variability due to mine and section (within mine)
are not excessive, even when the LWG measurements are left in the data set. This was unexpected
considering that the underground mining environment is typically characterized as being highly
variable.
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Table K-1. Estimates of the within-occupation GSDs for the five occupations in the SIP
data set with the greatest number of samples

All data LWGs excluded
Estimated Estimated
MSHA Number mean Number mean
occupation of . mg{ma of mg/m’
code Occupation samples GSD (6-0.05)* samples GSD (6=0.05)
36 Continuous miner 6,818 2.36 0.35 5172 1.79% 0.45
operator
38 Cutting machine 885 2.19 0.37 625 1.75% 0.47
operator
39 Handloader 392 1.68% 0.49 85 1.81 0.45
operator
44  Longwall shear 897 1.82% 0.45 872 1.67 0.49
operator
46 Roofbolter 559 2.34 0.35 384 1.70% 0.48
(DA samples)

*GSDs were estimated using the SAS PROC VARCOMP procedure both with and without LWG measurements after
adjusting variability due to mine and section within a mine. The long-term mean exposure for a section with no more
than 5% overexposures is given for each GSD.

?=p(c>REL)=P(c>1 mg/m®).

Hndicates the best estimates of the within-occupation GSDs.

Table K-2. Descriptive statistics for the SIP data set for five occupations, unadjusted for
between-mine or between-section differences (includes LWG measurements)

MSHA Number Arithmetic Standard Geometric
occupation of mean deviation mean
code Occupation samples (mglms) (mglm"') (mg{ma) GSD
36 Continuous miner 6,818 0.97 1.03 0.60 2381
operator
38 Cutting machine 885 0.89 1.05 0.52 2.95
operator
39 Handloader operator 392 023 0.90 0.14 1.96
44 Longwall shear 897 1.50 0.94 1.23 1.96
operator
46 Roof bolter 559 0.65 0.66 0.44 2.54
(DA samples)
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Table K-3. Descriptive statistics for the SIP data set for five occupations, unadjusted for
between-mine or between-section differences (excludes all LWG measurements)

MSHA Number Arithmetic Standard Geometric
occupation of mean deviation mean
code Occupation samples (mglm3) (mglm’) (mg]ms) GSD
36 Continuous miner 5,172 1.23 1.06 0.97 1.92
operator
38 Cutting machine 625 1.20 1.11 0.92 1.97
operator
39 Handloader 85 0.68 1.87 0.45 1.79
operator
44 Longwall shear 872 1.54 0.92 1.31 1L.77
operator
46 Roof bolter 384 0.89 0.68 0.75 1.73
DA samples)
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APPENDIX L

VALIDATION OF PREDICTIONS OF SMALL ROUNDED
OPACITY PREVALENCE FROM ATTFIELD AND MORRING [1992]

L.1 INTRODUCTION

During review of the draft coal criteria document, a question was asked about the validity of the
predictions of CWP prevalence made in Attfield and Morring [1992]. Specifically, was there any
evidence from existing information about prevalence to confirm those predictions? To answer that
question, data wete tabulated from the Coal Workers’ X-ray Surveillance Program for miners who
worked for at least 10 years under dust conditions mandated by the 1969 Federal Coal Mine Health
and Safety Act (Public Law 91-173). These data were then compared with the Attfield and Morring
predictions.

L.2 METHODS

Data from the Coal Workers® X-ray Surveillance Program were used for verification, since they
were not included in the study that developed the predictions. The requirement of 10 years or more
of work in coal mining was imposed because CWP is usually a disease that develops slowly. See
Attfield and Althouse [1992] for background information about the Coal Workers® X-ray Surveil-
lance Program.

Data from rounds 3 and 4 of the Coal Workers® X-ray Surveillance Program were used (previous
rounds were too close to 1969 to satisfy the 10-year tenure requirement). Prevalence of small
rounded opacities was derived separately for the first and second readers, and the mean age for each
tenure group was calculated. Although coal mine dust exposure has been associated with the
development of both small rounded and small irregular opacities, small rounded opacities were
used. For round 4, which used the 1980 ILO system [ILO 1980], small rounded opacity readings
are not available specifically. To get around this problem, the following procedure was used. If
the primary type was said to be rounded (p, g, 1), the profusion category reported was taken to apply
to rounded opacities. If, however, the primary type was said to be irregular (s, t, u), the rounded
profusion was taken to be 0/0. Tenure was based on total years underground, that being the only
record of work in mining available in the program.

