Workplace Breathing Rates: Defining Anticipated Values and Ranges

David Caretti
Research Physiologist
Edgewood Chemical Biological Center

4 May 2004
Background

- **Objectives**
 - Define ventilatory parameters based on real-world work rates
 - Examine both non-respirator and respirator conditions
 - Establish flow rates for assessing filter/respirator performance

- **Approach**
 - Literature review
 - Compile/analyze data from government/non-government sources
 - Human use testing (lab and/or worksite)
Literature Review

• Objectives
 - Review concepts of respiration pertinent to respirator certification
 - Evaluate methods for quantifying ventilation
 - Define maximal ventilation rates
 - Address speech ventilation rates
 - Describe ventilation rates reported for occupational activities
 - Review the impacts of respirator wear on ventilation
Literature Review

Summary Information

- 155 papers reviewed/cited
- 9 with workplace or simulated workplace data
- 7 with workplace data during respirator wear
- Limited empirical data to meet objectives
- Adopted approach for estimating minute volumes from energy expenditure literature
- Relationship between ventilation and oxygen usage
- 2 exponential functions utilized to derive a range of predicted volumes
- Assumptions and limitations defined
Literature Review

- **Summary Information (continued)**
 - Peak inspiratory flow literature
 - Determined prediction intervals for peak flows based on limited empirical data
 - Estimates of upper and lower boundaries for PIF for any given minute volume
 - Defined assumptions and limitations
 - Respirator wear and ventilation
 - Changes from non-masked conditions
 - Addressed for broad respirator categories
 - APR
 - Supplied air/PAPR
 - SCBA
 - Initial paper draft provided to NIOSH for review Mar 04
Distribution of ventilation rates measured or estimated from occupational activity literature fitted with a normal distribution.
Literature Review: Results

Occupational activities:

- **Minute volume distribution**
 - Mean = 38.5 ± 16.6 L·min$^{-1}$ (n = 565)
 - Median = 33.6 L·min$^{-1}$
 - 95th percentile = 73.3 L·min$^{-1}$
 - Peak = 162 L·min$^{-1}$

- **Peak flow ranges based on minute volumes**
 - Mean V_E : 72 to 183 L·min$^{-1}$
 - 95th percentile V_E : 182 to 295 L·min$^{-1}$
 - Peak V_E : Estimation not valid for V_E over ~120 L·min$^{-1}$
Literature Review: Results

Human performance literature:

- **Maximal V_e**
 - Males (20-29 yr) = 114 ± 23 L·min$^{-1}$
 - Females (20-29 yr) = 87 ± 17 L·min$^{-1}$
 - Extremes of 180 to 200 L·min$^{-1}$

- **Peak flow rates**
 - Maximum exercise values as high as ~ 300 L·min$^{-1}$
 - Peak in-house value ~ 485 L·min$^{-1}$ during hard work
 - Speech values not substantially different
Conclusions

• Occupational \(V_E \) rarely approach \(V_E \) max values
 – 73 L \cdot min\(^{-1}\) sufficiently represents the upper limit of minute volumes anticipated in the workplace
 – 114 L \cdot min\(^{-1}\) reasonable estimate for \(V_E \) max

• Peak inspiratory flows
 – High end predictions based on \(V_E \) correspond with literature
 – Suggest upper limit of 430 L \cdot min\(^{-1}\) based on \(V_E \) max of 114 ± 23 L \cdot min\(^{-1}\)

• Higher \(V_E \) and peak flows will occur!
 – Literature suggests such instances are not the norm
Conclusions

• **Respirator wear**
 - Minute volumes and peak flows generally lower during intense work for APR and SCBA
 - SAR/PAPR impact ventilation to a lesser degree

• **Implications toward respirator standards**
 - Better representation of occupational ventilation rates:
 • Adopt values based on 95th percentile V_E (73 L·min-1)

 - Greater range of human ventilation:
 • Adopt values based on V_E max of 114 L·min-1

 - Other factors involved:
 • Cyclic flows vs. constant flows?
 • Contaminant exposure levels?
Data Compilation

Objectives
- Obtained raw ventilation data from recent respirator studies
- Validate/update current knowledge on ventilation during respirator wear
- Identify data gaps for further research

Status
- Data obtained from 3 sources; anticipate input from 1 additional investigator
- Database variables defined; database partially populated
- Currently reviewing new dataset
- Analysis of data will be initiated once database is complete
Data Compilation: Sample

![Graph showing instantaneous flow rate over time]

<table>
<thead>
<tr>
<th>TI (s)</th>
<th>TE (s)</th>
<th>f (1/min)</th>
<th>VT (L)</th>
<th>VI (L/min)</th>
<th>VT/TI</th>
<th>TI/TTOT</th>
<th>PIFR (L/min)</th>
<th>PEFR (L/min)</th>
<th>PIFR/VE</th>
<th>PEFR/VE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94</td>
<td>0.82</td>
<td>34.01</td>
<td>2.16</td>
<td>73.52</td>
<td>2.30</td>
<td>0.53</td>
<td>271.49</td>
<td>302.67</td>
<td>3.69</td>
<td>4.12</td>
</tr>
<tr>
<td>1.00</td>
<td>0.84</td>
<td>32.72</td>
<td>2.35</td>
<td>76.94</td>
<td>2.36</td>
<td>0.54</td>
<td>262.26</td>
<td>243.96</td>
<td>3.41</td>
<td>3.17</td>
</tr>
<tr>
<td>0.89</td>
<td>0.82</td>
<td>34.93</td>
<td>2.16</td>
<td>75.45</td>
<td>2.42</td>
<td>0.52</td>
<td>383.51</td>
<td>268.75</td>
<td>5.08</td>
<td>3.56</td>
</tr>
<tr>
<td>0.86</td>
<td>0.92</td>
<td>33.79</td>
<td>2.42</td>
<td>81.92</td>
<td>2.82</td>
<td>0.48</td>
<td>263.58</td>
<td>245.27</td>
<td>3.22</td>
<td>2.99</td>
</tr>
<tr>
<td>0.89</td>
<td>0.89</td>
<td>33.57</td>
<td>2.43</td>
<td>81.58</td>
<td>2.72</td>
<td>0.50</td>
<td>275.44</td>
<td>245.27</td>
<td>3.38</td>
<td>3.01</td>
</tr>
</tbody>
</table>
Respirator Wear Testing

• **Recommendations based on:**
 - Literature review
 • Investigate the relationship between ventilation and oxygen usage on a population of respirator users
 • Measure workplace ventilation rates during respirator wear
 - Compiled data
 • To be determined
Project Milestones

- Completed
 - Literature review report
 - Provided flow rates for NIOSH sponsored
 - High flow filter testing

- In progress
 - Publish literature review report
 - Complete compiled data analysis
 - Provide final flow rate recommendations