Predictions were derived from the equations published in Attfield and Morring [1992] for category

1 or greater (1+) and for category 2 or greater (2+) (PMF was not investigated, as it was considered
too subject to selection effects related to ill health). Since dust exposure information was not easily
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obtainable, rough estimates were made by multiplying the tenure for each group by 2 mg/m3.
Justification for this approach is given later. Predictions are given for high-volatile bituminous
coals such as those mined in the western Appalachian region. These provide a reasonable overall
estimate for the country since they represent most miners and fall between the higher predictions
applicable to the small number of low-volatile miners and the somewhat lower predictions for the
midwestern and western miners.

L.3 RESULTS
L.3.1 Round 3

Information was available for just two tenure groups: 10 and 11 years. The average number of
miners, mean age, and observed and predicted prevalences by reader are listed in Table L-1. The
first and second readers classified a slightly different number of chest X-rays. The mean observed
prevalence from the first and second readers is also listed.

About 921 miners were in the 10-year tenure group (mean age 34). As can be seen, both sets of
readers showed observed prevalences that were about twice those predicted. Basically, the same
observation applies to the 11-year tenure group, which dealt with about 187 miners.

Round 3 information on category 2+ is given in Table L-2. For the 10-year tenure group, the
predicted prevalence is again about twice that predicted. No category 2+ films were observed in
the 11-year group, although this could be due to the small size of the group.

L.3.2 Round 4

For round 4, information was available for 9 tenure groups ranging from 10 to 18 years. Table L-3
provides the information pertinent to category 1+. The mean age increases with tenure from 35 to
43 years, and the number of miners (and thus chest X-rays) is generally much larger than that for
round 3. Overall, prevalences based on the first readers are about twice those predicted from the
model. In contrast, the reader-2 prevalences are generally similar to or slightly smaller than those
predicted.

Table L-1. Observed and predicted prevalences of category 1+ from round 3 of the
Coal Workers®’ X-ray Surveillance Program

Observed prevalence
Average
Tenure number of Mean 1st 2nd Predicted
(years) niiners age readers readers Mean prevalence
10 921 34 55 52 5.4 2.4
11 187 34 53 7.1 6.2 24
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Table L-2. Observed and predicted prevalences of category 2+ from round 3 of the
Coal Workers’ X-ray Surveillance Program

Observed prevalence

Average
Tenure number of Mean 1st 2nd Predicted
(years) miners age readers readers Mean prevalence
10 921 34 03 0.1 02 05
11 187 34 0.0 0.0 0.0 0.6

Table L-3. Observed and predicted prevalences of category 1+ from round 4 of the
Coal Workers®’ X-ray Surveillance Program

Observed prevalence

Average

Tenure number of Mean 1st 2nd Predicted

(years) miners age readers readers Mean prevalence
10 3,058 35 4.3 L5 2.9 25
11 2,182 36 4.6 2.1 34 2.7
12 2,159 37 6.0 1.5 3.8 2.9
13 1,755 38 6.6 1.9 43 30
14 1,312 39 6.4 23 44 32
15 866 40 8.7 35 6.1 33
16 536 40 94 33 6.4 35
17 394 41 85 42 6.4 3.7
18 266 43 10.7 6.3 8.5 40

The final table in this series presents the information on category 2+ (Table L-4). In this case, it is
the classifications from the first readers that are most similar to those predicted, with the reader-2
prevalences being considerably lower in general.

L.4 DISCUSSION

A model is correctly and properly verified by using an external observed data set whenever possible.
However, the usefulness of the exercise depends on how similar the external data set is to the
predictor data set. In the present case, there are many points of difference, and hence the validity of
the comparison can be questioned. These differences include the following: different X-ray readers,
different ILO systems, very different miner participation rates, and different mines. Another
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Table L-4. Observed and predicted prevalences of category 2+ from round 4 of the
Coal Workers®’ X-ray Surveillance Program

Observed prevalences

Average

Tenure number of Mean 1st 2nd Predicted
(years) miners age readers readers Mean prevalence

10 3058 35 0.6 0.1 04 0.7

11 2182 36 1.0 0.1 0.6 0.7

12 3159 37 0.9 0.1 0.5 0.8

13 1755 38 0.9 0.0 0.5 0.8

14 1312 39 0.7 0.2 0.5 09

15 866 40 1.2 0.3 0.8 0.9

16 536 40 1.3 0.2 08 1.0

17 394 41 1.0 0.3 0.7 1.0

18 266 43 1.9 1.5 1.7 1.2

Another difficulty is that the actual degree of dust exposure experienced by these coal miners is
problematic. Each of these topics will be considered in turn.

The predictions are based on the classifications of a solitary (though very experienced) reader. The
classifications for the verification data sets, on the other hand, are based on readings by many readers
of variable experience. It is not known whether thete are systematic differences between the single
treader and the readers from the Coal Workers® X-ray Surveillance Program; but it is to be expected
since the first and second readers from the Coal Workers’ X-ray Surveillance Program appeared to
be systematically different from each other. Which of the two sets of readings from the Coal
Workers® X-ray Surveillance Program is to be preferred? There is no certain answer to this, but the
second readers (being all B readers) demonstrated better reading competence than the first readers
(some of whom were NIOSH A readers).

Some differences between the prediction and verification data might be expected to arise from
the use of different ILO systems. The prediction data set was based on the 1968 UICC/Cin-
cinnati scheme [Bohlig et al. 1970]; whereas, the data from rounds 3 and 4 were derived using
the 1971 and 1980 ILO classifications [ILO 1980, 1972], respectively. Some readers have
suggested that the standard films included in the 1971 set included one for category 1 that
resulted in more positive films being recorded than with previous versions. Obvious problems
are involved with the round 4 classifications, for the 1980 ILO procedure for classifying small
opacities was substantially different from previous versions. In this, the rounded and irregular
opacities were no longer classified separately: they were read in combination. As a conse-
quence, there is no way with the 1980 system to get readings of small rounded opacities that
are identical in concept to those for the 1971 and eatlier versions of the ILO system. The
procedure adopted in this report derives what might be called pseudo-small rounded opacity
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classifications, and they may or may not reflect what would be read if separate readings of rounded
opacities were actually made.

Another point of difference relates to participation rates. Until recently, participation in the Coal
Workers® X-ray Surveillance Program has been very high. Unfortunately, no information existed
to assess whether those who participated were typical of the complete mining workforce or were
biased in some respect. In contrast, the participation rate in the predictor data set was >90%. The
effect of worker selection should therefore be borne in mind in this comparison.

The last point of difference concerns mine selection. The prediction study was based on larger
mines. However, since the Coal Workers® X-ray Surveillance Program is open to all underground
miners, it is likely that the verification data set includes many miners from small mines. If work
practices and dust conditions were systematically different in smaller mines and larger mines (which
seems quite possible), this difference would be reflected in different levels of CWP.

Finally, the problem of assigning an exposure to the miners in the verification data set (Coal
Workers® X-ray Surveillance Program) will be considered. Dust exposure measurements are
available for virtually all miners by social security number from 1970 to 1979. However, calculation
of mean exposure for each miner was rejected because of the massive effort it would require.
Millions of dust exposure records are spread over about 20 computer tapes. To search them and
calculate exposures would have taken too long for the result to be useful. In any case, the exposures
would have accounted for only part of the miners’ tenure in mining, especially for round 4.

Instead, another apptoach was adopted. This approach assigned a constant dust concentration to
each miner (2 mg/m3). Choice of a common concentration is not a serious problem, as the Federal
Coal Mine Health and Safety Act of 1969 (Public Law 91-173) led to a substantial narrowing of
the range of dust concentrations experienced. If 2 mg/m3 seems too high, remember that the
standard was 3 mg/m3 from 1970 to late 1972 and that there have been persistent reports of dust
sample tampeting. In view of these considerations, 2 mg/m3 was thought to be a reasonable
exposure. (In any event, the results presented here are not too different if 1.5 mg/m3 is used in place
of 2 mg/m3.)

L.5 CONCLUSIONS

The results of this exercise suggest that the predictions from the Attfield and Morring [1992] paper
are not excessive. Rather, there is some indication that these predictions may underestimate the
actual prevalence of small rounded opacities.
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